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A Weakly Supervised Semantic Segmentation
Framework for Medium-Resolution Forest

Classification With Noisy Labels and
GF-1 WFV Images

Xueli Peng , Guojin He, Guizhou Wang , Ranyu Yin , and Jianping Wang

Abstract— Forests are the most widely distributed terrestrial
vegetation type and play a significant role in the global
carbon cycle and ecological diversity. Accurate and timely forest
detection provides essential data for forest management and
development. Current forest-related products differ in definition,
accuracy, and spatial consistency, making them difficult to
use. Therefore, it is necessary to map forest cover under a
unified framework. However, detecting forests on a large scale
requires high-quality and representative samples, which can be
challenging. This study proposes a weakly supervised forest
classification framework (WSFCF) that uses noisy labels. The
WSFCF is designed to address label generation, correction,
and sample location optimization. We employ a spectral–spatial
network (SSNet) to extract forest cover accurately for medium-
resolution forest classification. The experimental results show
that the proposed method outperforms the compared methods,
achieving an accuracy of 91.76% OA and 88.28% F1 score
on 110 GF-1 WFV images. This supports the subsequent
extraction of national-scale forest cover and encourages the
mapping of China’s forest cover using GF-1 WFV images.
Moreover, the proposed method produces satisfactory outcomes
for objects, such as water, farmland, and built-up areas within
the study area, demonstrating its effectiveness and potential for
transferability.

Index Terms— Forest classification, Gaofen-1 wide-field view
(GF-1 WFV), land cover and land use (LULC) products, noisy
learning, weakly supervised.
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I. INTRODUCTION

FORESTS are an essential component of terrestrial
ecosystems and are closely linked to the global carbon

cycle, hydrological cycle, and biodiversity. The protection
and monitoring of forests are highly emphasized by the
international community [1], but forest change and degradation
have continued to occur at an alarming rate over the past
three decades [2]. The capability for accurate and timely forest
mapping is essential for the sustainable exploitation and man-
agement of forests [3]. Remote sensing technology takes an
increasingly important role in forest mapping by virtue of its
powerful data acquisition capability and the advantage of being
able to repeat observations in a relatively short period [4].

Over the past decades, scholars have conducted substantial
research on forest monitoring with remote sensing technolo-
gies, yielding vital processes [1], [5], [6]. The TreeCover
for the year 2000 [1] is part of the global forest change
(GFC) product, which is created based on Landsat satellite
images. The GFC delivers the forest change maps for each
year after 2000 besides TreeCover. However, obtaining the
forest cover maps for each year after 2000 based on GFC is
difficult. The FNF [5] produced based on ALOS PALSAR and
the threshold segmentation method denotes the global forest
cover maps with 25-m spatial resolution from 2007 to 2010.
Following the characteristics of different vegetation zones,
Zhang et al. [6] generated a global forest cover product on
the Google Earth Engine platform with the RF algorithm
and Landsat satellite archive. Except for the forest thematic
products, forests are also reflected in all forest-related layers
of land cover and land use (LULC) products, such as the forest
in GlobeLand30 [7], FROM-GLC [8], [9], GLC_FCS30 [10],
TreeCover in WorldCover [11], and Esri Land Cover [12].
Such products deliver basic data for forest research, but they
are difficult to use in practice because of the large uncertainties
in terms of definition, accuracy, area estimation, and spatial
consistency [13].

Remote sensing monitoring of forests is continually
evolving; however, immense challenges remain [14] such as
the need for standardization of satellite data, the need for
validation data, and the need for highly automated forest
monitoring procedures. These challenges have been mitigated
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to some extent with the increase in computer processing power,
advances in sensor technology, and improvements in image
processing algorithms.

Advances in classification methods have improved the
accuracy of classification results [8]. Traditional remote
sensing-based forest mapping mostly adopts shallow machine
learning methods [15], including decision tree (DT) [16],
random forest (RF) [17], [18], multilayer perceptual machines,
support vector machines, and maximum likelihood classi-
fication. In particular, DT and RF [19], [20] are widely
used in forest classification for their robustness to noise
and their advantages in handling multidimensional data [21],
[22]. Classical classification algorithms rely on manually
selecting features (e.g., spectral features, spectral index
features, and texture features) as inputs to the classifier. The
representativeness of the input features significantly affects the
accuracy of classification.

In recent years, many deep learning methods have been
used for forest monitoring, with excellent performance in
applications, such as independent tree crown extraction [23],
forest mapping [24], change detection [25], [26], monitoring
leaf phenology [27], and forest tree species [28], [29].
However, most existing deep learning-based forest studies
focus on the high spatial resolution unmanned aerial vehicle
(UAV) or airborne platform image data [30], with few studies
using medium-resolution satellite images. Moreover, such
algorithms rely heavily on massive finely labeled samples
that are challenging to acquire. The recent development of
weakly supervised technology [31], [32], [33] reduces the
demand for sample labeling, demonstrating the robustness of
the models to inaccurate, incomplete, and inexact labels [34].
This suggests that the deep learning methods are promising
for forest research [30], [35].

Although the classification method or classifier has a direct
impact on the classification results, research has found that
the selection of training data has a greater influence on the
classification results than the classification method [36]. It is
a matter of deeper reflection on how to select representative
and informative training data [37], including training data
distribution, size, balance, and outliers in the training data.
However, it is challenging to collect comprehensive training
data on the land surface, which is one of the most time-
consuming components of the entire task [14]. The training
data are usually derived through (stratified/proportional)
random sampling [37] and visual interpretation [38], but this
is time-consuming and labor-intensive. Moreover, the quality
of the sample annotation is affected by the experience of the
annotators.

In response to the difficulty of sample annotation, some
studies take advantage of publicly available LULC products
as the annotation of the training data [39], [40], which greatly
reduces the cost of manual annotation and visual interpretation.
The LULC products allow pixel-level annotation of the land
cover. Although such an approach might lead to errors in
the training data, a certain percentage of errors barely affect
the classification results [9], [14]. There are some methods
that are usually used to reduce the labeling error to improve
the accuracy of the samples [17], [32], such as voting [41]

and D-S evidence theory [42]. A few recent studies have
successfully realized the large-scale LULC classification with
existing LULC products as labels [39], [40], [43].

