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CBSASNet: A Siamese Network Based on Channel
Bias Split Attention for Remote Sensing
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Abstract— Remote sensing image change detection (CD) is
an important technology for monitoring ground object change.
Although transformer-based CD methods have been proposed
and achieved good results, however, there does exist one open
problem: transformer-based methods are weak for localizing
information acquisition, easily ignore detailed information, and
are of high computational complexity. Also, the variation of target
sizes challenges the generalization of networks. To address these
issues, we propose a Siamese network named as CBSASNet for
remote sensing CD, in which channel bias split attention (CBSA)
is employed to recover the information in the change region,
and the cross-temporal fusion module (CTFM) is utilized to
highlight the information of change regions through the opti-
mized single-temporal image features. The experimental result
indicates that CBSASNet does not only outperform 16 state-of-
the-art works, but also its modules complement each other in the
ablation testing.

Index Terms— Change detection (CD), channel bias split
attention (CBSA), convolutional neural networks (CNNs), fusion,
remote sensing image.

I. INTRODUCTION

EMOTE sensing image change detection (CD) is to

generate change maps by comparing and analyzing
two-phase or multitemporal images. The pixels in the change
graph have only two values of 0 and 1, that is, the change graph
is a two-value change graph, where 0 and 1 represent change
and invariance, respectively. CD techniques are widely used
in urban planning [1], [2], ecosystem detection [3], [4], land
cover analysis [5], and natural disaster damage assessment [6].
As a result, it can be seen that the development of these
applications relies heavily on the progress of remote sensing
image CD technology, which has attracted great attention from
related scholars and a large number of CD methods have been
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proposed. Currently, emerging CD methods can be broadly
categorized into two main groups: traditional methods and
deep learning-based methods.

Early traditional remote sensing image CD methods relied
on manually analyzing the spectral information of the image
and manually selecting appropriate thresholds to identify the
change regions, such as principal component analysis (PCA)
[7], [8], Gabor filter [9], the tasseled cap transformation [10],
multivariate alteration detection (MAD) [11], and change vec-
tor analysis (CVA) [12], [13]. However, the selection of these
methods is affected by seasonal variations, lighting conditions,
and satellite sensors, making it difficult to achieve robustness
for higher CD accuracy. Therefore, the superiority of machine
learning methods comes out, which can learn to summarize the
laws through some samples, and then make decisions and pre-
dictions, such as random forest [14], support vector machine
(SVM) [15], and decision tree [16]. However, the manually
extracted features rely heavily on a priori domain knowledge,
and, are less capable of representing deep change information,
which limits the generalization ability of the methods.

In recent years, convolutional neural networks (CNNs)
have achieved great success in various fields such as image
classification [17], [18], semantic segmentation [19], and target
detection [20], [21], which has led researchers to be interested
in introducing CNNs into the field of remote sensing image
CD. The CD task can generally be regarded as an image seg-
mentation task, but unlike a general segmentation task, the CD
task requires the input to be a set of dual-temporal images or
multitemporal images. Based on this situation, Zhan et al. [22]
made a breakthrough by introducing a Siamese convolutional
network into the CD task, which achieves the goal of reducing
the number of network parameters by processing dual-time
images in parallel. However, the convolutional operation is
limited by the size of the receptive field, making it difficult
to effectively model global information. Some scholars have
effectively improved the network’s ability to capture global
information by using the dilated convolution [23] and adding
the attention mechanism [23], [24]. Daudt et al. [25] proposed
three effective CD architectures by changing the fusion time
and fusion method of the dual-temporal images. However,
it is difficult to fuse the dual-time images very effectively
by simply fusing the dual-temporal images by cascading or
differencing.
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Concatenated networks extract and refine features of the
input data step by step through multiple subnetworks in a
sequential manner. This structure allows flexibility in adjusting
the number and type of subnetworks according to the needs
of a particular task and has therefore been introduced by
researchers into the field of CD. Heidary et al. [26] proposed
a CD method based on a fully convolutional twin cascade
network, which improves prediction accuracy by preprocessing
and introducing an attention gate layer in place of Gaussian
attention. Du et al. [27] proposed an end-to-end CD method
called MTCDN. MTCDN achieves CD by integrating image
generation, image recognition, and CD into a GAN, using
a cyclic structure to unify optical and SAR images in a
single feature domain. In addition, MTCDN achieves CD
in heterogeneous images using a Siamese cascade network
of UNet++. Huang et al. [28] proposed SEIFNet, which
extracts multiscale features through a twin cascade network,
highlights the change region using ST-DEM, and decodes it
incrementally through ACFM and RM, and finally aggregates
the multiscale decoded features to obtain the change results.
Heidary et al. [29] proposed a method CTS-Unet for urban
CD, which combines CNN with Swin transformer to form a
cascade network that uses spatial and contextual relationships
to achieve CD.

Currently, vision transformers (ViTs) [30] have become
a promising alternative to CNNs for learning visual rep-
resentations. Leveraging the powerful long-range modeling
capabilities of ViTs, scholars have introduced them into the
field of remote sensing CD and have proposed many effective
methods. Yan et al. [31] proposed FTN, which constructs
a pure transformer-based CD network. Zhang et al. [32]
proposed SwinSUNet, incorporating the Swin transformer [33]
into the CD field. In addition to pure transformer networks,
researchers have also attempted to combine transformers with
other methods to take advantage of both. BIT [34] and MFAT-
Net [35] use a combination of transformer and ResNet-18
to detect change targets. Tang et al. [36] proposed WNet,
which employs CNN and transformer to build twin networks
for parallel processing of dual-temporal images. Bandara and
Patel [37] proposed ChangeFormer, which combines a trans-
former with MLP for remote sensing CD.

Dual-temporal images or multitemporal images used in
remote sensing image CD are images taken at the same
location at different points in time, so even if the shooting
location is the same, the spectral information of the two
images is still very different due to the influence of many
objective factors such as seasons, illumination, and sensors,
which causes a great deal of trouble for the matching of
contextual information of the two images. The vast majority of
current CD methods use CNN methods in the encoding stage,
which use a fixed-size convolution to downsample the feature
information as a way to obtain feature information at different
scales. Due to the limited size of the receptive field of a single
convolutional kernel, not enough contextual information can
be extracted in the feature extraction phase, which reduces the
performance of the model. Although it is possible to increase
the receptive field of the model by increasing the depth of the
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model, however, increasing the depth of the model too much
is also a great burden on the hardware devices. The existing
fusion mainly contains early fusion, cascade, or difference,
these fusion methods will cause semantic deviation during
feature fusion, which will lead to error detection.

