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Abstract— Deep neural networks based on unrolled iterative
algorithms have achieved remarkable success in sparse recon-
struction applications, such as synthetic aperture radar (SAR)
tomographic inversion (TomoSAR). However, the currently avail-
able deep learning-based TomoSAR algorithms are limited to 3-D
reconstruction. The extension of deep learning-based algorithms
to 4-D imaging, i.e., differential TomoSAR (D-TomoSAR) appli-
cations, is impeded mainly due to the high-dimensional weight
matrices required by the network designed for D-TomoSAR
inversion, which typically contain millions of freely trainable
parameters. Learning such huge number of weights requires
an enormous number of training samples, resulting in a large
memory burden and excessive time consumption. To tackle this
issue, we propose an efficient and accurate algorithm called
HyperLISTA-ABT. The weights in HyperLISTA-ABT are deter-
mined in an analytical way according to a minimum coherence
criterion, trimming the model down to an ultra-light one with
only three hyperparameters. Additionally, HyperLISTA-ABT
improves the global thresholding by utilizing an adaptive block-
wise thresholding (ABT) scheme, which applies block-coordinate
techniques and conducts thresholding in local blocks, so that
weak expressions and local features can be retained in the
shrinkage step layer by layer. Simulations were performed and
demonstrated the effectiveness of our approach, showing that
HyperLISTA-ABT achieves superior computational efficiency
with no significant performance degradation compared to the
state-of-the-art methods. Real data experiments showed that
a high-quality 4-D point cloud could be reconstructed over a
large area by the proposed HyperLISTA-ABT with affordable
computational resources and in a fast time.
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NOMENCLATURE
yk Output at the kth layer.
R Original steering matrix.
W Optimized weight matrix.
g Complex-valued SAR acquisitions.
g: Soft-thresholding function with support selec-
tion at the kth layer.
pk Percentage for support selection at the kth
layer.
6* Threshold controlling the soft-thresholding
function at the kth layer.
B* Factor balancing gradient and momentum.
c1,¢2,¢3  Hyperparameters in HyperLISTA.
hy, hy, h3 Hyperparameters in HyperLISTA-ABT.

I. INTRODUCTION

YNTHETIC aperture radar tomography (TomoSAR) has

attracted significant interest due to its capability in 3-D
reconstruction, particularly for urban areas [1], [2], [3], [4].
Compressive sensing [5], [6] (CS)-based algorithms are usu-
ally preferred for solving TomoSAR inversion [7], [8], [9].
However, the heavy computational cost of CS-based methods
makes them less applicable for large-scale processing. Among
the different methods aiming to tackle this issue, deep neural
networks have been employed in speeding up TomoSAR
inversion. In the work presented in [10], TomoSAR inversion
was approached as a classification problem, and a conventional
convolutional neural network (CNN) was employed to solve
the problem. However, this approach was limited to the
detection of single scatterers, and it did not fully address the
challenges of TomoSAR inversion for complex scenes with
multiple scatterers and variations in the elevation direction.
More recently, thanks to an emerging deep learning technique
called deep unfolding [11], the authors proposed y-Net in [12]
for improving the unrolled iterative shrinkage thresholding
algorithm (ISTA) network. It was shown that y-Net could
succeed in accelerating the processing speed by 2-3 order of
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magnitude while maintaining a comparable super-resolution
power and location accuracy compared to second-order CS
solvers. In addition, a gated recurrent structure, dubbed as
complex-valued sparse minimal gated units (CV-SMGUs), was
proposed in [13] that incorporates historical information into
the dynamics of network, thus preserving the full information.
As discussed in [13], CV-SMGUs could outperform y-Net by
a fair margin.

However, to the best of our knowledge, deep learning-based
TomoSAR algorithms are to date still confined to 3-D recon-
struction cases. Considering that spaceborne datasets are
usually acquired in the repeat-pass mode at different time
stamps, often over several years, it is necessary to additionally
account for a potential deformation of objects in the esti-
mation, such as seasonal motion caused by thermal dilation
or linear motions like subsidence. The 4-D imaging tech-
nique taking into account additional deformation parameters
is known as D-TomoSAR [1], [14], [15], [16].

The limitation of deep learning-based algorithms in solv-
ing D-TomoSAR inversion is mainly attributed to the
high-dimensional weight matrices to be learned in the network.
For modern deep learning-based algorithms, like y-Net and
CV-SMGUs, the size of the weight matrices is usually related
to the discretization level. In D-TomoSAR cases, especially
when multicomponent motion terms are considered, weight
matrices can easily contain over one million free trainable
parameters. As a consequence, it would be extremely compu-
tationally inefficient to learn those weights without mentioning
the enormous number of training samples required. A detailed
analysis of this issue can be found in Section III-A of the
present article.

To tackle the computational challenges posed by learning
huge weights, a pioneering solution was introduced in the
seminal work by Liu et al. [17]. In their research, they
proposed an analytical weight determination method. This
method was further refined by them and extended into Hyper-
LISTA [18]. By employing analytical weight determination,
a novel perspective emerges for leveraging deep learning-based
algorithms in D-TomoSAR inversion. Specifically, the opti-
mization of weights using a data-free approach becomes
possible, circumventing the need for an extensive number of
training samples. This innovative approach effectively over-
comes the limitations that were previously encountered in deep
learning-based D-TomoSAR inversion.