Inspired by these studies, this work explores the potential
of weakly supervised deep learning algorithms for medium-
resolution forest classification. Focusing on issues faced in
large-scale forest cover classification tasks including the
dependence on a large number of high-quality labeled
samples and the need for automated procedures for large-
scale forest classification, this article proposes a weakly
supervised framework for large-scale forest classification with
existing LULC products as labels. The key components of
the framework consist of four elements such as the deep
classification model, the pseudolabel (PL) generation module,
the sample selection and optimization module, and the PL
correction module. Specifically, forest/nonforest labels with
noise are first obtained via these freely available forest-related
products. Then, a weakly supervised semantic segmentation
algorithm is employed to distinguish forest and nonforest
areas. The contributions of this work include the following
three aspects.

1) A weakly supervised forest classification framework
(WSFCF) for automatic forest classification is proposed
in this study, which provides a reliable solution for large-
scale forest mapping. The framework can correct the
noisy samples automatically and achieve accurate forest
classification even if the samples have problems such as
inaccurate and incomplete labels.

2) A simple and efficient method was designed to obtain
relatively high-precision land cover samples with less
human intervention to address the inconsistency and
difficult-to-use problems of existing LULC products.
It not only solves the problem of difficult sample
labeling but also provides an effective reference for the
use of existing products.

3) A strategy is designed to ensure the representativeness
and informativeness of the samples, which proceeds to
the reliability of the samples in terms of sample location
selection and optimization and dynamic correction of the
PLs.

4) A semantic segmentation network (the spectral–spatial
network, SSNet) is purposely employed in the proposed
framework based on the analysis of forest characteristics
and medium-resolution images. The SSNet is composed
of a spectral module and a spatial module for fully
leveraging the spectral and textural information of the
forest/nonforest (FNF).

This study focuses on land cover rather than land use. The
forest definition partially follows the Food and Agriculture
Organization of the United Nations (FAO), that is, land
spanning more than 0.5 hectares with trees higher than 5 m
and a canopy cover of more than 10% or trees able to
reach these thresholds in situ. The rest of this article is
organized as follows. The related works are summarized in
Section II. The study areas and materials are described in
Section III. Section IV presents the details of the proposed
forest classification framework. In Section V, we compare the
performance of SSNet with commonly used deep networks



PENG et al.: WEAKLY SUPERVISED SEMANTIC SEGMENTATION FRAMEWORK 4412419

and analyze the performance for each component of the
proposed WSFCF. Besides, the limitations and transferability
are presented in Section V. Finally, the conclusions are given
in Section VI.

II. RELATED WORK

A. Application of Deep Learning and Weakly Supervised
Methods in Land Cover Classification

In recent years, deep learning has demonstrated great
potential in feature extraction and has been applied by scholars
to remote sensing information extraction [44], [45], [46]. It has
exhibited superior performance across various objects [32],
[47], such as impervious surfaces/built-up areas, crops, water,
and vegetation [30], [48]. Deep learning algorithms rely
heavily on massive fine-labeled samples. However, the labeling
of the samples is labor-intensive, time-consuming, and cost.
The pixel-level labels constraint the application of deep
learning in remote sensing LULC classification [49], [50],
[51]. The application of weakly supervised techniques [34]
reduces the algorithm’s demands for high-precision labels and
makes breakthroughs in LULC mapping [52].

Weakly supervised deep learning algorithms show satis-
factory performance in some remote sensing classification
tasks, including single-target extraction, such as water [53],
roads [54], buildings [55], [56], and so on, and multiclass
classification [57], [58]. In these tasks, deep learning models
commonly used in computer vision, such as ResNet, VGGNet,
Unet, DenseNet, and HRNet, are usually employed. These
models tend to involve deeper network structures, with more
flexible and powerful nonlinear fitting capabilities to extract
more abstract and complex features. Imageries from UAVs,
Google Earth, and high-resolution satellites are the main data
sources. The spatial resolution of these data is extremely
high, particularly the UAV data that can reach centimeter-level
resolution and can accurately characterize the spatial details of
the land cover.

At present, there are many studies applying weakly
supervised techniques and deep learning algorithms to the
classification task of medium-resolution remote sensing
images [30]. Several studies have applied weakly supervised
deep learning methods in LULC classification tasks [32], [33]
with promising results, such as paddy rice mapping [59].
Moreover, some scholars have reported some global- or
national-scale LULC products based on deep learning
algorithms, such as Esri land cover and CRLC [39]. These
works demonstrate the great potential of weakly supervised
techniques and deep learning algorithms in large-scale
medium-resolution LULC classification.

B. Application of LULC Products in Remote Sensing
Classification Tasks

The land cover classification is usually conducted using
supervised classification. However, it is challenging to obtain
high-quality samples. There are many LULC products that
provide pixel-level annotations. There is also crowdsourced
data freely available such as OpenStreetMap (OSM), which
provides substantial LULC information. Therefore, taking

these data as pixel-level labels is a popular device in large-
scale LULC classification nowadays [52]. These data as
classification labels in existing studies usually include both
direct and indirect ways.

Directly use of LULC products for labeling: Samples that
directly use existing LULC products for classification often
suffer from noisy labeling, such as misclassification in the
products. To address the problem of sample coarseness,
Li et al. [40] propose a low-to-high network (L2HNet) for
large-scale high-resolution LULC mapping, which ensures
the extraction of high-resolution features while solving the
noise problem caused by the resolution mismatch. Yang and
Huang [60] derived training samples directly from CLUDs,
a time-series product with high classification accuracy, for
monitoring the dynamics of LULC in the Chinese region.
Limited by the cost and difficulty of representative sample
collection, Liu et al. [17] generated sample points in the middle
Yangtze River basin area from crowdsourced OSM LULC data
and updated the samples with LULC change detection results.
In addition to specific LULC classification tasks, scholars have
produced some public datasets using LULC products, such as
BigEarthNet [61] and SEN2MS [62], which provides essential
datasets for studying deep learning algorithms [24], [63], [64],
[65], [66].