Based on the above observations, we designed a network
called CBSASNet in the hope of solving the CD task using
a purely convolutional approach. CBSASNet guarantees the
performance of the model by balancing the depth of the
model with the size of the receptive field using channel bias
split attention (CBSA). In addition, the method also changes
the fusion method by using a cross-time fusion module to
effectively utilize the extracted information to highlight the
change region information. The main contributions of this
article can be summarized as follows.

1) We designed CBSA to help the network extract detailed
information better under the premise of integrating
multiple receptive fields by adding a simple channel
mapping.

We designed a cross-temporal fusion module (CTFM).
This module subdivides the cascaded bi-temporal fea-
tures through simple convolution and reinforces the
difference information through a unilateral shortcut con-
nection, emphasizing the changing areas.

We have constructed a Siamese network for remote
sensing CD (CBSASNet) using the CBSA module and
CTFM, and optimized the network during the training
phase with a binary cross-entropy loss function. The
CBSA module extracts and fuses multiscale information,
while the CTFM module emphasizes the different infor-
mation. Together, they effectively enhance the accuracy
of CD.

We conducted extensive experiments on three public
datasets, WHU-CD, CDD, and LEVIR-CD, to verify the
effectiveness and superiority of the proposed method.
Compared with the 16 state-of-the-art CD methods,
CBSANet improved the F1-score on the three datasets
by 0.86%, 0.19%, and 0.70%, respectively.

The remainder of the article is organized as follows.
Section II briefly describes the work related to the CD task.
In Section III, we present the detailed structure of each part of
CBSASNet and the overall. Section IV provides experimental
results that validate the effectiveness of CBSANet, and dis-
cusses and analyzes them. In Section V, we summarize the
work done.

2)

3)

4)

II. RELATED WORK
A. CNN-Based Networks

CNNs have powerful feature extraction capabilities and
have achieved commendable results in many fields, and
many previous CD methods have been implemented based
on CNNs. It is not difficult to find that researchers usually
enhance the performance ability of the network by changing
the structure of the backbone network, optimizing the loss
function, and adding the attention mechanism. In terms of
the backbone network structure, the unique structure of the
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Siamese network is well adapted to the dual-time-phase remote
sensing image CD-based task, so it is frequently applied to
the research of dual-time-phase remote sensing image CD
task. Zhan et al. [22] made a breakthrough in introducing
Siamese networks to the CD task and proposed a shared
weights Siamese network utilizing dual tributaries to process
dual time-phase images simultaneously, which has become
a benchmark for most of the later researchers on the task.
Daudt et al. [25] proposed three fully convolutional-based
network architectures that perform end-to-end training, where
FC-EF takes the cascaded dual temporal images as the input
to the network, while the two networks, FC-Siam-conc and
FC-Siam-diff, use the Siamese network architecture, which
takes the dual temporal images directly as the input to the
network. In order to improve the lack of feature extraction
capability in convolutional operations, Zhang et al. [23] used
the dilated convolution in order to improve the acceptance
domain of the convolutional kernel. Fang et al. [24] used
dense hopping connections based on U-Net to maintain
feature information and localization information. Similarly,
Li et al. [38] proposed the DARNet which also utilized dense
skip connections to aggregate features of different scales.
Zhong and Wu [39] proposed the T-UNet, which emphasized
highlighting the change information between two time-phase
images through a three-branch structure to accurately identify
the edges of changing objects.

In the remote sensing CD mission, there is a serious
imbalance in the dataset data due to the fact that the changing
pixels are much smaller than the unchanging pixels in the
dual-temporal remote sensing images. This is an inherent
characteristic of the dataset itself, and researchers have taken a
variety of approaches to reduce or even eliminate the effects of
data imbalance, most commonly by improving the loss func-
tion and equalizing the proportion of changing and unchanging
pixels involved in the loss calculation. Zhan et al. [22] used a
weighted contrastive loss to increase the weight of varying
pixels in the loss calculation to reduce the effect of data
imbalance in training. Chen et al. [40] proposed the weighted
double-margin contrastive loss based on the traditional contrast
loss, which improves the contribution of the two feature
pairs to the value of the loss by decreasing the weight
of the invariant feature pair and increasing the weight of
the changing feature pair. Chen et al. [34] used minimizing
cross-entropy loss to optimize the parameters of the network
during the training phase of the network. Fang et al. [24] used
a hybrid loss consisting of a weighted cross-entropy loss and
a dice coefficient loss to optimize the network parameters.
Feng et al. [41] used a deep supervision approach, thus
facilitating the network can get more accurate prediction maps.
Yan et al. [31] used a hybrid loss function along with deep
supervision of different levels of features to calculate the loss
values.

The attention mechanism used in computer vision (CV) was
proposed by some scholars after being inspired by the visual
ability of animals, which mimics the ability of animals to high-
light key information when observing things, and focuses on
specific parts or features of an image after it is inputted into the
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network, so that the network can dynamically assign different
weights according to the importance of the inputs, inhibit irrel-
evant information, and emphasize the key information. Chen
and Shi [42] designed a pyramid spatial-temporal attention
module that can extract multiscale spatio-temporal contextual
features to enhance the ability to recognize detailed infor-
mation. Similarly, Li et al. [38] proposed a hybrid attention
module that effectively fuses multiscale feature information
through the efficient spatial-temporal attention module and
the channel attention module. Li et al. [43] used a dynamic
selection mechanism that can adaptively select the sensory
field based on input information. Zhang et al. [44] added
feature-map split attention in each module of ResNet [17]
and selected weights based on global contextual information
and proposed ResNeSt. Xu et al. [45] simplified the number
of subblocks based on ResNeSt. Chen et al. [40] used a
dual-attention mechanism to capture long-range dependen-
cies between pixels. Zhao et al. [46] used channel attention
to aggregate the four outputs of U-Net++ to generate a
more accurate variation map. Zhong and Wu [39] designed
a multibranch spatial-spectral cross-attention module using
dual-temporal image features to correct the change infor-
mation of the difference image. Feng et al. [41] proposed
an intertemporal joint-attention module so that dual-temporal
image features can guide each other. Zhao et al. [46] proposed
using a geospatial position matching mechanism and a geospa-
tial content reasoning mechanism to effectively extract global
information and refine features.