However, it is important to note that, similar to LISTA,
HyperLISTA employs a global thresholding scheme where
a unified threshold is used to prune all entries. The choice
of an appropriate threshold is thus crucial. A high threshold
value may result in the loss of significant information [13],
such as local features generated by echoed signals from dark
scatterers. On the other hand, a low threshold value can
delay convergence and yield a solution that lacks sufficient
sparsity.

A. Contribution of the Present Study to the Field

To overcome the aforementioned issue in D-TomoSAR
inversion, we proposed an ultralight model, named
HyperLISTA-ABT, that improves HyperLISTA [18] through
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incorporating an ABT scheme. Same as HyperLISTA, the
proposed HyperLISTA-ABT can be viewed as an unrolled
ISTA network, whereas the weight matrices therein can be
determined with analytical optimization according to the
minimum coherence criterion. A system matrix with low
mutual coherence implies a recovery of high probability,
which is the fundamental concept of CS. The ABT scheme
in HyperLISTA-ABT enables updating the block coordinates
and conducting a shrinkage in local regions. Moreover, the
blocksize is adjusted layer by layer for a better fine-focusing
ability. The main contribution of this article is listed as
follows.

1) We propose the efficient and accurate algorithm
HyperLISTA-ABT and, to the best of our knowledge,
are the first to apply deep neural networks to solve
D-TomoSAR and multicomponent D-TomoSAR inver-
sion.

We apply a block-coordinate technique and propose an
ABT scheme to replace global thresholding in most
shrinkage thresholding methods. Therefore, the local
features from a weakly echoed signal can be possibly
retained.

We carry out a systematic performance evaluation using
both simulated and real data. The results demonstrate
that the proposed HyperLISTA-ABT provides compet-
itive estimation accuracy and superior computational
efficiency. Large-scale D-TomoSAR processing was
conducted, demonstrated by a 4-D point cloud recon-
struction over Las Vegas.

The remainder of the article is outlined as follows. The
high-dimensional SAR imaging model for D-TomoSAR and
the limitation of deep learning-based algorithms in solving
D-TomoSAR inversion are discussed in Section II. Section III
provides an overview of the formulation of the proposed
HyperLISTA-ABT with application to TomoSAR inversion.
Results of systematic evaluation using simulated data and the
practical demonstration are presented in Sections IV and V.
In addition, further discussion on key differencing features of
the proposed HyperLISTA-ABT is provided in Section VI.
Finally, the conclusion of this article is drawn in Section VI.
A brief overview of key symbols used throughout the article
is listed in the Nomenclature.

2)

3)

II. BACKGROUND
A. High-Dimensional SAR Imaging Model for D-TomoSAR

D-TomoSAR employs multibaseline and multitemporal syn-
thetic aperture radar (SAR) acquisitions to estimate scattering
profiles. Based on the estimated scattering profiles, we can
reconstruct the 3-D distribution of scatterers along the eleva-
tion direction and the motion history assigned to each elevation
position [1], [14], [15]. The imaging geometry can be seen
in Fig. 1. The following describes the D-TomoSAR imaging
model:

&n =/A Y (s) exp(—j2m (§us + 2d (s, 1,)/A))ds )

where g, is the complex-valued SAR acquisition at a certain
azimuth-range pixel at time ¢, (n 1,2,...,N); y(s)
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Fig. 1. SAR imaging geometry at a fixed azimuth position. The elevation
synthetic aperture is built up by acquisition from slightly different incidence
angles. Flight direction is orthogonal into the plane.

denotes the scattering profile along the elevation direction
with an extent of As; & = 2b,/\r is the elevation frequency
proportional to the respective aperture position b,; and d(s, t,,)
depicts the line-of-sight (LOS) motion, which is a function of
elevation and time. The LOS motion relative to the master
acquisition can be modeled with a linear combination of M
base functions 7,,(¢,)

M
ds,t) =Y pm($)Tn(tn) )

m=1

where p,(s) is the corresponding motion coefficient to be
estimated. The choice of the base functions t,(#,) depends
on the underlying physical motion processes. Great details
about how to choose proper base functions can be found
n [16]. Taking multicomponent motion into consideration,
we generalize (1) as follows:

&n —/ //V(S)S(pl p1(8), ..., py — pm(s))

X exp J27T fns-l-??lnpl + - +T)MnPM))
d pum. 3

The inversion of the system model with multicomponent
motion retrieves the elevation information as well as the
motion history assigned to each elevation position, even if
multiple scatterers are overlaid inside a resolution unit. There-
fore, we can acquire a high-dimensional map of the scatterers.
In the presence of noise &, the discrete high-dimensional
D-TomoSAR model can be expressed as follows:

xd sdpy, ...,

g=Ry+e “4)

where g € C¥*! is the complex-valued SAR measurement
vector and R € CM*L is the irregular sampled Fourier
transformation steering matrix, where N is the number of SAR
acquisitions and L is the amount of the discretization in the
signal to be reconstructed.

As investigated in [7], usually only a few (less than 4)
scatterers are overlaid inside an individual pixel in urban areas,
such that y is sufficiently sparse so that retrieving y can be
formulated as a sparse reconstruction problem. Accordingly,
solving p in the presence of noise can be formulated as a
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Fig. 2. Tllustration of an intermediate layer in y-Net.

basis pursuit denoising (BPDN) optimization problem, which
can be expressed as follows:

y= argmyin{ng —Ry[3+ My} (5)

where A is the regularization parameter controlling the data-fit
terms and the signal sparsity. Great details about how to choose
a proper value of A according to the noise level can be found
in [19].