Indirectly use of LULC products for labeling: The studies
that indirectly use existing LULC products as samples usually
start by selecting reliable sets based on these products
and applying these samples to the classification tasks. For
one thing, the accuracy of the labels can be improved by
integrating multiple products through data fusion. Inconsistent
predictions of the products with conflict labels can be
eliminated by following a voting strategy, which can keep
the consistent pixels [41]. The Dempster–Shafer theory can
bridge the uncertainty between products and obtain accurate
labels [42]. The Dempster–Shafer evidence theory is usually a
simple but effective way and so is voting. However, the former
requires massive prior knowledge. For another, products
are first utilized as labels for preclassification to obtain
classification results, and the results or the LULC products
optimized with the results are used as labels. To eliminate
the influence of resolution mismatch and semantic errors in
the labels, Liu et al. [39] modeled the spectral similarity and
spatial adjacency of the training labels using a conditional
random field to refine the training labels and used a class-
conditional label correction methods to detect and correct
the abnormal incorrect labels. To promote the accuracy of
the labels, Chen et al. [32] trained a weakly supervised
learning network using partially labeled hyperpixels generated
from the representative samples, which are transferred from
low-resolution LULC products; Zhang et al. [67] performed
preclassification based on a limited number of point samples
and a support vector machine algorithm and took the high-
confidence areas as training samples for the deep learning
model; and Liu et al. [41] create the sample by integrated
existing LULC products and OSM.

The available LULC products provide valuable prior
knowledge for land cover classification studies. Although
previous studies provide a wealth of experience in utilizing
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Fig. 1. Study areas and the acquisition time of the GF-1 WFV images.
(a) Spatial distribution of the study areas and the acquisition year of GF-1
WFV images. (b) Temporal coverage of the collected images.

those products, how to fully utilize this knowledge to guide
subsequent studies remains a question that deserves in-depth
exploration.

III. STUDY AREA AND MATERIALS

A. Study Area and Remote Sensing Images

Gaofen-1 wide-field view (GF-1 WFV) satellite images
serve as the data source for this study. The GF-1 optical
satellite was launched on April 26, 2013. The WFV sensors
exhibited a powerful acquisition capability with a four-day
revisit interval. The GF-1 WFV imagery has four bands
with a spatial resolution of 16 m, which is freely available.
The GF-1 WFV satellite images downloaded from the China
Centre for Resources Satellite Data and Application are
geometrically corrected level-1 products and are not provided
with cloud/cloud shadow masks. To enhance the usability
and user-friendliness of these images, we have preprocessed
images, including ortho-rectification [68] and cloud detection.

In the experiment, we select the area covered by 110
GF-1 WFV image scenes as the study area to validate the
proposed method. The 110 images collected are from the
year 2019–2022 and are centered in the months of August–
November, as depicted in Fig. 1. The study area is mainly
discretely distributed in the typical areas of China’s forest
with a total area of more than 3.6 million km2, including the
northeast, northwest, southwest, and south China. The study
area spans a wide range of latitudes (exceeding 34◦) with
significant variations in its coastal and terrestrial locations.
The topography of the region is high in the west and low in
the east, with a variety of terrain types and mountain ranges.
Consequently, the variable combination of temperature and
precipitation forms a rich climate, primarily encompassing
subtropical monsoon climate, temperate monsoon climate,
and temperate continental climate. The unique geographical

Fig. 2. Sample points (b) and (c) illustrate the spatial distribution of the first
two part and third part points in Section III-B1, respectively.

environment, complex topography, and diverse climate have
contributed to the variety of forest types [69] in the
study area, including evergreen/deciduous broadleaf forests,
evergreen/deciduous coniferous forests, and mixed forests.

B. Sample Sets

The sample comprises visually interpreted sample points
and PLs generated from forest-related datasets. The former is
used for the accuracy assessment of the results, while the latter
is designed for model optimization.

1) Visual Interpreted Sample Points: A total of
124 628 sample points are generated using the random
sampling algorithm, as displayed in Fig. 2. Generally, the
forest and nonforest sample points comprised 39.2% and
60.8% of the total points, respectively. The distribution of
these sample points is carried out in two ways. One is
distributed randomly within the study area, which consists
of 45 780 forest points and 73 889 nonforest points. The
other is randomly distributed in the forest edge and transition
areas, with a total of 4959 points, including 1891 nonforest
points and 3068 forest points. The different distributions of
the sample points are designed to verify the classification
accuracy statistically in terms of the global study area and
forest edges/transition areas. These points that correspond to
30-m resolution pixels are visually interpreted by referring to
several high-resolution satellite maps embedded in QGIS and
historical images from Google Earth.

2) Pseudolabel (PL): Acquisition of reliable labels is time-
consuming and labor-intensive, but forest-related datasets with
pixel-level annotations provide an effective solution. However,
it is challenging to use these datasets directly due to the
limitations of accuracy and classification schemes. It has been
shown [13], [70] that the higher voting results of different
datasets have higher accuracy of the region.

Therefore, we designed a simple rule to obtain LULC
maps and FNF labels with higher accuracy by referencing
some LULC products, including WordCover, Esri land cover,
FROM-GLC10, GLC-FCS30, GlobeLand30, and TreeCover.
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Fig. 3. Flowchart of the proposed weakly supervised forest classification framework. ① represents the initial determination of sample position, which accounts
for land cover such as water, forest, crop, grass, and wetland. ② represents an optimization of sample position, which considers not only the land cover but
also areas prone to be misclassified.

However, the FNF labels still contain some errors, such as
incomplete and inaccurate labels. The detailed scheme is
shown in Section IV-B.

IV. METHODOLOGY

A. Overall Framework

The WSFCF proposed in this article is implemented
by noise-label learning and weak supervision. This section
provides the details of WSFCF. The forest-related datasets
are initially employed to generate high-quality but noisy
labels, called PLs. Then, a weakly supervised classification
scheme is designed, which realizes the robust training of
the model by introducing a label correction module and a
sample selection module. Specifically, the proposed WSFCF
consists of four components, comprising data preparation,
sample selection and optimization, dynamic correction of the
PL, and prediction, as illustrated in Fig. 3.

Prior to introducing each component, we would like to first
introduce the forest classification model, which is of great
importance in the WSFCF. Given the characteristics of forests

and medium-resolution satellite imagery, we adopt a simple
model named SSNet as the main method for forest extraction,
which is described in detail in Section IV-B.

The flowchart starts with data preparation, including satellite
data preparation and a priori knowledge retrieval.

1) Satellite Data Preparation: The GF-1 WFV satellite
images downloaded from the China Centre for Resources
Satellite Data and Application are geometrically corrected
level-1 products. To obtain a more accurate geometric
localization, these images are orthorectified with ground
control points and the digital elevation model (DEM) data.
In addition, the GF-1 WFV level-1 products do not provide
quality assessment (QA) or cloud masks, which are necessary
for forest monitoring [71]. Therefore, a threshold segmentation
method is conducted to roughly extract clouds. Although it
might result in the wrong extraction of some highlighted
objects, it will not influence the forest classification because
forests are usually dark objects in images.

