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Abstract— A mixed physically based/machine learning (ML)
approach to measure tropospheric attenuation A in all-weather
conditions by means of microwave radiometers (MWRs) is
proposed. The key idea is to combine the advantages originating
from the accurate radiometric A retrievals, provided by the
well-established Cosmic background (CB) approach in clear-
sky conditions, with the benefits coming from ML techniques.
The latter aim at estimating A in rainy situations through a
simplified approach able to overcome the issues posed by more
complex techniques such as the standard solution of the radiative
transfer equation or the Sun tracking (ST) microwave technique.
To this aim, an artificial neural network (ANN) is devised to
turn the antenna noise temperatures measured by a four-channel
MWR (from Ka- to W-band) into tropospheric attenuation at the
frequencies of the radiometric channels, namely 23.8, 31.4, 72.5,
and 82.5 GHz. The network is properly trained and tested by
taking advantage of the concurrent CB and ST measurements
collected by the RpG radiometer deployed at Politecnico di
Milano, Milan, Italy, under the ESA-funded WRAD project. The
proposed approach to retrieve the tropospheric attenuation is
intended to overcome the limits associated both with the ST
technique (only measurements during the day, link elevation
strictly bound to the Sun ecliptic) and to the CB one (unreliable
measurements in rainy conditions).

Index Terms— Artificial neural network (ANN), atmospheric
attenuation, mean radiating temperature, radiometry, rain
attenuation, satellite communications.

I. INTRODUCTION

S INCE the launch of the first communication-oriented
commercial satellite in 1964 (Syncom 3), Earth-space

communication systems have been characterized by a contin-
uous increase in the carrier frequency, induced by the request
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for faster data rate (which implies wider bandwidths), by the
technology advancement of microwave components and by the
congestion of lower bands. The employment of Q/V-bands
in high throughput satellites (HTS) systems is rapidly tak-
ing place, and the utilization of the W-band (75–110 GHz)
emerges as the following step [1]. However, the higher the
carrier frequency, the more detrimental the influence of the
troposphere on electromagnetic waves: wave phase delay,
signal group delay, wave depolarization, signal attenuation
(as a result of absorption and scattering), ray bending, signal
scintillation, and atmospheric noise contribution are some of
the effects that cause the degradation of the link quality and
the decrease in the link availability. Among them, attenuation
certainly plays the most relevant role [2].

Designing Earth-space communication links at W-band cur-
rently represents a challenge. On the one side, the availability
of W-band propagation data is limited to terrestrial links, with
the sole exception of the LEO-based experimental activity car-
ried out in the framework of the ESA project “CubeSat-based
W-band Channel Measurements” [3]. On the other side, the
existing propagation models (e.g., those included in [4]) were
mostly developed and tested based on the data gathered
from experimental activities at frequencies up to the V-band:
the maximum frequency of the measurements collected from
geostationary Earth orbit (GEO) satellites is 49.5 GHz (Italsat
experiment). As a matter of fact, the accuracy of propaga-
tion models for the system design at the W-band remains
an open question, which cannot be currently answered:
there is a clear need for propagation measurements beyond
50 GHz.

This goal can be achieved through different kinds of exper-
imental campaigns. The utilization of space-borne beacon
signals offers an optimum option: the Alphasat Aldo Paraboni
Experiment is the most recent (and currently ongoing) example
of how long-term (Ka-band and Q-band) propagation data can
be concurrently collected in several sites [5]. However, besides
the current lack of W-band payloads onboard geostationary
satellites (ideal orbit to guarantee measurement continuity),
these kinds of experiments are complex and extremely expen-
sive. In general, space-borne signals, also those emitted by
commercial satellites at the Ku-band and Ka-band, can be used
to collect data on the precipitation along the link [6], which
can be in turn used to derive attenuation at higher frequencies.