B. Review of the Deep Learning-Based TomoSAR Algorithms
and Their Limitation in Solving D-TomoSAR Inversion

In [12] and [13], the respective authors proposed two
advanced deep learning-based algorithms by improving
unrolled neural networks. Experimental results on both labo-
ratory and real data demonstrated their strong super-resolution
power and high location accuracy. However, their application
to date is still limited to 3-D reconstruction. Taking y-Net as
an example, we will explain the difficulty of applying deep
learning-based algorithms for solving D-TomoSAR inversion.
To start with, we briefly go through the basics of the y-Net
architecture. Fig. 2 illustrates the structure of an intermediate
layer of y-Net, which can be formally defined as follows:

P =t (P + W (g - RP). 6,). (©6)

More details about y-Net can be found in [12].

As we can see, in each y-Net layer, a weight matrix W, of
the size N x L needs to be learned. For 3-D reconstruction
cases, the value of L is only determined by the grids number
after the discretization of the elevation extent, thus it is
typically in the range of hundreds for spaceborne sensors
and N x L will be in thousands then. However, this number
increases exponentially in D-TomoSAR cases when multicom-
ponent motion terms, usually linear and periodic motions, are
taken into consideration. The training of the network then
becomes conversely a challenge due to the tremendous amount
of free trainable parameters. For instance, when we consider
two motion terms, i.e., linear and seasonal motion, the value
of L will be determined by the product of the discretized
grid numbers along each direction L = Ly x L, X L,
where L,, L,, and L, indicate the discretization levels for
elevation, linear motion, and seasonal motion, respectively.
A very conservative level of discretization in elevation, linear
motion, and periodic motion for TerraSAR-X image stacks
L, Ly, and L, would be 200, 50, and 50, respectively. When
multiplied, the value of L will then be 0.5 million, meaning
that, there will be millions of parameters to be learned in
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each weight matrix. Such large weight matrices result in two
unavoidable downsides. First, the model tends to converge at
the ground truth instead of the LASSO minimizer, because
the update direction W/ (g — Ry) does not align with the
gradient of the I, term in the LASSO objective R” (g — Ry).
Therefore, we always need to train the model in a supervised
way. Consequently, a massive number of training samples are
required to train the model with huge weight matrices, thus
making the training procedure extremely inefficient. Second,
the training of the huge model requires a significant amount
of GPU memory, which is usually not feasible with consumer-
level GPUs.

III. METHODOLOGY
A. HyperLISTA With ABT (HyperLISTA-ABT)

To circumvent the tedious and troublesome model training
caused by needing to learn huge weight matrices, an analytical
weight optimization method, which is based on coherence
minimization, was proposed in ALISTA [17] to determine the
weights in an unrolled neural network designed for sparse
recovery, such as LISTA. ALISTA combines the superior
empirical performance of fully learned methods and sig-
nificantly reduces the number of parameters, leaving only
thresholds and stepsize parameters to be learned. In addi-
tion, an ultralight model, called HyperLISTA, was proposed
in [18], which further trimmed down the training complexity.
In HyperLISTA, weight matrices can be computed in a similar
way to [17] and the training is reduced to tuning only three
hyperparameters from the data. The following shows the
formal update rules of HyperLISTA:

P =l P+ W — Ry + B =y (D)
where

0" =ci|R* (Ry* - g) |, ®)

B = v, 9)

R'g|
k __ : 1 H 1 , L 10
e mm( Og( [R* (Ry* —g)] 1) ) 1o

where ¢, cp, and c3 indicate the three hyperparameters to
be tuned. It is possible to learn the hyperparameters via
backpropagation, albeit this method may be an overkill as it
involves passing gradients through deep neural network layers
to learn just three parameters. Less computationally expensive
methods, such as grid search, could be employed to obtain
a set of proper hyperparameters. Despite providing a bit less
accurate estimate, the empirical findings in [18] showed that
HyperLISTA is robust to perturbations in the values of c1, c2,
and ¢3. In grid search, a coarse grid is first applied to find an
interest region, and then this is zoomed-in with a fine-grained
grid. The hyperparameters are determined by minimizing the
normalized mean square error (NMSE) over the simulated
ground truth. The NMSE is defined as follows:

Iy —»I3

1
NMSE = — > >
v 13

T Y

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

®
where T denotes the number of samples, and '75<k. is the
soft-thresholding function combined with the support selection
scheme

a i eS8 (h

i ¢ (12)
na (X, 00, i ¢ SPpH)

Pk
Ny, (¥°) = [
where SPW(yk) contains the entries with the p® largest mag-
nitudes. W denotes the optimized weight matrix determined
with the minimum coherence criterion, which is defined as
follows:

A

W = arg H‘l)i,n w(W,R)

=argmin__inf max W/ R, ;
W WeCyop i#j 0

st.Vie{l,...,L}: W/, R; = 1. (13)

Rigorous proof of the convergence and recovery upper and
lower bound of HyperLISTA can be found in [18]. An efficient
numerical algorithm to calculate the optimized weights is
discussed in the Appendix.