2) Prior Knowledge Retrieval: Prior knowledge mainly
refers to the freely available LULC products to create the
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Fig. 4. Structure of the SSNet.

PL and pseudo-LULC map (PM) required for the subsequent
process, which is described in Section IV-C. There are some
regions in the PL and the PM without annotations called
uncertain areas, which are often located in the boundaries and
transition areas. These areas in the PL are not involved in the
calculation of the loss function during model training.

Next, the satellite images, PL, and PM matched based
on location are used to create the training, validation,
and test sets for model inputs in the sample location
selection and optimization. In the process of initial sample
location determination and location optimization, both the
informativeness of land cover and the difficulties of forest
classification are considered. The test areas include all study
areas, while the training and validation areas are randomly
selected from the study area with reference to the PM to ensure
sample diversity. All training or validation areas are smaller
than 5% of the total area. The sample location optimization
might introduce new training areas, but the gross training area
is less than 10% of the total area. The training area might
partially or completely duplicate the initial training area after
optimization, yet the training area is completely independent
of the validation area. In particular, the position optimization
changes the training area only, not the validation area. The
details are explained in Section IV-D.

Subsequently, the model is optimized using the training
set in the third step, and the PL is corrected dynamically
(see Section IV-E). The experimental settings are presented
in Section IV-F. During the model training, the PL would be
dynamically corrected according to the prediction probability
once the model reaches some fitting. The PL correction
employs a combination [40], [72] of a threshold and predicted
probabilities, as detailed in Section IV-E. Because of the
large thresholds used in creating PM and PL (as shown in
Section IV-C), the forest annotations that remained in the
PL tend to be areas that are accurately annotated and easily
classified correctly. Moreover, the forest area that satisfies

the thresholds is much larger than those that do not satisfy
the threshold. However, the areas prone to misclassification,
such as forest boundaries and transition areas of different land
covers, are regarded as uncertain areas. The accuracy appears
to be very high when the PL is used as the label to calculate
the accuracy. In the experiments, it is observed that the model
possessed some discrimination capability when the F1 score
of predictions reaches 0.8 for comparison with the PL.

Finally, we predict the test set using the trained model. The
program proceeds to the next iteration until the condition is
not satisfied and the program is terminated. The purpose of the
loop is to identify more representative and informative training
areas. The max loop number is set to 2.

B. Network Structure for Capturing the Spectral and Spatial
Contextual Information

Moderate-resolution multispectral images exhibit spectral
and spatial heterogeneity and are sensitive to atmosphere
and light. These images can provide spectral information
but suffer a lot from mixed pixels. Forests are usually
patchy with irregular geometric boundaries, except for some
planted forests. Moreover, moderate-resolution images have
disadvantages in depicting spatial details. Therefore, the spatial
texture of the forest is relatively blurred in moderate-resolution
images.

Following the characteristics of medium-resolution images
and forests, we designed the SSNet for forest classification,
which can capture spectral and spatial contextual information
at the same time. As shown in Fig. 4, SSNet consists of a
spectral modeling block (SeMB) and a spatial modeling block
(SaMB). The acquired spectral and spatial features are fused
and serve as input for classification.

SeM: Multilayer perceptron constitutes this module for
mining the spectral differences between forest and nonforest
features. The SeM that consists of three linear layers with
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output dimensions of 64, 128, and 256 is designed for
exploring the spectrum of FNF regardless of the spatial context
of the scenes. It not only emphasizes the spectral differences
of FNF and enhances the boundaries of FNF in transition
and edge areas but also compensates for the blurring and
smoothing effect of the SaM.

SaM: This block comprises a shallow U-shaped structure
for exploiting the spatial contextual relationship and textures.
As illustrated in Fig. 4, the SaM, with the residual structure
as fundamental units, undergoes two downsampling and two
upsampling operations. The residual structure adopts the
classical bottleneck structure [73], as shown in Fig. 4(b).
In addition, the standard atrous spatial pyramid pooling
(ASPP) [74], which is designed to expand the reception field
[as illustrated in Fig. 4(c)], is employed to enhance the feature
extraction capability of SaM. Two primary factors influence
the design of the shallow U-shaped structure. On the one
hand, forests lack well-defined textures in moderate-resolution
images. On the other hand, the deeper network diminishes
resolution as downsampling progresses, leading to increased
blurring of details in less prominent features.

C. Pseudolabel (PL) Generation

Pixel-level FNF labels are generated with forest-related
products. To rationalize the distribution of the samples,
different LULC classes are considered, especially those easily
confused with forests such as water and grass. Consequently,
we created a PM alongside the PL.

Given the inconsistency of classification schemes, our
first step involves reclassifying these products to ensure the
consistency of classes. Then, we obtain voting results for
different classes from the six products. Studies [75], [76],
[77], [78], [79] indicate that classes such as crop, grass,
water, built area, and forest are more accurate, but classes
such as shrub, wetland, and tundra are inaccurate in these
products. To ensure the precision of PL and the diversity of
the classes in PM, we establish distinct thresholds for forest
and different nonforest classes. Following existing studies
and visual comparison, we set a forest vote threshold of 3.
This means that areas receiving more than three votes are
categorized as forest areas. For nonforest classes with high
accuracy, the threshold is set at 2, whereas, for those with
lower accuracy, it is set at 1. A PM featuring uncertain areas is
created by consolidating the results of threshold segmentation
of different classes and subsequently masking out the regions
with overlap classes. Other than that, a PL with uncertain areas
is obtained by aggregating the nonforest classes of the PM.

D. Sample Location Selection and Optimization

Drawing on the characteristics of sample selection in active
learning, we use the informativeness and representativeness
of the samples as the basis for determining sample position.
Moreover, we also expect to select easily misclassified
scenarios as hard samples to optimize the network. As a
result, the determination of sample location includes initial
determination and optimization of sample position.

In the process of training and validation area selection,
we apply a nonoverlapping sliding window to divide all images

into patches. By setting some constraints, some patches are
filtered out that satisfy the requirements as candidates of
training and validation areas. Then, 5% of these candidate
areas are randomly selected as training and validation areas,
respectively.