B. Transformer-Based Networks

In the last two years, the transformer [30] method, originally
used in NLP tasks, has been widely used in CV tasks.
Dosovitskiy et al. [47] proposed ViT, which is the first
fully transformer-based network used in the field of CV and
achieved results comparable to the results of CNN methods in
the field of image classification. The proposal of ViT started a
new framework in the field of CV. Zhang et al. [32] introduced
Swin transformer into remote sensing CD task and constructed
SwinSUNet, which is a pure Swin transformer [33] network
with a concatenated U-shaped structure. Swin transformer
effectively solves the high computational complexity of the
transformer by replacing the standard multihead self-attention
module with a window-based multihead self-attention module
and also achieves better results in the CD task. Yan et al. [31]
designed a pure transformer network FTN to extract features
from a global perspective and fused different levels of features
using a pyramid approach. Zheng et al. [48] proposed that
Changemask can be used for semantic CD. Chen et al. [34]
tried to combine CNN and transformer methods to propose
the BIT model, which uses CNN to extract feature maps and a
transformer to model contextual relationships based on feature
maps, which combines the advantages of the two in terms of
local feature extraction and global features. Feng et al. [49]
proposed ICIF-Net based on BIT to solve the multiscale
feature interaction neglected by BIT. However, the difficulty
that transformer-based methods need to occupy a large amount
of computational resources has been troubling researchers.
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Fig. 1. Architecture of the proposed CBSASNet.

III. MATERIALS AND METHODS

This chapter introduces our CD method, CBSASNet, and
Fig. 1 presents the complete architecture of CBSASNet.
To enhance the network’s ability to extract both global infor-
mation and local detail information, we first use the CBSA
module to construct a twin network as an encoder to pro-
cess dual-temporal images in parallel. This module helps the
network to better extract detailed information by integrating
multiple receptive fields. Second, we propose the CTFM
to fuse features from dual-temporal images, reinforcing the
difference information through unilateral shortcut connections,
thereby highlighting the areas of change.

A. CBSA Module

1) Motivation: The number of stacked layers can provide
information under different receptive fields, thereby enriching
the features extracted by the network, such as ResNet [17].
Nevertheless, an excessive number of stacked layers inevitably
leads to a surge in the number of parameters, thereby increas-
ing the computational load. By using split-attention blocks,
ResNeSt [44] retains the basic structure of ResNet and inte-
grates information from multiscale receptive fields at one level
very effectively, achieving better results without additional
computational burden. However, there does exist a tradeoff
between the captures of global and detailed information.
HRVIT [50] increases channel mapping to enhance nonlinear
capability. Inspired by this, we designed CBSA to help the
network extract detailed information better under the premise
of integrating multiple receptive fields by adding a simple
channel mapping. In short, after the split-attention block
integrates the information extracted from multiscale receptive
fields through global attention, a channel mapping of the

Shallow Feature
Extraction Module

original features is added to the features to enhance the non-
linear mapping capability of the feature channel dimensions,
thus increasing the diversity of features and enhancing the
network’s fitting ability.

2) CBSA Module: The framework diagram of CBSA is
shown in Fig. 2. We assume that the input received by CBSA
isd, € REXHXW First, d is fed into a 1 x 1 convolution. the
1 x 1 convolution is responsible for adjusting the dimension-
ality (decreasing or increasing C). After that, the adjusted d; is
divided equally into d} € R*H*W and d? € RE*H*W and
fed to the left and right branches, respectively. The left branch
undergoes a 3 x 3 convolution and the right branch undergoes
two 3 x 3 convolutions, which are described in more detail
as shown below

dy,di = S(Convixi(d)) (0
dy = Convs,3 (dll) 2
d; = Convs,;(d}) )

where S(-) denotes the average chunking in the channel
dimension, and Conv;,; and Convsy3 denote the vanilla con-
volution containing a batch normalization and ReLU activation
function with convolution kernel sizes of 1 x 1 and 3 x 3,
respectively. Then, in order to be able to make the information
of the two branches complement each other and not be iso-
lated, di is summed up with d7 element-by-element and then
a 3 x 3 convolutional layer is used to refine the information
contained in d; and dj to obtain di € R/?*H*W and are
then summed up through the element-by-element summation
operation to obtain dj € R/P>*H>W a5 follows:

dy = Convs,;(dy @ d;)
d=diod;

“)
%)
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Fig. 2. Architecture of the proposed CBSA.

where @ denotes the element-by-element summation opera-
tion. After that dj € R/?*!x! js obtained from d; using
global average pooling operation, F retains the most important
information in the feature map, and discards other unimportant
information and noise generated during the feature extraction
phase. After that, the channel information of &; is adjusted by
two layers of 1 x 1 convolution to get di € RE*!*1. After
that, the SoftMax function is used to normalize d53. Then,
the normalized d2 is divided equally into d¢ and d; in the
channel dimension and multiplied with d} and d3, respectively,
and the global information obtained is used to enhance the
representation of the feature map with respect to the key
information. It is shown as follows:

d; = A(d3) (6)
d; = ReLU(Conv; (Convyy, (df))) (7)
dg, dg = S(o (d3)) ®)
&= (o d) o (& od) o

where A(-) denotes global pooling, o (-) denotes the mapping
of feature information to [0, 1] using the SaftMax function
in the channel dimension, ® denotes the element-by-element
multiplication operation, Conv,(-) denotes the inclusion of
a batch-normalized 1 x 1 convolutional layer, and ReLU(-)
denotes the ReLLU activation function. Finally, the results of
the 1 x 1 convolution of the original d; and d; are used
as residual connections. Then, the results of the 1 x 1 con-
volution of each element with d¢ are added. This process

Conv1x1

can be demonstrated as

d; = ReLU(d; ® Convix;(d;) ® Convix(df)).  (10)

B. Cross-Temporal Fusion Module

1) Motivation: The captured bi-temporal images are influ-
enced by the time of shooting, leading to interference
from irrelevant changes such as seasons and lighting con-
ditions [41]. In real-world scenarios, there does exist an
imbalance between the foreground and background. This
kind of imbalance poses a major challenge in CD: a
cascading-based approach can ensure the completeness of
bi-temporal image information during the decoding pro-
cess [24], [25] while it is difficult to highlight the differences
between nonchanging and changing areas. It is observed that
the fusion of bi-temporal image features can effectively high-
light or amplify the differential signals of changing regions.
To this end, we designed a CTFM. This module subdivides
the cascaded bi-temporal features through simple convolution
and reinforces the difference information through a unilateral
shortcut connection, emphasizing the changing areas.