Inspired by the outstanding efficiency and performance
demonstrated in [18], we consider that HyperLISTA should
have great potential in our high-dimensional D-TomoSAR
inversion. However, through experiments, we discovered a
drawback of HyperLISTA when applied to TomoSAR. Similar
to most thresholding algorithms, HyperLISTA suffers from an
inherent limitation caused by the global thresholding scheme.
Precisely, in the signal projection process for identifying the
presence of a dictionary atom within the signal, the selection
of an appropriate threshold is of utmost importance. The
threshold should be chosen carefully to account for both strong
and weak spikes in the reflectivity profile. By selecting a
well-suited threshold, the signal projection can distinguish
between significant spikes and noise, enabling an accurate
identification of dictionary atoms within the signal. However,
when utilizing HyperLISTA and other methods that employ
global thresholding, the task of selecting an optimal threshold
becomes exceedingly challenging. The use of a global thresh-
old implies that the same threshold value is applied uniformly
across all entries in the signal. This approach may lead to
suboptimal results, as a threshold that effectively captures
strong spikes might inadvertently suppress weaker but still
meaningful spikes in the reflectivity profile. Consequently,
we usually need to choose a relatively small ¢; to have a small
threshold so that we can maintain some small spikes caused
by reflection from dark scatterers. Otherwise, the information
of dark scatterers would be discarded in the thresholding step
layer by layer. However, the use of a small threshold brings
about two main problems. First, the convergence would be
considerably slow. Second, small thresholds yield solutions
that are not sparse enough.

To cope with the aforementioned issue and better leverage
the power of HyperLISTA in our application, we propose
HyperLISTA-ABT, which is an improvement of the original
HyperLISTA by incorporation of an ABT (ABT) scheme
that explores a local thresholding strategy. The advantages of
HyperLISTA-ABT are threefold. First, it conducts the thresh-
olding in each local block, thus allowing for a more refined
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thresholding process and possibly retaining weak expressions
of reflections from dark scatterers. Then, it becomes possible
to better capture the diverse range of spike magnitudes encoun-
tered in the signal, enhancing the accuracy and reliability of
the reflectivity profile characterization. Second, HyperLISA-
ABT has been shown to be more efficient since it updates
only one block of variables at each time instead of updat-
ing all the variables together. Therefore, HyperLISTA-ABT
has been found to be more appropriate for our large-scale
and high-dimensional application. Last but not the least,
HyperLISTA-ABT reduces the blocksize layerwise and con-
tributes to a better fine-focusing ability.

According to [20] and [21], the wupdate rules of
HyperLISTA-ABT after applying block coordinate techniques
can be written as follows:

k k—
17—, (7 WE (5~ Rt ) (1)
(14)

where i, is the index of the updated block. To clarify,
in HyperLISTA-ABT, we remove the support selection scheme
and just use the conventional soft-thresholding function. The
threshold 6® and the factor 8* are determined for each block
as well

k __ + ok
o =R (R, =),
k __ k
,Bip =hy H}’,'p

where hy > 0, hy > 0, and h3 € (0, 1) are the three hyperpa-
rameters. Notably, h3; is a latent hyperparameter and plays a
crucial role in controlling the blocksize despite not explicitly
appearing in the formula. In our application, we usually
initialize the blocksize according to the grid number within
half of the Rayleigh resolution. The block is chosen with
a random variants scheme where i, follows the probability
distribution given by

5)

(16)

0

L;
P =—"— i,=1,...,J (17)
lp J ’ P ) ’
Zj:l Lip
where J is the number of blocks and L; = ||RiTp R; ||. Al

the hyperparameters &, h,, and h3 can be selected using the
same grid search method as in HyperLISTA.

With the blockwise thresholding scheme, local features and
weak expressions can be possibly retained. This is due to
the fact that many elements of the entries are not strictly
driven to zero but to some extremely small value, thus making
the output not strictly sparse. Therefore, a postprocessing is
usually required to clean the output and make it sparse. The
framework of the proposed HyperLISTA-ABT is summarized
in Algorithm 1.

IV. SIMULATIONS

To demonstrate the improvement of the proposed
HyperLISTA-ABT to the original HyperLISTA and compare
it to the state-of-the-art CS-based and deep learning-based
methods, we first conducted experiments based on TomoSAR
inversion using simulated data. Since the existing deep
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Algorithm 1 Summary of the Proposed Algorithm
Generate steering matrix R for given baselines
Analytic weight optimization W according to Eq. (13)
Tuning of hyperparameters
Simulate ground truth of reflectivity profile y [12]
Simulate noise-free SAR acquisitions g = Ry
Grid search to determine the hyperparameters by
minimizing NMSE over simulated data
Inference
Init: y° = R”g and blocksize B;
for k=1,2,..., K do
Determine the number of blocks J
based on the blocksize By
fori,=1,2,..., J; do

vir =g 0+ Wi = Ryl
+ ﬁi(pk)(yﬁz - yfp_l))
eikp = thth (Ripyffp - g) Hl

(k) k
B =c Hyi”

ip

0

end for
Update blocksize with By = h3 - By
end for
Output clean-up
Model order selection and final estimation

learning-based algorithms are not feasible to use with
D-TomoSAR cases as explained in Section I, we only
focused on TomoSAR inversion for 3-D reconstruction in the
simulation.

A. Simulation Setup

In the simulation, we conducted a well-known TomoSAR
benchmark test [1], [7] using the same simulation settings
as used in [12] and [13]. Specifically, we simulated an
interferometric stack containing 25 baselines that are reg-
ularly distributed in the range of —135 to 135 m and a
two-scatterer mixture in each resolution cell, which is also
called double scatterers, meaning that two scatterers are over-
laid in the elevation direction in a single pixel. We used the
effective detection rate, which is able to simultaneously reflect
the super-resolution power and elevation estimation accuracy,
to fairly evaluate the performance. Detailed definition of the
effective detection rate can be found in [12] and [13].