Initial determination of sample position: In the initial stage
of the experiment, the representative patches are selected based
on PM, as illustrated in Fig. 3(II-①). There are three rules for
patch selection.

1) Sequentially determine whether a patch contains objects
listed in Fig. 3 (water, forest, crop, grass, and wetland).
The order is finalized by the area and the likelihood of
being misclassified as forest.

2) There are at least two classes in the patch, and the pixel
number of the target class is greater than the minimum
value (here set to 20 pixels, about 0.5 hectares).

3) The patches used for training and testing are randomly
selected from those patches that satisfy the require-
ments (1) and (2). The number of nonforest patches is
no more than that of forests.

Optimization of sample position: It is challenging to
define the distribution of the hard samples at the beginning.
Therefore, the model is first trained with the initial samples.
The results predicted by the trained model are checked against
the PL to find the potential hard sample area, which is marked
in the PM.

There are three potential areas considered. The first, loss
forest, denotes the forest area in the PL that is predicted to
be a nonforest area. The second is error forest that indicates
that the nonforest area in the PL is regarded as a forest area.
The third is the new forest that indicates that the uncertain
area in the PL is classified as be forest area. It should be
noted that loss/error/new forest is just a name for convenience.
Meanwhile, it ensures that sufficient samples for objects are
prone to be confused with forests. That is, the classes that
determine the sample’s initial position are taken into account,
including water, forest, crop, grass, and wetland.

The samples are reselected, and the problematic areas are
prioritized, as presented in Fig. 3(II-②). Sample position
optimization probably brings about an increase in training
time and unnecessarily difficult samples (especially in forest
sample-rich regions), so the conditions for sample location
optimization are restricted via the prediction accuracy and
positions.

E. Dynamic Correction of Pseudolabels

Based on the knowledge that the deep model tends to
learn the correct samples at the early stage [31], [80] when
there are noisy labels, we leverage the PL obtained from the
freely available products for model training. Inaccurate labels
remain in the PL, which is not conductive to model fitting,
even though some noise has been filtered out by the voting
threshold. Therefore, the PL will be dynamically corrected
using predicted probability according to (1) once the model
shows some fit

UPLH×W
p<θ1

= 0; UPLH×W
p>θ2

= 1 (1)
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TABLE I
QUANTITATIVELY COMPARISON OF DIFFERENT METHODS

where UPL means the updated PL and p is the probability of
forest. θ1 and θ2 are the maximum probability of nonforest and
the minimum probability of forest, respectively. Areas where
the predicted probability of forest is less than θ1 are updated
to nonforest. In contrast, the areas with a predicted probability
greater than θ2 are updated to forest. In the experiment,
we compare different combinations of θ1 and θ2 and set them
to 0.2 and 0.8, respectively.

F. Experimental Settings

In the experiments, the cross-entropy is employed to
optimize the models. The Adam with initial learning rate
0.005 and weight decay 1e-4 was chosen as the optimization
algorithm. The batch size used in the experiments is 4, and
the size of the input image is 64 × 64. The maximum epoch
of training is set to 20. All 110 images are served as the test
set, whereas the training and testing sets are less than 5% of
the total data. The experiments are implemented based on the
PyTorch framework, and a Linux platform with an NVIDIA
TITAN V GPU with 12-GB memory is used for training and
testing.

All models adopt the same settings for the sake of fairness.
In this study, we choose the overall accuracy (OA), producer
accuracy (PA), user accuracy (UA), F1 score, and intersection
over union (IoU) to quantitatively evaluate the performance of
the proposed method. These metrics are calculated as (2)–(6).
PA shares the same formula as recall (R), and so does UA
and precision (P). We focus more on the F1 score and IoU

OA =
TP + TN

TP + TN + FP + FN
(2)

PA = R =
TP

TP + FN
(3)

UA = P =
TP

TP + FP
(4)

F1 =
2 × P × R

P + R
(5)

IoU =
TP

TP + FP + FN
. (6)

V. RESULTS AND DISCUSSIONS

In this section, we demonstrate the effectiveness of each
component of the proposed framework. An appropriate
classification model is crucial for improving the accuracy
of the results. As a core component of the WSFCF, the
performance of the SSNet is our primary concern. Therefore,
we first conduct several experiments to compare the SSNet
with some deep learning methods commonly used for remote
sensing classification. Then, we perform a series of ablation
experiments to verify the effectiveness of each part of the
proposed WSFCF in improving the classification accuracy and
the potential uncertainty. Finally, we transfer the classification
framework to other object classifications and explore the
transferability and limitations of the proposed framework.

A. Comparison With Commonly Used Classification Methods

The SSNet compares with networks commonly used for
remote sensing image classification [39], including U-Net [81],
ResUNet [82], ResUneta [83], SwinUnet [84], HRNet [85],
DeepLab v3 [74], and Deeplab V3+ [86]. These networks
embody the classical structures of convolution networks, such
as U-shaped structure, residual structure, transformer, and
ASPP. Besides, we select RF as a comparison method, which
is the most widely used method in forest study. The samples
for RF are randomly picked from the training set. These points
are employed as training set with sparse labeling for SSNet.
This section compares the results of different models both
quantitatively and qualitatively.

1) Quantitative Comparison: The accuracy metrics calcu-
lated based on the visually interpreted samples are illustrated
in Table I. The metrics indicate that these algorithms
exhibit high classification accuracy although they exhibit
some variations. Among the compared deep learning methods,
ResUNet achieves the highest classification accuracy with
86.33% and 75.94% for the F1 score and IoU, respectively,
followed by Unet with 85.61% for the F1 score and 74.84%
for IoU. However, the RF algorithm yields higher classification
accuracy than the deep learning-based methods, with the F1
score and IoU reaching 86.34% and 75.97%, respectively.
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Fig. 5. Spatial distribution of the following displayed results.

We perform experiments on the SSNet with point-based
sparsely labeled samples and patch samples. The results
reveal that both point- and patch-based SSNets outperform
the other methods, especially the patch-based. The F1 score
and IoU of patch-based SSNet are 87.65% and 78.02%,
respectively, which are superior to other methods. Especially
in the edge/transition area, the patch-based SSNet significantly
surpassed the comparison methods (RF), with the F1 score
and IoU being 4.29% and 4.43% higher than the optimal
comparison method, respectively.

McNemar’s test was adopted to evaluate the significance of
the difference in the classification accuracy. The results reveal
that the differences in the results between the proposed method
and the compared methods are significant with p = 0.000 (p
is the significance level), which indicates that the proposed
methods outperform the comparing methods.