2) Cross-Temporal Fusion Module: As shown in Fig. 3. The
CTFM takes f! € RO*W and f? € REH*W as inputs, and
f! and f? are each passed through a 3 x 3 convolutional layer
before doing preliminary fusion using a channel dimension
cascade to obtain f’!. After that, the fused result f7! is
passed through two 3 x 3 convolutional layers to obtain
3 € REOHXW “which is used to smooth out the difference
information in the initial fused features. This process can be
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represented as follows:

fi31 — Cat(Consts (fil)’ Convsy (ff))
[ = Convsys (Convsys (f7))

Y
12)

where Cat(-, -) denotes the superposition of two features in the
channel dimension. Afterward, in order to be more prominent
in highlighting the difference information between the dual-
temporal images, f;' is added element-by-element with £
through a 1 x 1 convolutional layer to obtain the final result
3. We believe that the element-by-element summation of
f! and f?* can both dilute out the noise introduced due to
the initial fusion and prevent some of the effective difference
information from being lost and also alleviate the later decoder
stage of decoding the information to fuse the dual branch
information roughness. Mathematically it can be expressed as

5 = ReLU(Conv, (£1) @ £72). (13)

C. Construction of CBSASNet

1) Encoder: We use the Siamese network to extract image
features from dual-temporal remote sensing images. Specif-
ically, the network of CBSASNet uses a multiscale shallow
feature extraction module to roughly extract the shallow fea-
tures of the image. As shown in Fig. 1, the shallow feature
extraction module mainly consists of a 7 x 7 vanilla convo-
lution, a 7 x 7 depthwise convolution, and a 1 x 1 pointwise
convolution, and applies a shortcut connection strategy to cope
with possible gradient vanishing. Since the remote sensing
CD task needs to detect targets of different sizes, four feature
extraction layers are used after the shallow feature extraction
module, and in order to balance the number of parameters
and performance as much as possible, each feature extraction
layer consists of only two CBSAs, which can be used to
extract cross-channel information at different scales of recep-
tive fields, highlighting the features of targets of different sizes,
and better identifying the changing targets.

2) Fusion: The role of fusion is to fuse the dual-temporal
phase image features and highlight the different informa-
tion in the dual-temporal phase image, while by fusing the

dual-temporal phase image features directly through the cas-
cade, it is easy to cause semantic bias, which leads to the
omission of the change target or wrong detection. The first
two phases of the CBSASNet use the fuser, which can not
only dilute out the noise introduced due to the initial fusion
by reinforcing the unilateral information but also can prevent
the loss of some of the effective difference information and
highlight the differences in the dual-time phase image features.
In the deeper layers of the network, semantic information
represents more ambiguous meanings and allows for more
information bias, and it will be easier and faster to fuse
features by cascading.

3) Decoder: In order to recover the image features obtained
by downsampling from the encoder and thus obtain the final
prediction map, we construct a decoder that is essentially
symmetric with the encoder using CBSA. The decoder is
divided into five stages, each of the first four stages first
uses an upsampling layer that receives the features from the
previous stage and performs an upsampling operation on it,
then cascades them with the two-branch fusion features from
the stage corresponding to the encoder, and finally inputs them
into the CBSA to recover the image features. In the final
stage of the decoder the feature map channel is compressed to
2 using dot convolution and the prediction result is obtained
using softmax function.

D. Loss Function

We use the binary cross-entropy loss to optimize the param-
eters of the network in the training phase of the network.
Mathematically, the binary cross-entropy loss can be expressed
as

HxW R
z (8(;/. -Gjlog(Pj) + 8@/_ -G IOg(Pj))

J=1

1
L=——
HxW
(14
where G ; denotes the label of the jth pixel in the ground truth
map, and if G; is O then G j is 1, at which point G; indicates

that the semantics of the corresponding dual-temporal phase
image at that location changes, and G; is the opposite.
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LEVIR-CD

Fig. 4. Sample dataset presentation. (Top to bottom) T1 images, T2 images, and ground truth. Samples from one dataset per four columns. (Left to right)

WHU-CD, CDD, and LEVIR-CD.

TABLE I
MAIN PARAMETERS OF THE DATASET
Dataset Patch Size  Number of Pixels Changed = Number of Pixels Unchanged Ratio Train Val Test
WHU-CD 256 x 256 21,352,815 477,759,663 1:22.37 5,948 743 743
CDD 256 %256 134,068,750 914,376,178 1:6.82 10,000 3,000 3,000
LEVIR-CD 256 %256 30,913,975 637,028,937 1:20.61 7,120 1,024 2,048

P; denotes the probability that the predicted image element
represents the corresponding location of the dual-temporal
phase image that changes, and P ;j denotes the probability that
the pixel at that location does not change. 8¢, and ¢, denote
the weights of changed and unchanged pixels, respectively,
to adjust the relative importance of each category.

IV. EXPERIMENTS
A. Datasets

1) WHU-CD [51]: The imagery in this dataset uses two
aerial images from Christchurch, New Zealand, taken at
different times, one in 2012 and the other in 2016. The
dataset images were taken at a location that was struck by
a magnitude 6.3 earthquake in February 2011, after which the
area was rebuilt. The aerial imagery covers a 450-km” area
of Christchurch, New Zealand, with a spatial resolution of
0.075 m. The image contains a large number of buildings, and
it is these buildings that we detect changes. We cropped the
original image of 32507 x 15354 pixels without overlapping
into blocks of 256 x 256 pixels to obtain a total of 7434 pairs
and randomly assigned all the image blocks into a training set,
validation set and test set with an allocation ratio of 8:1:1.

2) CDD [52]: The dataset images are seasonally changing
images of the same area obtained from Google Earth and
contain seven pairs of 4725 x 2700 pixels and four pairs of
1900 x 1000 pixels images with spatial resolutions ranging
from 3 to 100 cm/px, and the images contain automobiles and
large buildings that can provide objects of varying sizes for the
CD. The images are cropped into 256 x 256 sized fragments
by random rotation to get a total of 16000 image pairs, and
finally, the image set is divided into 10000 training sets, and
3000 test and validation sets.

3) LEVIR-CD [42]: This dataset consists of 637 image
pairs collected from Google Earth taken in 20 different areas
of several cities in Texas, USA, from 2002 to 2018, with a
spatial resolution of 0.5 m/pixel for the acquired pairs, and a

size of 1024 x 1024 pixels for each pair. The dataset covers
a wide range of building types, including a variety of homes,
garages, and large warehouses. All images were cropped into
nonoverlapping 256 x 256-pixel image blocks and divided in
a 7:1:2 ratio to obtain 7120 (training), 1024 (validation), and
2048 (test) pairs of patches.

Fig. 4 gives a presentation of some of the images in the
three datasets. It can be seen from Fig. 4 that the three datasets
have different focuses, where the WHU-CD dataset focuses on
sparse and large building changes, the CDD dataset focuses
on changes caused by buildings, thin and irregular roads,
and traffic vehicles, and the LEVIR-CD dataset focuses on
changes caused by sparse or dense small buildings. Detailed
information on the three datasets is provided in Table I, and
the severe imbalance between changing and unchanging pixels
in the three datasets is also a major challenge in the CD task.