B. Performance Improvement Compared to the Original
HyperLISTA

The first experiment set out to study the performance
improvement of HyperLISTA-ABT compared to the orig-
inal HyperLISTA. In this experiment, the overlaid double
scatterers were simulated to have identical scattering phase
varying amplitude ratios. The two algorithms were set to have
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Fig. 3. Effective detection rate of HyperLISTA-ABT and the original HyperLISTA with respect to the normalized elevation distance at different amplitude

ratios. The overlaid double scatterers were set to have an identical phase and the SNR level was 6 dB. HyperLISTA-ABT significantly outperformed HyperLISTA

at high amplitude ratios between the scatterers.

15 layers, which is a typical number for a LISTA network
and its variants. Fig. 3 shows the effective detection rate of
HyperLISTA-ABT and the original HyperLISTA as a function
of the normalized elevation distance between the simulated
double scatterers at 6 dB SNR at different amplitude ratios.
Regarding double scatterers, the SNR level and the amplitude
ratio are defined as follows.

1) SNR Level: For double scatterers, the SNR level is
defined such that each individual scatterer is affected by
noise corresponding to the given SNR. Both scatterers
are set to the same SNR.

2) Amplitude Ratio: Tt refers to the ratio of the amplitudes
of the signals from two scatterers. Assuming that a scat-
terer is represented as A - e’'?, where A and ¢ represent
the amplitude and phase of a deterministic scatterer,
respectively, the amplitude ratio can be formally defined
as I'omp = (AI/AZ)

The results demonstrate that HyperLISTA-ABT achieved a
significantly higher effective detection rate than the original
HyperLISTA. Both algorithms (in fact, all other meth-
ods) experience performance degradation with respect to an
increase in amplitude ratio. This is attributed to two main
factors. First, dark scatterers experience a large bias in their
elevation estimates at high amplitude ratios due to their
elevation estimates approaching the more prominent ones.
Consequently, many detections of double scatterers will not
be recognized as effective due to the large elevation esti-
mation bias. Second, the energy of dark scatterers is close
to the noise level at high amplitude ratios. This makes it
particularly challenging for HyperLISTA, which employs a
global thresholding scheme, to detect the local features of dark
scatterers. Further elaborating, when high-intensity scatterers
are present in the signal, their strong energy can overshadow
the low-energy regions where dark scatterers are located. This
overshadowing effect can lead to the suppression or even
annihilation of the weaker expressions associated with the
dark scatterers. Consequently, the presence of these strong
intensity scatterers can mask or obscure the signals originating

from the dark scatterers, making their detection and character-
ization challenging. In contrast, HyperLISTA-ABT conducts
thresholding in each local block, which can allow retaining
local information and, thus, it can detect dark scatterers. This
results in a higher effective detection rate at high amplitude
ratios.

C. Comparison With the State-of-the-Art Algorithms

In this section, we compared HyperLISTA-ABT to other
state-of-the-art algorithms for further evaluation, which
are deep learning-based algorithms y-Net [12] and CV-
SMGUs [13], as well as the traditional CS-based method
SLIMMER [22] with second-order optimization. To highlight
the super-resolution ability of these methods, we also involved
a conventional spectral estimator SVD-Wiener [1] as a baseline
in the comparison.

The comparison was first based on the effective detection
rate. Two different scenarios were taken into consideration:
SNR € {0, 6} dB, which represents a noisy case, and a regular
case with a typical SNR level in a high-resolution space-
borne SAR image. The comparison results are demonstrated
in Fig. 4. At each discrete normalized elevation distance,
0.2 million Monte Carlo trials with an identical phase and
amplitude, which represents the worst case [22] in TomoSAR
inversion, were simulated. The deep learning-based algorithms
y-Net and CV-SMGUs were built with 12 and 6 hidden
layers, respectively. The training followed the same training
strategy introduced in [12] and [13] and was carried out
using a single NVIDIA RTX2080 GPU. For HyperLISTA-
ABT, the training involved analytical weight optimization and
determining the hyperparameters via the grid search method.
The number of iterations in HyperLISTA-ABT was set
as 15.

From the comparison results, we can see that all the meth-
ods except the conventional spectral estimator SVD-Wiener
showed a great super-resolution power. The proposed
HyperLISTA-ABT delivered almost the same super-resolution
ability as p-Net and approached the performance of
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Fig. 6. Effective baselines of the 29 TerraSAR-X high-resolution spotlight

images.

SLIMMER in both scenarios. In addition, we plotted the
elevation estimates of the simulated facade and ground
in Fig. 5 with respect to the normalized true elevation
distance to demonstrate the elevation estimation accuracy
of the tested super-resolution algorithms. As depicted in
Fig. 5, all evaluated algorithms demonstrate comparable accu-

racy in elevation estimation. This consistency across various
algorithms indicates that our effective detection constraint
effectively guarantees elevation estimation accuracy. How-
ever, when focusing solely on the effective detection rate,
it was challenging to proclaim a clear advantage of the
proposed HyperLISTA-ABT method over the existing state-of-
the-art approaches. In fact, when comparing it to CV-SMGUs,
we could observe a slight underperformance. However, all
the state-of-the-art methods come with a relatively high com-
putational cost. Both y-Net and CV-SMGU require tailored
training according to the baseline distribution of the stack.
SLIMMER is a model-based algorithm, thus needs no train-
ing, yet requires significantly computational time for solving
the L1-norm minimization.