2) Qualitative Comparison: We make extensive visual
comparisons of the classification results of these algorithms.
Some regions are selected for visualization, and the spatial
distribution is shown in Fig. 5. In general, these methods
pose robust classification capabilities and discrepancies in fine
object differentiation, such as roads and rivers. There are two
sites selected to demonstrate the details of the classification
algorithms.

As presented in Figs. 6 and 7, nonforest areas can be
accurately recognized in broad places, but different algorithms
perform great discrepancies for small nonforest areas. Fig. 6
illustrates that Region 1, which is located in Qinling Mountain,
is widely forested and traversed by several roads. U-Net,
SwinUnet, and RF show better results visually. The patch-
based SSNet achieves more complete nonforest areas than the
compared methods.

Fig. 7 shows the results for region 2, which is located in
the northern part of the Yunnan–Guizhou Plateau (Region 2).
The red boxes indicate the river in the valley. Patch-based
SSNet extracts the clearest river boundaries, followed by RF
and ResUnet. Other contrasting methods show huge errors in
distinguishing nonforests (rivers) in this area.

Furthermore, the robustness of these methods varies
significantly across different image and sample qualities,
particularly when the quality of the sample or image

is unsatisfactory. In the following section, we compared
the classification results of these models under different
conditions.

3) Comparing the Influence of Different Factors on the
Models: The study area spans a large space, and there
are differences in forest properties, image temporal and
quality, and sample quality. The models are sensitive to these
differences. To intuitively demonstrate the disparity of the
methods, some typical phenomena and regions are selected
to be visualized, as shown in Figs. 8–10.

Seasonal shifts: Vegetation is strongly influenced by
phenology. Therefore, the forest classification results suffer
a lot from seasonal changes, especially in forest areas with
pronounced seasonal changes. Region 3 sits in the central
Jiangsu province with distinct seasonal variations.

The first image was captured on October 1, 2020, when the
forest was in the growing season and the forest was flush.
SwinUnet overestimates the forested area of Region 3 by
misclassifying a large number of nonforested areas as forested.
In contrast, HRNet and Deeplab V3 underestimate the forested
area of this region by misclassifying vast forested areas
as nonforested areas. In particular, Deeplab V3 exhibited
catastrophic classification errors.

The second image was captured on November 11, 2020;
when the forest was dormant, the green decreased. The results
indicate that U-Net, ResUneta, and point-based methods
(RF and SSNet) fail to overcome the negative effects
of seasonal changes on forest classification and fail to
distinguish the forest and nonforest areas in the nongrowing
season.

As displayed in Fig. 8, most of these methods can accurately
classify the growing season images. However, it is challenging
to perform on dormant period images. The results suggest that
ResUnet and patch-based SSNet are more robust to the forest
seasonal changes. It is observed that HRNet and Deeplab V3
yield better results for dormant season images than for growing
season images. Forests in the dormant season probably exhibit
more texture features.

Inaccurate labels: It is inevitable that there are inaccuracies
in the forest samples due to the following factors. For one
thing, the acquisition time of the images used in forest-related
products may not necessarily align with the acquisition time of
the images used in this study, potentially leading to changes in
the forest during this time interval. For another thing, existing
products may suffer from inaccuracies stemming from various
factors, including data quality and classification algorithms.

Region 4 is situated in Nanning, Guangxi Province, which
serves as a crucial timber resource area. Historical images
reveal a history of frequent forestry activities in this region.
As depicted in Fig. 9, extensive forest harvesting has been
undertaken in this area. Nevertheless, there are serious errors
in the PL, and a wide range of postharvest forested areas is
still labeled as forest. In this case, the SSNet is able to get
rid of the effects of inaccurate labels and precisely distinguish
FNF areas.

Conversely, the performance of these comparative methods
is less satisfactory. Most comparative methods are able
to distinguish between deforested areas to some extent,
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Fig. 6. Details of the results in Region 1. (a) GF-1 WFV image (RGB). (b) PL. (c)–(j) Classification results of U-Net, ResUnet, ResUneta, SwinUnet,
HRNet, Deeplab V3, and Deeplab V3+, respectively. (k) and (l) Results of point- and patch-based SSNets. Green in (b) and (c) denotes forests, and white
denotes nonforests; gray in (b) denotes the unlabeled area, i.e., uncertain area.

Fig. 7. Details of the results in Region 2. (a) GF-1 WFV image (RGB). (b) PL. (c)–(j) Classification results of U-Net, ResUnet, ResUneta, SwinUnet,
HRNet, Deeplab V3, and Deeplab V3+, respectively. (k) and (l) Results of point- and patch-based SSNets. Green in (b) and (c) denotes forests, and white
denotes nonforests; gray in (b) denotes the unlabeled area, i.e., uncertain area.

as reflected in Fig. 9(c)–(j). The HRNet performs poorly
and seems to confuse the forest and nonforest features in
Region 4. RF and SwinUnet perform particularly well among
the contrasting methods, with both methods able to distinguish
the harvest forest areas. However, their results are coarse
and imprecise. In particular, the RF algorithm misclassifies
a significant number of forested areas as nonforested, even
though it is able to identify some deforested areas.

Incomplete labels: The forest labels in this study area are
areas with high voting for existing products; thus, some areas
contain incomplete forest labels.

Region 5 is in the Jilin Province. As shown in Fig. 10,
part of the planted forest is unlabeled in the PL. The
comparison methods pose substantial uncertainties in this area.
The patch-based SSNet demonstrates its ability to extract the
most comprehensive results of planted forests, as depicted
in Fig. 10. The results indicate that the patch-based SSNet
outperforms both the point-based SSNet and the comparative
methods in terms of completeness and accuracy.

Deep learning-based classification methods using patch-
based labels yield results with reduced noise but exhibit

pronounced omission errors. Among these, Deeplab V3+

produces relatively comprehensive results. When contrasted
with patch-based labels, the method utilizing point-based
samples generates results that are more fragmented, featuring
a massive salt-and-pepper noise.

The unsatisfactory results are probably due to the following
two aspects. On the one hand, the plantation forests in
Region 5 are young, and their features are not prominent
in moderate-resolution images. This poses a challenge to the
extraction of the plantation forests. On the other hand, the
incomplete labels possibly lead to insufficient samples for
model optimization.