B. Evaluation Indicators

In order to fully evaluate our proposed CBSASNet, we use
six evaluation metrics, precision (Pre), recall (Rec), F1-score
(F1), IoU, overall accuracy (OA), and kappa, which are all in
the interval [0, 1], when the value is closer to 1, it means that
the network is more effective. The expressions for these six
evaluation metrics are as follows:

Precision = TP/(TP + FP) (15)
Recall = TP/(TP + FN) (16)
F1 =2/(Recall”! + Precision™!) (17)

IoU = TP/(TP + FP + FN) (18)

OA = (TP + TN)/(TP 4+ TN + FP + FN) (19)
Kappa = (OA — P)/(1 — P) (20)

where TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives, and false negatives, respectively.
P in kappa is the intermediate variable in the computation,
which denotes the hypothesized probability of chance con-
sistency between the target and the prediction, and it can be



5630117

expressed as

b (TP 4 FP)(TP + EN) + (FN + TN)(TP + TN)
B (TP + FP + TN + FN)2 ‘

21

C. Experimental Details

All of our experiments were implemented in the Pytorch
deep learning framework. Experiments were conducted using
a model Nvidia Titan RTX (24G) GPU with batch size set
to 8. The Adam network optimizer was used with the two
decay factors set to 0.9 and 0.999 and the learning rate set to
0.0001. Our network is trained for 300 epochs on all datasets,
and in each epoch we sequentially perform one training and
one validation, keeping the model parameters with the highest
F1-scores. The models with F'1-scores in the validation set
will be used to evaluate the test set.

D. Comparative Experiments

1) Comparison of Methods: We compared CBSASNet
with several classical and excellent methods for CD, such
as FC-Siam-conc [25], FC-Siam-diff [25], FC-EF [25], BIT
[34], IFN [53], SNUNet-CD [24], ICIF-Net [49], PA-Former
[54], RDP-Net [55], DMINet [41], GeSANet [46], AERNet
[56], HANet [57], WNet [36], ScratchFormer [58], and
SEIFNet [28].

1) FC-Siam-Conc [25]: It has a similar structure to FC-EF,
also using a U-shaped structure, the difference is that
FC-Siam-conc uses the encoder of FC-EF twice to form
two encoder branches to process the bi-phasic images
separately, and they share weights between them, and the
results obtained are cascaded in the channel dimension.
FC-Siam-Diff [25]: Also a variant of FC-EF, the differ-
ence with FC-Siam-conc is that the shortcut connection
of FC-Siam-diff uses the absolute value of the difference
between the two encoded branches.

FC-EF [25]: A classical fully convolutional CD net-
work with a U-shaped structure, the network uses a
dual-temporal image fused image as input and four hop
connections between the encoder and decoder.

BIT [34]: This network first introduces a transformer
into the field of CD and adopts a hybrid approach of
CNN and transformer to construct the network. The
long-range relationship between image features is effec-
tively constructed by the transformer.

IFN [53]: This network uses VGG16 as a backbone
network for DFEN to extract bi-phasic image features,
and finally the prediction maps are generated by the
DDN. The feature maps of the layers extracted from
DFEN are shortcuts to DDN layers with the same
dimensions.

SNUNet-CD [24]: This network uses a densely con-
nected Siamese network as the backbone network to
reduce the loss of depth localization information, and
the four-level depth features obtained from the back-
bone network are transmitted to the channel attention
module for feature refinement. In addition, we use the
SNUNet-CD model with an initial number of channels

2)

3)

4)

5)

0)
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of 32, which is the most cost-effective model for this
network.

ICIF-Net [54]: The network uses CNN and trans-
former to extract local and global features, a linearized
conv attention module for feature information interac-
tion at the same resolution, and an interscale feature
fusion module to collect feature information at different
resolutions.

PA-Former [55]: This network uses deep features
extracted using ResNet18 and spatio-temporal informa-
tion obtained using the transformer module that obtains
a priori features and integrates them into the deep
features.

RDP-Net [49]: Similar to FC-EF, this network also takes
as input the fused image after cascading in the channel
dimension. The input is segmented into image chunks by
a region partitioning layer, the local information in the
image chunks and the global information of the whole
image are explored using ConvMixer, and the prediction
map is obtained by fusing the multilayer depth output
using the depth attention module.

DMINet [41]: It uses two ResNetl8 networks to do
the initial feature extraction, uses an attention mod-
ule that unifies the self-attention mechanism and the
cross-attention mechanism in a single module to guide
the global feature distribution of the two-branch feature
map, and employs subtraction and cascading to aggre-
gate the two-branch image features.

GeSANet [46]: ResNetl8 is used as the backbone
network, which uses a geospatial position matching
mechanism and a geospatial content reasoning mech-
anism to filter pseudo-change information.

12) AERNet [56]: The method uses ResNet34 to construct
the Siamese network and uses a global contextual
feature aggregation module to aggregate multilayer
contextual feature focus information. Channel and
positional associations between features are captured
using an enhanced coordinate attention-guided attention
decoding block, and the network’s ability to perceive and
refine the edges of changing regions is enhanced using
an edge refinement module. Meanwhile, an adaptive
weighted binary cross-entropy loss function combined
with a deep supervision strategy is used to enhance the
feature learning ability of the network in the presence
of dataset imbalance.

HANet [57]: The method proposes a progressive
foreground balanced sampling-based approach to solve
the sample imbalance problem by gradually adding
background images. In addition, a discriminative
Siamese network is designed using the HAN module,
in which the HAN module is able to capture the
long-range relations efficiently.

WNet [36]: The method merges the twin CNN and
twin transformer into the encoder to extract local
fine-grained information and global remote context
information while introducing the deformability idea
to enhance the network’s understanding of irregular
regions. A differential enhancement module is embedded

7

8)

9)

10)

1)

13)

14)
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Methods Years IoU(%) Pre(%) Rec(%) F1(%) OA(%) Kappa(%)
FC-Siam-conc [25] 2018 63.01 72.06 83.39 77.31 97.72 76.11
FC-Siam-diff [25] 2018 67.18 83.83 77.18 80.37 98.24 79.45

FC-EF [25] 2018 67.64 85.49 76.42 80.70 98.29 79.81

BIT [34] 2020 72.12 81.32 86.44 83.80 98.44 82.98

IFN [53] 2020 80.40 97.81 81.87 89.13 99.07 88.65
SNUNet-CD [24] 2021 76.97 89.65 84.47 86.98 98.82 86.37

ICIF-Net [49] 2022 82.33 94.60 86.39 90.31 99.13 89.86
PA-Former [54] 2022 74.05 85.04 85.15 85.09 98.61 84.36
RDP-Net [55] 2022 77.54 89.45 85.35 87.35 98.85 86.75
DMINet [41] 2023 74.64 84.86 86.11 85.48 98.63 84.76
GeSANet [46] 2023 84.61 95.05 88.51 91.66 99.25 91.27
AERNet [56] 2023 84.44 90.27 92.89 91.56 99.20 91.14
HANet [57] 2023 79.41 94.31 83.41 88.52 98.99 88.00

WNet [36] 2023 77.39 88.79 85.77 87.25 98.83 86.64

ScratchFormer [58] 2024 78.22 93.70 82.56 87.78 98.93 87.22
SEIFNet [28] 2024 83.84 89.91 92.55 91.21 99.17 90.77
CBSASNet(ours) 2024 86.08 93.93 91.15 92.52 99.31 92.16

in the encoder to obtain multilevel differential feature
mapping by cascading and subtraction. The multilevel
differential feature mappings are gradually fused by the
CNN-transformer fusion module.