We tested and recorded the time consumption of different
algorithms for processing the 0.2 million Monte Carlo trials
as well as the requirements for training data. The results are
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TABLE I

COMPARISON OF THE NUMBER OF REQUIRED TRAINING SAMPLES AND TIME CONSUMPTION FOR PROCESSING 0.2 MILLION MONTE CARLO TRIALS
WITH EACH ALGORITHM. THE TRAINING TIME OF HYPERLISTA-ABT INDICATES THE COMBINED DURATION OF BOTH THE ANALYTIC WEIGHT
OPTIMIZATION PROCESS AND THE TUNING OF HYPERPARAMETERS. IT PROVIDES A MEASURE OF THE OVERALL TIME
REQUIRED FOR THESE ESSENTIAL STEPS

Algorithm number of training samples  training time  inference time  total time consumption transferability
CV-SMGUs 4 million = 10 hours ~ 0.25 h ~ 10 h low

~-Net 3 million =~ 8 hours ~0.2h ~8h low
SLIMMER - - ~20h ~20h high
HyperLISTA-ABT - ~ 0.5 hour ~0.25h ~1h medium

Fig. 7.

summarized in Table I. To clarify, all inferences were con-
ducted using a local CPU for a fair comparison. As can be seen
in Table 1, it took about 10 h for the deep learning-based algo-
rithms to process 0.2 million Monte Carlo trials, which was
predominantly the training time. In addition, a large amount of
training samples was essential as well. For SLIMMER, it took
about 20 h for the processing since the iterative second-order
optimization is computationally expensive. Further inspecting
the table, we can see that HyperLISTA-ABT showed similar
efficiency in the inference as the other deep learning-based
algorithms. However, HyperLISTA-ABT required no training
data and it took much less time for the training. In total,
HyperLISTA-ABT speeded up the processing by about one
order of magnitude compared to the other algorithms tested in
the experiment.

Upon evaluating the performance and efficiency, it was
observed that HyperLISTA-ABT achieved comparable per-
formance to the existing state-of-the-art methods while
significantly improving the computational efficiency by
approximately one order of magnitude. This is especially
advantageous in the multicomponent D-TomoSAR case. The
application of the aforementioned deep learning-based algo-
rithms and SLIMMER is very limited in the D-TomoSAR
case due to the need for time-consuming model training

(b)

Test site. (a) Optical image from Google Earth. (b) SAR mean intensity image.

and the heavy computational expense. On the contrary, the
application of HyperLISTA-ABT can be easily extended to
computationally efficient D-TomoSAR processing. Therefore,
HyperLISTA-ABT is a more applicable approach for the
large-scale processing of real data.

Furthermore, HyperLISTA-ABT demonstrates superior
transferability compared to deep learning-based algorithms.
Deep learning models are typically trained to fit spe-
cific baseline configurations, such as a fixed number of
SAR acquisitions and a specific baseline distribution. While
they may exhibit satisfactory generalizability to small base-
line discrepancies [12], [13], directly applying a trained
deep learning model to a new data stack with a different
number of acquisitions or a completely different baseline
distribution is not feasible. In such cases, time-consuming
retraining of the model becomes necessary, resulting in low
transferability.

In contrast, HyperLISTA-ABT offers better transferability.
Although it requires analytical optimization of the weight
matrix for each new data stack, the efficiency of the
analytical optimization process allows for scalability and
improved transferability. This finding highlights the potential
of HyperLISTA-ABT in enabling global urban mapping using
TomoSAR, as it can be effectively applied to diverse data
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Fig. 8. Color-coded reconstruction results of the test site. (a) Elevation estimates using HyperLISTA-ABT in meters, (b) elevation estimates using SLIMMER
in meters, (c) estimated amplitude of seasonal motion using HyperLISTA-ABT in centimeters, and (d) estimated amplitude of seasonal motion using SLIMMER

in centimeters.

stacks with varying acquisition configurations and baseline
distributions.

V. REAL DATA EXPERIMENT
A. Bellagio Hotel

In this real data experiment, due to the fact that there was
no available ground truth, we purposely used the same data
as in [23] so that we can compare our results to the results
obtained with SLIMMER. The data stack was composed
of 29 TerraSAR-X high-resolution spotlight images covering
the Bellagio Hotel in Las Vegas, whose baseline distribution is
illustrated in Fig. 6. The slant range resolution was 0.6 m and
the azimuth resolution was 1.1 m. The elevation aperture size
of about 270 m resulted in the inherent elevation resolution

ps to be about 40 m, i.e., approximately 20 m resolution in
height since the incidence angle here was 31.8°. An optical
image and the SAR mean intensity image of the test site are
shown in Fig. 7.

As for the D-TomoSAR system model, a time wrap oper-
ation assuming only sinusoidal seasonal motion was adopted
as in [16] because no long-term linear motion was observed
during the acquisition period of the test area.