Both the quantitative and qualitative results demonstrate that
the patch-based SSNet performs better than the point-based
SSNet. It suggests that optimizing the model parameters is
challenging with sparse annotations. Deep network structures,
such as HRNet and Deeplab V3, tend to smooth the edge
and suffer from a disadvantage in discriminating fine targets.
On the contrary, the U-shaped structure, which considers
low-level features, excels in preserving spatial details and
exhibits some capability to differentiate small targets. Also,
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Fig. 8. Influence of seasonal shifts on the results. (1) and (2) denote the classification results of images acquired on October 1, 2020, and November 11,
2020. (a) GF-1 WFV image (RGB). (b) PL. (c)–(j) Classification results of U-Net, ResUnet, ResUneta, SwinUnet, HRNet, Deeplab V3, Deeplab V3+, and
RF. (k) and (l) Results of point- and patch-based SSNets. Green in (b) and (c) denotes forests, and white denotes nonforests; gray in (b) denotes the unlabeled
area, i.e., uncertain area.

Fig. 9. Effects of inaccuracy labels on the results. (a) GF-1 WFV image (RGB). (b) PL. (c)–(j) Classification results of U-Net, ResUnet, ResUneta, SwinUnet,
HRNet, Deeplab V3, Deeplab V3+, and RF. (k) and (l) Results of point- and patch-based SSNets. Green in (b) and (c) denotes forests, and white denotes
nonforests; gray in (b) denotes the unlabeled area, i.e., uncertain area.

RF can preserve spatial details in the result effectively.
However, the outcomes present salt-and-pepper noise and
fragmentation. Furthermore, when the samples contain a
certain degree of error, precise classification fails to be realized
by RF.

B. Validation of the Proposed Framework

1) Ablation Study: We design a set of ablation experiments
to verify the effectiveness of the proposed WSFCF with
the setup described in Table II. Experiments 1–4 are
used to assess the impact of each block of SSNet, while
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Fig. 10. Effects of incomplete labels on the results. (a) GF-1 WFV image (RGB). (b) PL. (c)–(j) Classification results of U-Net, ResUnet, ResUneta,
SwinUnet, HRNet, Deeplab V3, Deeplab V3+, and RF. (k) and (l) Results of point- and patch-based SSNets. Green in (b) and (c) denotes forests, and white
denotes nonforests; gray in (b) denotes the unlabeled area, i.e., uncertain area.

Fig. 11. Performance of sample location optimization in Region 6. In the first line, (1) is the GF-1 WFV image, and (2)–(4) represent the results for settings
4–6, respectively, in Table II. The second and third lines represent the details in (1), where (a) and (b) denote GF-1 WFV images and VHR images, and
(c)–(e) denote the corresponding details in (2)–(4).

TABLE II
SETTING OF ABLATION STUDY

experiments 4–6 are conducted to verify the effectiveness
of the framework. The quantitative results are presented
in Table III.

Table III reveals that each block of SSNet enhances
the model feature extraction capabilities. Specifically, the
combination of SpeMB and SpaMB significantly improves
the discriminative ability between forest and nonforest,
especially in forest edge/transition areas, with IoU improve-
ments of 1.75% and 5.99% compared to using SpeMB
and SpaMB alone. The introduction of ASPP increases
the model’s F1 score and IoU by 1.31% and 1.38%,
respectively.

The quantitative results show that the sample correction
and location optimization significantly boosted the model’s
discriminative ability in the hard-to-classify area, with the
F1 score and IoU reaching 88.28% and 79.0%, respectively.
In particular, the label correction improves the F1 score
and IoU in the forest transition region from 62.94% and
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Fig. 12. Performance of sample location optimization in Region 7. In the first line, (1) is the GF-1 WFV image, and (2)–(4) represent the results for
settings 4–6, respectively, in Table II. The second and third lines represent the details in (1), where (a) and (b) denote GF-1 WFV images and VHR images,
and (c)–(e) denote the corresponding details in (2)–(4).

TABLE III
QUANTITATIVELY COMPARISON OF ABLATION STUDY

45.92% to 64.85% and 47.98%. The location optimization
increases the F1 score and IoU by 5.34% and 5.92%,
respectively.

2) Effectiveness of Label Correction and Sample Position
Optimization: The purpose of label correction is to make
the samples more accurate and more favorable for model
fitting. In computer vision tasks, the PLs are usually created
using predictive probability maps [31], class attention maps
class attention map [72], [87], or class activation maps [31],
[88], [89] that provide information about the foreground
and background. Then, threshold or clustering methods are
employed to refine the PLs for more accurate samples. In this
study, reliable regions for optimizing the samples are obtained
by applying thresholds to the prediction probabilities, and the
diversity of samples is increased by optimizing the sample
location.

In addition, an increased diversity of samples is identified
as an instrument to improve the generalization ability of
the model. In this study, reliable regions for optimizing
the samples are obtained by applying thresholds to the
prediction probabilities, and the diversity and complexity
of the samples are increased by augmenting the proportion

of the hard samples. Experimental results indicate that
dynamic label correction enhances label accuracy, yet sample
location optimization sometimes interferes with the model.
The influences of sample correction and location optimization
on forest results in different environments are illustrated
in Figs. 11 and 12.

There are noises in the original PL, but the CNN is still
able to distinguish forests and nonforests, which reveals that
the convolutional neural network can compensate for defective
or noisy labels to a certain extent [90], [91]. Furthermore,
PL correction enhances the model’s ability to discriminate at
details, realizing a more accurate distinction between forests
and nonforests, as shown in Fig. 12(d).

The sample location optimization increases both sample
size and diversity. It is particularly beneficial in regions
lacking forest samples. As illustrated in Fig. 11, location
optimization yields more comprehensive forest results for
Region 9. However, in areas with an ample supply of forest
samples, the inclusion of potentially confusable samples
might compromise the model’s learning capacity, especially
concerning narrow line features, or even lead to an increase
in errors, as evidenced in Fig. 12.
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Fig. 13. Predicted probability map of water. (a)–(e) Results of Regions 8–12, respectively.

TABLE IV
QUANTITATIVELY COMPARISON OF TRANSFER LEARNING

Fig. 14. Predicted probability map of the crop. (a)–(e) Results of Regions 13–17, respectively.