15) ScratchFormer [58]: The method utilizes hybrid sparse
attention to construct a Siamese network that captures
information in the change region, ameliorating the
pitfalls of traditional self-attention mechanisms that
have difficulty in capturing generalization bias when
trained from scratch. In addition, a change-enhanced
feature fusion module is introduced to fuse features
of input image pairs by performing per-channel
reweighting to enhance relevant semantic changes while
suppressing noisy information.

16) SEIFNet [28]: The method first obtains a multilevel
feature map from the Siamese hierarchical backbone
network and introduces a spatio-temporal disparity
enhancement module to capture the global information
combined with local information in the dual-temporal-
phase feature maps at each level. An adaptive context
fusion module is designed and a progressive decoder
is constructed using the adaptive context fusion module
and the refinement module for integrating the features
among the layers.

In order to make a fair comparison of all algorithms,
all experiments were performed with the same experimen-
tal platform, the same data preprocessing method, and
hyperparameters.

2) Analysis of Experimental Results: In order to be able
to clearly compare the experimental result data, we present
all the experimental data in the form of a table. At the same
time, in order to be able to present our experimental results
very graphically, we selected several pictures from each dataset
to visualize the method results using different methods and
compare them with labels. Wherein, the black area indicating
true negative indicates that the pixel at the location is correctly
predicted as a pixel that has not changed; the white area
indicating true positive indicates that the pixel at the location is

correctly predicted as a pixel that has changed; the green area
indicating false negative indicates that the pixel at the location
is incorrectly predicted as a pixel that has not changed; and the
red area indicating false positive indicates that the pixel at the
location is incorrectly predicted as a pixel that has changed.

a) Experimental results on the WHU-CD dataset: To
evaluate the various methods, we trained and tested them on
the WHU-CD dataset, and the results of the experiments are
shown in Table II. Among the 17 methods, only five methods
have F'l-scores over 90%, which are ICIF-Net, GeSANet,
AERNet, SEIFNet, and CBSASNet. CBSASNet outperforms
all the other methods in four metrics, where it outperforms the
second-ranked GeSANet in the IoU, F1, and kappa metrics by
1.47%, respectively, 0.86%, and 0.89%, respectively. Although
CBSASNet is lower than IFN in the Pre metric, CBSASNet’s
Pre and Rec are closer to each other, indicating that compared
to IFN, CBSASNet predicts a relatively balanced mix of
changing pixels and unchanging pixels without being too
biased toward one class, thus improving the overall prediction
accuracy.

In order to show the experimental results more clearly,
we randomly select several images from the WHU-CD dataset
and use them as visualization results to show the results, and
the visualization results are shown in Fig. 5. From Fig. 5,
it can be observed that when detecting relatively large change
targets, CBSASNet can detect the edge information of the
change region more accurately and have fewer false detections
and missed detections.

b) Experimental results on CDD dataset: Table III
shows the experimental results of various methods on the
CDD dataset. Among them, three methods IFN, WNet, and
CBSASNet perform better with an F1-score of more than
97%. Among all the methods CBSASNet has the highest IoU,
Rec, Fl-score, OA, and kappa, especially Rec exceeds the
second-ranked WNet by 0.35%.

In order to present the experimental results more clearly,
we randomly selected several pictures from the CDD dataset
and used them as visualization results to show the visualization
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Fig. 5. Visualization results of the 16 CD methods on the WHU-CD dataset. Image rendering colors: white in true positive, red in false positive, black in
true negative, and green in false negative. (a)—(c) Represent three randomly selected sample images from that dataset.

TABLE III

COMPARATIVE RESULTS OF PRECISION, RECALL, F1-SCORE, IoU, OA, AND KAPPA FOR ALL METHODS ON THE CDD DATASET, WITH THE OPTIMAL
RESULTS SHOWN IN BOLD FONT

Methods Years IoU(%) Pre(%) Rec(%) F1(%) OA(%) Kappa(%)
FC-Siam-conc [25] 2018 67.94 89.59 73.76 80.91 95.89 78.63
FC-Siam-diff [25] 2018 64.10 89.92 69.06 78.12 95.44 75.62

FC-EF [25] 2018 59.49 88.21 64.63 74.60 94.81 71.79

BIT [34] 2020 89.98 95.49 93.97 94.72 98.76 94.03

IFN [53] 2020 94.21 97.36 96.69 97.02 99.30 96.62
SNUNet-CD [24] 2021 93.72 96.74 96.78 96.76 99.23 96.32

ICIF-Net [49] 2022 93.25 96.31 96.70 96.50 99.17 96.04
PA-Former [54] 2022 89.54 95.24 93.73 94.48 98.71 93.75
RDP-Net [55] 2022 93.33 96.37 96.73 96.55 99.18 96.09
DMINet [41] 2023 91.99 95.78 95.88 95.83 99.02 95.27
GeSANet [46] 2023 91.92 95.97 95.61 95.79 99.01 95.23
AERNet [56] 2023 91.98 96.03 95.61 95.82 99.02 95.26
HANet [57] 2023 89.93 95.27 94.14 94.70 98.76 93.99

WNet [36] 2023 94.42 97.17 97.09 97.13 99.32 96.75

ScratchFormer [58] 2024 92.54 96.62 95.64 96.12 99.09 95.61
SEIFNet [28] 2024 92.75 96.68 95.81 96.24 99.12 95.74

CBSASNet(ours) 2024 94.58 96.99 97.44 97.21 99.34 96.84
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Visualization results of the 16 CD methods on the CDD dataset. Image rendering colors: white in true positive, red in false positive, black in true

negative, and green in false negative. (a)—(c) Represent three randomly selected sample images from that dataset.

results, which are shown in Fig. 6. The selected images contain
three types of change regions, which are point-like, elongated,
and large change regions. From Fig. 6, it can be seen that
CBSASNEet has fewer misdetections and omissions, and is able
to detect the change regions more completely.

c) Experimental results on LEVIR-CD dataset: Table IV
shows the experimental results of various methods on the
LEVIR-CD dataset. The change regions in the LEVIR-CD
dataset are mostly dense and small, which makes it more
difficult for the detection of target boundaries. From Table IV,
it can be seen that the IoU, F'1-score, and kappa of CBSASNet
outperform the second-ranked AERNet by 1.17%, 0.70%, and
0.73%, respectively.