In Fig. 8, we compare the estimated elevation and ampli-
tude of the seasonal motion of the detected single scatterers
and the top layer of the detected double scatterers. From
Fig. 8(a), we can see a smooth gradation of the elevation
estimates from the building bottom top, which suggests a
reasonable elevation estimation by HyperLISTA-ABT. More-
over, we can see that there is no significant difference
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Fig. 9. Color -coded elevation estimates of the top and bottom layers of the detected double scatterers using HyperLISTA-ABT (a) and (b) and SLIMMER
(c) and (d). From left to right are the top and bottom layers of the detected double scatterers. The top layer is mostly caused by reflections from the building
roof and facade, while the bottom layer is mostly caused by reflections from low infrastructures and the ground.

between the results of HyperLISTA-ABT and SLIMMER,
implying that HyperLISTA-ABT had similar performance to
SLIMMER. In addition, Fig. 9 shows the layover separation
ability of HyperLISTA-ABT. As can be seen, the two layers of
double scatterers were detected and separated by HyperLISTA-
ABT. The top layer was mainly caused by signals from the
roof and facade of the high-rise buildings while the bottom
layer was caused by signals from the ground structures.
By comparing the reconstruction results of HyperLISTA-ABT
and SLIMMER, we can see that HyperLISTA-ABT
achieves a remarkably similar super-resolution power to
SLIMMER.

We also conducted some numerical comparisons of both
algorithms. First, we compared the percentage of pixels
detected as zero, one, and two scatterers by both algorithms.
A comparison of the number of scatterers detected by the

proposed HyperLISTA-ABT and SLIMMER is demonstrated
in Fig. 10 and the detailed statistics is listed in Table II.
Compared to SLIMMER, we found that HyperLISTA-ABT
detected more pixels as coherent scatterers. This does not
necessarily mean that HyperLISTA-ABT had a better detec-
tion ability since there was no ground truth. We believe
that HyperLISTA-ABT detected more scatterers because
HyperLISTA-ABT tends to maintain weak signals, which
could be reflections of dark scatterers but also outliers
caused by noise interference. The false detection of noise
as coherent scatterers causes a speckle-like noise in the
reconstruction result. Model order selection and postprocess-
ing techniques like spatial filtering can further mitigate such
outliers.

For further evaluation, we compared the elevation estimates
differences of scatterers detected by both algorithms. The
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Fig. 10. Map of the number of scatterers detected by HyperLISTA-ABT and SLIMMER.

TABLE I
PERCENTAGE OF SCATTERERS DETECTION FOR THE TWO ALGORITHMS

Aloorithm Percentage of detection as

& 0 scatterer 1 scatterer 2 scatterers
HyperLISTA-ABT 48.48 % 44.09 % 743 %
SLIMMER 49.41 % 43.63 % 6.96 %

50 100 150 200 250 300 350 400 450 500

Fig. 11. Demonstration of elevation estimates differences in meters between
HyperLISTA-ABT and SLIMMER.

differences of the elevation estimates are demonstrated in
Fig. 11 and a histogram of the elevation estimates differences
is shown in Fig. 12. Since the elevation coordinates were
discretized on a 0.5 m grid the intervals of the elevation
estimates differences follow the 0.5 m increments. It can be
observed that most of the elevation estimates differences were
within 1 m. This observation indicates that both algorithms
yielded comparable results in terms of elevation estimation,
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Elevation estimates difference
Fig. 12. Histogram of elevation estimates differences between

HyperLISTA-ABT and SLIMMER.

instilling confidence in their reliability and reasonableness.
Furthermore, this similarity in estimation accuracy suggests
that HyperLISTA-ABT performed on par with SLIMMER.
Moreover, it is worth mentioning that it took more than three
weeks for SLIMMER to finish the D-TomoSAR processing
over the test site, whereas it only took several hours for
HyperLISTA-ABT to complete the processing.

B. Large Demonstration

In this section, we applied HyperLISTA-ABT to
TerraSAR-X high-resolution spotlight data over a large
area surrounding the convention center in Las Vegas. The
stack was composed of 29 acquisitions covering a time
period from July 2009 to June 2010, during which the test
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Fig. 13.
the area undergoing subsidence.
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(b)

Demonstration of the large test area. (a) Optical image from Google Earth. (b) SAR mean intensity map in decibel. The red box in (b) indicates
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Fig. 14. Demonstration of color-coded elevation estimates and estimated amplitude of multicomponent motion. (a) Elevation estimates in meters, (b) estimated
amplitude of seasonal motion in centimeters, and (c) estimated amplitude of linear motion in centimeters/year.

area was undergoing a pronounced subsidence centered
at the convention center. Therefore, the acquisitions
were characterized by a multicomponent nonlinear
motion combining linear and thermal dilation-induced
seasonal motion. Fig. 13 shows an optical image and
the SAR mean intensity map. The red box indicates the
“epicenter” undergoing subsidence around the convention
center.

Fig. 14 illustrates the reconstructed elevation estimates as
well as the estimated amplitude maps of the two different
motions. As we can see from the surface model generated
from the elevation estimates in Fig. 14(a), we can capture the
shapes of individual buildings and the surrounding infrastruc-
tures, like roads, at a detailed level. In addition, Fig. 14(b)
shows that clear deformation caused by seasonal motion can
be observed in the metallic building structures since they
were affected by thermal dilation more seriously compared
to the surrounding infrastructures. Furthermore, as illustrated
in Fig. 14(c), it could be observed that the magnitude of

the linear subsidence increased as the scatterer gets closer
to the “epicenter.” These results are consistent with the fact,
thus validating the effectiveness of HyperLISTA-ABT for
multicomponent nonlinear motion estimation and giving con-
fidence that HyperLISTA-ABT can be applied in large-scale
D-TomoSAR processing.