Although increasing the diversity of samples is productive
for model optimization, it is challenging for forest classifi-
cation, especially adding samples that cannot be identified.
The class of hard sample, that is lost/new/error forest

area, is determined based on the predicted probabilities.
Nevertheless, we practically do not know its true category.
Therefore, it might introduce a nonforest sample that is easily
confused with a forest. Under such circumstances, the hard
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Fig. 15. Predicted probability map of built-up. (a)–(e) Results of Regions 18–22, respectively.

samples tend to cause the model to fit in the wrong direction,
resulting in inaccurate classification.

Furthermore, optimizing sample positions can result in
an extended model training duration. In the worst case,
it might even double or further increase the original training
time. Therefore, one should exercise caution when updating
sample positions, despite the potential enhancement in model
classification accuracy.

C. Validation of the Proposed Framework Transferability

The classification framework proposed in this study
performs well in the forest. To explore the transferability
and limitations of the framework, we perform experiments
on other objects in the study area, such as water, crop, and
built-up. As illustrated in Table IV, satisfying results have
been achieved in these objects utilizing the proposed method,
which suggests that the WSFCF manifests great potential in
water, crop, and built-up. The visualized results are presented
in Figs. 13–15.

Water: Water bodies exhibit variations in size and spatial
distribution. To facilitate a more comprehensive evaluation of
the water body extraction capabilities presented in this article,
we have selected five distinct scenes to showcase the results
of our methodology. These scenarios are situated in diverse
geographical regions, as illustrated in Fig. 5, each possessing
unique characteristics. Fig. 13 showcases the results for water.
The visualization results show that whether for slender rivers
(Region 8) and canals (Region 11), small and irregular ponds
(Region 10), or tree-forked rivers (Regions 9 and 12), SSNet
shows a strong discriminative capability.

Crop: Due to the influence of climate and geography, there
are significant variations in farmland size, irrigation methods,
and crop types across different regions. These distinctions

increase the complexity of farmland extraction. In this study,
we have selected crop classification results of varying sizes
in different regions to showcase the potential of our method
in farmland classification, as illustrated in Fig. 14. SSNet
demonstrates superior performance in regions characterized by
extensive crop distribution. Nevertheless, it faces challenges
in areas with intricate terrain and limited farmland (such as
Region 16), as well as in regions with perplexing backgrounds
(such as Region 17).

Built-up: The patterns of built-up areas are generally more
intricate compared to those of forests and crops. In urban
regions, built-up areas are both densely concentrated and
widespread, whereas, in rural areas, they tend to be small
and scattered. Fig. 15 depicts the results of various built-
up area sizes. It is evident that the larger the built-up area,
the more favorable the performance of the proposed method.
Nevertheless, a notable capability decline is observed in rural
areas, particularly along roads (Regions 21 and 22). There are
few or even no built-up labels in these regions, which poses
a huge challenge for model learning. This might be attributed
to the small and dispersed nature of built-up areas in rural
regions. Small-scale built-up features also exhibit a tendency
to yield large errors in existing products.

We have conducted extensive experiments on the transfer-
ability of the algorithm, including single-class classification
and multiclass classification. The consequences suggest that
the proposed method performs impressively in single-class
classification but is less satisfactory in multiclass classification.
We argue that this phenomenon is caused by an imbalance
in the sample size of the LULC classes and the generation
rules of the PM. The unbalanced sample inclined the model
to favor the numerically dominant classes [92], [93], resulting
in inaccurate classification results [94]. Therefore, it is inferred
that improvements can be made in the following two aspects in
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future surface cover categorization studies. One is to improve
the generation rules of the PM and the strategy of sample
selection to narrow the sample size gap between classes. The
other is to adopt reasonable classification strategies, such as a
hierarchical classification scheme [95] and a reasonable loss
function [96], to reduce the impact of LULC class imbalance
on the results.

In addition, there is a shortage of samples representing
small objects in the PM. In the experiments, the extraction
of small objects is suboptimal. This is doubtless attributed
to the initial intention, which is aimed at achieving accuracy
in nonforest areas as much as possible. The completeness,
diversity, and fine details of specific objects were overlooked.
Furthermore, small objects commonly occur as mixed pixels,
which inherently pose challenges for separation. Therefore, the
proposed WSFCF provides the potential to handle other object
classifications. However, it is essential to take into account the
fineness and richness of target object labels.

Last but not least, it is noticed that the probability
distribution of the targets is uneven in the experiments with
different objects but is significantly differentiated from the
background, as presented in Figs. 13–15. The prediction
probability tends to be very high in areas with dense targets
but tends to be lower in areas with dispersed targets. On the
one hand, this might be attributed to the representativeness
and the spatial distribution of the samples. On the other hand,
it might be revealing that we might create more accurate results
through some postprocessing, such as local adaptive threshold
segmentation.

VI. CONCLUSION

In this article, we have focused on the method for large-
scale forest extraction using existing products and medium-
resolution imagery, which is of significant importance for
sustainable forest monitoring and management. We propose
a WSFCF including model design, sample generation, and
training strategies. Furthermore, SSNet, a network that takes
into account spectral texture, was designed based on medium-
resolution imagery and forest characteristics. Label correction
and sample location play positive roles in forest classification.
However, the positive impact of sample location is conditional.
In areas where forest samples are sparse or insufficient,
updating sample locations can significantly improve the
accuracy and completeness of classification results. However,
in regions with an abundance of forest samples, this
might potentially confuse the model’s discriminative ability
somewhat.

We perform experiments on 110 GF-1 WFV images to test
the proposed method. The results suggest that the proposed
method achieves the best classification in the study area,
with the F1 score and IoU reaching 88.28% and 79.0%,
respectively. Especially in the edge and transition area of
the forest, the method in this article outperforms the other
methods, with F1 score and IoU higher than the best
comparative methods by 9.63% and 10.35%, respectively.
It reveals that the classification framework proposed in
this study is effective in the task of extracting medium-
resolution forest classification. This provides a feasible

solution for mapping the subsequent large-scale (such as
national, continental, or global scale) forest cover. So far,
we have created a forest cover map in China in 2020 using
the proposed method and GF-1 WFV images. We also
validated the effectiveness of the proposed method on Landsat
data, and we will exploit the scalability and feasibility of
the method for time-series forest monitoring in subsequent
studies. In addition, the proposed method exhibits excellent
transferability and achieves excellent classification results in
water, crop, and built-up areas. The diversity and fineness of
the samples may contribute to the transfer of the model to
other classes.
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