The visualization results of all methods are presented in
Fig. 7. The change areas in the LEVIR-CD dataset are mainly
small buildings, with a few larger building changes, and some
of the change areas are surrounded by complex environments,
as in Fig. 7(a). The complex environment leads to difficulties

in detection. From Fig. 7, it is obvious that CBSASNet has
fewer misdetections and omissions than the other methods
and is able to determine the edges of the change areas more
accurately. Visually, CBSASNet has a better performance.

V. ABLATION EXPERIMENTS

In order to be able to adequately assess the impact of the
proposed methodology as well as the improved modules on
the model performance, we designed a significant number of
experiments to validate our proposed methodology.

A. Overall Effectiveness of CTFM and CBSA in CBSASNet

In order to verify the validity and overall contribution of
the proposed CTFM with CBSA to CBSASNet, we provide
three variants to compare with the proposed CBSASNet. This
includes a) baseline: the encoder and decoder use the base
bottleneck to extract picture features, and the encoder fuses
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TABLE IV

COMPARATIVE RESULTS OF PRECISION, RECALL, F1-SCORE, IoU, OA, AND KAPPA FOR ALL METHODS ON THE LEVIR-CD
DATASET, WITH THE OPTIMAL RESULTS SHOWN IN BOLD FONT

Methods Years I1oU(%) Pre(%) Rec(%) F1(%) OA(%) Kappa(%)
FC-Siam-conc [25] 2018 80.17 91.14 86.94 88.99 98.90 88.42
FC-Siam-diff [25] 2018 79.92 91.68 86.18 88.84 98.90 88.26

FC-EF [25] 2018 76.77 87.81 85.93 86.86 98.68 86.16

BIT [34] 2020 80.58 91.19 87.38 89.24 98.93 88.68

IFN [53] 2020 82.05 95.61 85.26 90.14 99.05 89.64
SNUNet-CD [24] 2021 82.30 91.90 88.74 90.29 99.03 89.78

ICIF-Net [49] 2022 82.12 91.96 88.47 90.18 99.02 89.67
PA-Former [54] 2022 80.56 90.48 88.02 89.23 98.92 88.66
RDP-Net [55] 2022 77.92 89.21 86.03 87.59 98.76 86.94
DMINet [41] 2023 81.63 91.01 88.79 89.88 98.98 89.35
GeSANet [46] 2023 82.00 91.65 88.62 90.11 99.01 89.59
AERNet [56] 2023 82.97 91.94 89.48 90.69 99.06 90.20
HANet [57] 2023 82.43 91.42 89.35 90.37 99.03 89.86
WNet [36] 2023 82.40 91.31 89.41 90.35 99.03 89.84
ScratchFormer [58] 2024 80.08 91.46 86.55 88.94 98.90 88.36
SEIFNet [28] 2024 82.70 90.58 90.48 90.53 99.04 90.02
CBSASNet(ours) 2024 84.14 92.47 90.33 91.39 99.13 90.93
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Fig. 7. Visualization results of the 16 CD methods on the LEVIR-CD dataset. Image rendering colors: white in true positive, red in false positive, black in
true negative, and green in false negative. (a)—(c) Represent three randomly selected sample images from that dataset.
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TABLE V
ABLATION STUDY OF THREE VARIANTS WITH CBSASNET ON CDD DATASET
Methods IoU(%) Pre(%) Rec(%) F1(%) OA(%) Kappa(%)

Baseline 92.62 96.66 95.69 96.17 99.10 95.66

Baseline+CBSA 94.42 97.17 97.09 97.13 99.32 96.74
Baseline+CTFM 93.23 96.31 96.68 96.50 99.17 96.03
CBSASNet(ours) 94.58 96.99 97.44 97.21 99.34 96.84
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Fig. 8. Line graph of ablation experiments on the CDD dataset.

the dual-branching features using a cascade; b) baseline +
CBSA: CBSA is used instead of bottleneck to extract picture
features; ¢) baseline + CTFM: CTFM is used to fuse the dual-
branching features; and d) baseline + CTFM + CTFM: The
base network plus the CBSA and the CTFM, i.e., our complete
network. Table V shows the results of the experiments, and
in order to be able to visualize the training process of the
models more, a line graph of the F1 evaluation metrics of
the validation set during the training process of the four
models is shown in Fig. 8. From the results in Table V,
it can be seen that both CBSA and CTFM contribute to the
improvement of the performance of the underlying network,
and when both CBSA and CTFM are applied simultaneously,
the performance of the network reaches its optimum. From
Fig. 8, we can see that the initial performance of CBSASNet is
higher compared to the other variants, and the parameters can
be better optimized in the subsequent training. At the epoch,
greater than 200, the performance of CBSASNet is relatively
more stable.

B. CTFM and the Impact of the Accession Stage

As the extracted features go from shallow to deep, the
information represented by the feature map becomes more and
more abstract. In order to verify the generalization ability of
CTFM to fuse shallow network features and deep network

features, we have done a study on the fusion stage of CTFM,
and the results of the experiments are shown in Table VI.
CTFM12 in the table indicates that CTFM is used instead
of the cascade approach to fuse the dual branching features
in the first and second stages. From Table VI, it can be seen
that the more stages of using CTFM to fuse the dual-branching
features, the less semantic deviation occurs after the fusion of
the dual-branching features, and the more accurate location
information is provided to the decoder. In the experimental
stage, in order to improve the performance of the model
while being able to improve the model’s advantage in training
and inference speed, reduce the model’s dependence on high-
performance hardware, and improve the model’s deployment
effectiveness and efficiency, we integrated Param and Flops to
select CTFM12 as the object of our experiment.