VI. DISCUSSION
A. Key Differencing Features Compared to ALISTA

The proposed HyperLISTA-ABT differs from ALISTA [17]
in several key aspects, summarized as follows.

1) Enhance Convergence: HyperLISTA-ABT incorporates
Polyak’s heavy ball method [24], introducing a momen-
tum component that creates layerwise skip connections
in the model. This innovation notably accelerates
the convergence rate. Consequently, HyperLISTA-ABT
achieves faster linear convergence compared to ALISTA
under identical conditions.
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2) Instance-Adaptive Parameter Design: The model utilizes
an instance-adaptive parameter design [18], simplifying
it to three hyperparameters, which can be efficiently
tuned manually. Therefore, HyperLISTA-ABT elimi-
nates the need for extensive GPU memory usage for
storing the huge model.

3) Adaptive Blockwise Thresholding: HyperLISTA-ABT
allows for a more refined thresholding process, thus
enhancing the detection and preservation of weak signals
from less reflective scatterers. Moreover, it updates a
single block of variables at a time rather than simultane-
ously updating all variables, leading to greater efficiency
compared to ALISTA.

B. Description of the Grid Search Method for Determining
the Hyperparameters

Grid search [25] is an established method in the realm
of machine learning for hyperparameter optimization. It sys-
tematically explores a specified subset of hyperparameters,
thereby facilitating the identification of the most efficacious
combination to enhance model performance. The specific
implementation of grid search for HyperLISTA-ABT is as
follows.

1) Range Specification: We established ranges for hyper-
parameters /1, hy, and k3. Based on our experience, the
initial ranges are chosen as (0, 0.1) for both A, and A,
and (0.9, 1) for hs.

2) Coarse Grid Generation: For each hyperparameter (&,
h,, h3), we generated ten coarse grids, labeled as x, y,
and z, respectively.

3) Model Evaluation: For each combination of hyperpa-
rameters in grids, we calculated the NMSE over the
validation set.

4) Search Range Refinement: The grid combination
(x51, Y52, 253) yielding the lowest NMSE was selected.
We then refined our search to the adjacent grids, defin-
ing new ranges as (Xgi—i, Xs141), (Vs2—1, ¥s241), and
(zs3—1, Z53+1) for hy, hy, and hj, respectively. In cases
where the selected grid was at the boundary (first or
last), the range was adjusted accordingly. For instance,
if s1 = 1, the new range for h; becomes (x;i, Xs1+1)
instead of (xs1_1, Xs141).

5) Iteration: We repeated steps 2 to 4 until we achieved
convergence.

VII. CONCLUSION

This article proposes HyperLISTA-ABT to address the gap
in applying deep neural networks for solving D-TomoSAR
inversion. Unlike traditional methods that learn weights
directly from data, HyperLISTA-ABT computes the weights
with an analytical optimization technique by minimizing gen-
eralized mutual coherence. Additionally, HyperLISTA-ABT
introduces an ABT scheme that applies block coordinate
techniques to accelerate the algorithm. Moreover, it con-
ducts thresholding in local blocks to retain weak expressions
of reflection from dark scatterers and considers more local
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Algorithm 2 Efficient Algorithm for Analytical Weight Opti-
mization
Input: the steering matrix R
Init: D=R,G=L ¢ =a=0.1
for iter = 1,2, ... until convergence do
update D with (20)
update G with (21)
Compute f; = |[D¥D — IH?F
Compute f> = [(GR)"GA — IHi
if two consecutive fis are close enough then
£ =0.1¢
a=0.l«
if fi and f, are close enough then
break
end

end
end
Output: W = GGR

features. Laboratory experiments for 3-D reconstruction con-
firmed the efficiency of HyperLISTA-ABT in estimation.
Moreover, tests on real data over a large area demonstrated
that HyperLISTA-ABT can reconstruct high-quality 4-D point
clouds, making it an efficient and accurate algorithm for future
large-scale or even global D-TomoSAR processing.

APPENDIX
A. Efficient Algorithm to Calculate Weight Analytically

As discussed in [17], it is difficult to solve (13) directly
and (13) can be reformulated as minimizing the Frobenius
norm of WHR over a linear constraint. Defining W = G7 GR
(G € CM*V is named as the Gram matrix), the minimization
of the Frobenius norm reads

ngnHRHGHGR — 1|2, st diag(RYG¥GR) =1. (18)

However, it is hard to handle the constraint in the above
problem (18). As a solution, a matrix D = GR € CV*! is
introduced and we use the following method as an alternative:

. 2 1
1(1;1,11r)1||DTD —I|, + allD — GR|%

s.t. diag(D" D) = 1. (19)

With a proper o > 0, the solution to (19) approximates (18)
and we obtain the optimized weights accordingly. The steps
for solving the optimization problem (19) are described as
follows.

First, G is fixed and we update D with the projected gradient
descent (PGD)

D < P(D —¢D(D"D 1) - g(D - GR)) (20)

where P denotes the projection operator on the constraint
diag(D” D) = 1, so that each column of D will be normalized,
and ¢ is the stepsize. Hereafter, we fix D and update the
minimizer of G with

G <~ DR* (21)
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where RT represents the Moore-Penrose pseudo inverse
of the steering matrix R. Then, we repeat the procedure
untii D =~ GR. The whole algorithm is summarized in
Algorithm 2.
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