C. Effectiveness of CBSA

The use of the split-attention module is proposed in
ResNeSt [21] to enable cross-channel attention. On this basis,
we propose CBSA, the yet difference between the two feature
extraction methods is the addition of a 1 x 1 convolutional
branch, which can highlight the information of the main
region more. In order to verify the effectiveness of the CBSA
module with the addition of a 1 x 1 convolutional branch,
we conducted experiments comparing it with the original
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TABLE VI
ABLATION EXPERIMENTS ON THE NUMBER OF CTFMS ON THE CDD DATASET
Methods Flops(G) Para(M) IoU(%) Pre(%) Rec(%) F1(%) OA(%) Kappa(%)
w/o CTFM 17.61 5.22 94.42 97.17 97.09 97.13 99.32 96.74
CTFM1 26.63 5.33 94.51 96.89 97.46 97.18 99.33 96.80
CTFM12 31.64 5.76 94.58 96.99 97.44 97.21 99.34 96.84
CTFM123 38.63 7.46 94.71 97.27 97.29 97.28 99.36 96.92
CTFM1234 45.62 14.28 94.88 97.22 97.52 97.37 99.38 97.02
CTFM12345 47.36 21.10 94.96 97.29 97.55 97.42 99.39 97.07
TABLE VII
ABLATION STUDY OF DIFFERENT SPLIT BLOCKS ON THE WHU-CD DATASET
Methods IoU(%) Pre(%) Rec(%) F1(%) OA(%) Kappa(%)
Splat-Attention 84.01 92.49 90.16 91.31 99.20 90.89
CBSA 84.84 92.65 90.96 91.80 99.24 91.40
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Fig. 9. Comparison of the number and complexity of model parameters of different methods. (a) Comparison of the number of model parameters and

performance (F'1) of different methods. (b) Comparison of the computational complexity and performance (F1) of models of different methods.

split-attention module, and the experimental results are shown
in Table VII. The experimental results illustrate that the CBSA
module is more effective in extracting image features.

D. Model Size and Computational Complexity

We tested the number of parameters and the computational
effort of all the methods, which were used to compare the
model size as well as the computational complexity of the dif-
ferent methods. The obtained results are displayed in Table IX.
The obtained results are displayed in Table VIII. Although
CBSASNet does not reach SOTA in terms of the number of
parameters and floating-point operations, CBSASNet outper-
forms GeSANet on the WHU-CD dataset using about 16% of
the number of parameters, while WNet, which has a similar
performance to CBSASNet on the CDD dataset, uses close
to 60 times the number of parameters of CBSASNet. On the
LEVIR-CD dataset, CBSASNet uses about one-fifth the num-
ber of parameters to outperform AERNet. We show the results
of our experiments more graphically in Fig. 9 Compared to
other models with a similar number of parameters, CBSASNet

has a better performance than them. Thus, this scheme of
improving model performance by increasing the computational
cost of a specific part has utility and practical value.

E. Coefficients of the Loss Function

In order to assess the impact of the loss function, we inves-
tigate by varying the weight coefficients of the binary
cross-entropy loss function. The weights of each category
are taken in the range of [0, 1], starting from 0.1 with an
interval of 0.2. The results are shown in Fig. 9. From the
value of F1, the fluctuation range of the performance index
of CBSASNet under different weights is below 3%. It can
be observed through the Pre and Rec metrics that the net-
works learned under the loss function with different weights
have different possibilities of wrong detection when detect-
ing changing regions versus unchanging regions. Specifically,
when increasing the weight of a few samples, Pre is smaller
than Rec, which means that the probability of misdetecting
a changing pixel decreases, while the probability of misde-
tecting an unchanged pixel increases. As the minority sample
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TABLE VIII
QUANTITATIVELY COMPARE THE PERFORMANCE, PARAM, AND FLOPS OF DIFFERENT METHODS. PERFORMANCE IS REFERENCED BY F1-SCORE

Methods Flops(G) Para(M) WHU-CD(%) CDD(%) LEVIR-CD(%)
FC-Siam-conc [25] 5.33 1.55 77.31 80.91 88.99
FC-Siam-diff [25] 473 1.35 80.37 78.12 88.84

FC-EF [25] 3.58 1.35 80.70 74.60 86.86

BIT [34] 10.63 3.5 83.80 94.72 89.24

IEN [53] 82.26 50.44 89.13 97.02 90.14
SNUNet-CD [24] 54.83 12.03 86.98 96.76 90.29

ICIF-Net [49] 25.41 23.84 90.31 96.50 90.18
PA-Former [54] 10.86 16.13 85.09 94.48 89.23
RDP-Net [55] 27.12 1.69 87.35 96.55 87.59
DMINet [41] 14.55 6.24 85.48 95.83 89.88
GeSANet [46] 8.62 36.5 91.66 95.79 90.11
AERNet [56] 12.72 25.36 91.56 95.82 90.69
HANet [57] 17.67 2.61 88.52 94.70 90.37

WNet [36] 18.63 342.99 87.25 97.13 90.35

ScratchFormer [58] 196.59 36.92 87.78 96.12 88.94
SEIFNet [28] 8.37 27.9 91.21 96.24 90.53
CBSASNet(ours) 31.64 5.76 92.52 97.21 91.39
TABLE IX
COEFFICIENTS OF THE LOSS FUNCTION
. WHU-CD CDD LEVIR-CD
weight Pre Rec F1 Pre Rec F1 Pre Rec F1
0.1,0.9 87.09 93.05 8997 | 91.87 99.25 9542 | 83.97 9472 89.02
0.3,0.7 92.82 9141 92.11 | 9569 98.39 97.02 | 90.56 91.54 91.05
0.5,0.5 9393 91.15 9252 | 9699 9744 97.21 | 9247 90.33 91.39
0.7,0.3 93.74 90.17 9192 | 98.10 9557 96.82 | 95.06 86.63 90.65
0.9,0.1 95.83 86.43 90.89 | 99.05 91.86 9532 | 96.92 82.03 88.86

weight decreases gradually, the misjudgment probability will
be reversed. Moreover, the degree of fluctuation varies across
datasets, with relatively more fluctuation in the LEVIR-CD
and WHU-CD datasets, which can be attributed here to the
difference in the degree of imbalance across datasets. All in all,
the loss function weights affect the learning of the network on
a few samples, but their overall performance fluctuates little,
which also indicates the stability of our network. In addition,
it can also be seen from the table that the network has optimal
results on the three datasets when the loss function weights
are [0.5, 0.5], and for this reason, we recommend setting the
loss function weights to [0.5, 0.5].

VI. CONCLUSION

In this article, we introduce CBSANet, a Siamese network
based on CBSA, for remote sensing image CD in detail.
We develop two key modules, the CBSA module and the
CTFM, to improve the performance of CD. Specifically,
CBSA integrates the image channel information and extracts
finer dual-time-phase image features by changing the shortcut
connections. On the other hand, CTFM highlights the dif-
ferent information of the dual-temporal phase features more
smoothly by enhancing the unilateral features while integrating
the dual-temporal phase image features. We have done a lot
of experiments on three public datasets, WHU-CD, CDD, and
LEVIR-CD, and through experimental validation, it is shown
by experimental comparison with other deep learning-based
remote sensing CD methods that CBSASNet has good per-
formance in locating spatial information, highlighting change
regions and improving network stability.

Our method still has room for improvement. While net-
work performance is improved, the computational cost of
CBSASNet also increases. It is observed that, as in the deep
layers of the network, the increase of computational costs
(parameter scalability) far exceeds its performance improve-
ment effects due to the large feature dimensions. Therefore,
the lightweight would be our future research direction based
on the existing framework.
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