A simpler and cheaper alternative is offered by
ground-based microwave radiometers (MWRs), which
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can be employed to characterize the tropospheric channel by
taking advantage of retrieval algorithms receiving as input the
measured sky noise data. The most common MWR operation
mode consists of pointing the instrument at the zenith or
toward a satellite to collect brightness temperature data,
which are converted into tropospheric attenuation by means
of a simple inversion algorithm. This technique, referred to as
“Cosmic background” (CB) operation mode for convenience
of this article, typically offers accurate results [7], [8], but
its applicability is limited to cases when scattering can be
neglected: in rainy conditions, radiometric retrievals of the
tropospheric attenuation can significantly deviate from the
reference beacon-derived data [9]. Indeed, at Ka-band and
above, although there is still a significant impact of absorption
and emission under rainy conditions, scattering effects must
be considered too [10], [11]. A recently developed more
complex technique, commonly referred to as “Sun tracking”
(ST) operation, consists of alternatively switching the MWR
antenna azimuth angle from toward the Sun to off the Sun
(for a fixed elevation angle) while gradually changing the
elevation angle to track the diurnal Sun trajectory [12], [13].
The utilization of the Sun as a sort of equivalent beacon
emitter offers the possibility to retrieve the tropospheric
attenuation in all weather conditions, including rainy ones.
Unfortunately, accurate ST measurements can present a
challenge: pointing precisely at the Sun, which can be
assimilated to a transmitter circular antenna whose half-power
beamwidth is approximately 0.5◦, might not be an easy
task. This is even more challenging at the W-band, due to
the reduction in the antenna beamwidth [14]. In addition,
ST measurements are obviously available only during the
day.

This contribution proposes a novel machine learning (ML)
based approach to collect data on tropospheric attenuation
A in all-weather conditions by exploiting MWRs. ML and
neural network techniques are in rapid expansion in basically
every scientific area. In the remote sensing field, the first
approaches were developed for image processing, classifica-
tion, prediction, and geophysical retrieval in general, with an
increase in the last decades of techniques for the estimation
of rainfall exploiting satellite passive observations [15], [16],
[17]. In [18], an attempt to design a model-based neural
network approach for the estimation of the atmospheric extinc-
tion exploiting ground-based observations is proposed, where
radiometric observations are completed with a specific rainfall
radiative model in order to overcome the limitations of classi-
cal radiometric observations in rainy conditions. Wu et al. [19]
propose an ML technique for the brightness temperature esti-
mation with the limitation of assuming a constant value of the
mean radiating temperature (which is the core quantity for the
retrieval of the atmospheric attenuation through ground-based
microwave radiometric measurements). To the authors’ knowl-
edge, currently, there are no works devoted to the retrieval of
the atmospheric mean radiating temperature through an ML
approach, which is what is proposed in this work. Specifically,
in this article, an artificial neural network (ANN) is devised
and used to convert the brightness temperatures measured

by a four-channel MWR into tropospheric attenuation at the
frequencies of the radiometric channels, namely 23.8, 31.4,
72.5, and 82.5 GHz. The network is properly trained and
tested by taking advantage of the concurrent CB and ST
measurements collected by the RpG radiometer deployed at
Politecnico di Milano, Milan, Italy, in the framework of the
ESA-funded project “WRAD—Characterization of W-Band
Propagation Channel Through Ground-Based Observations”
[20]. This approach is intended to overcome the limits asso-
ciated both with the ST technique (only measurements during
the day, link elevation strictly bound to the Sun ecliptic) and
the CB one (unreliable measurements in rainy conditions).

This contribution is organized as follows. Section II recalls
the main concepts underpinning the estimation of the tro-
pospheric attenuation from radiometric measurements, while
Section III illustrates the experimental setup and the propa-
gation data. Section IV focuses on the ML-based prediction
technique, whose results and accuracy are discussed in
Section V. Finally, Section VI presents some conclusions and
offers some cues for future work.

II. MWR-BASED RETRIEVAL OF THE TROPOSPHERIC
ATTENUATION

MWRs are passive instruments measuring the natural elec-
tromagnetic emission from tropospheric constituents, from
which the associated attenuation can be retrieved by exploit-
ing the radiative transfer equation (RTE) mathematical
framework [21].

This goal can be mainly achieved by means of two mea-
surement techniques briefly recalled in this section: the CB
technique and the ST technique.

A. CB Technique

The interaction of electromagnetic radiation with atmo-
spheric constituents is duly mathematically described by the
RTE, which takes into account the electromagnetic absorp-
tion, emission, and scattering properties of the atmosphere.
The Rayleigh-Jeans approximation of Planck’s law, suitable
for microwave frequencies, states that the electromagnetic
emission of a blackbody, typically quantified in terms of
brightness, is linearly dependent on its physical temperature.
Thus, according to the RTE and adopting the Rayleigh-Jeans
approximation, the overall sky thermal emission of a real
body is referred to as brightness temperature TB . If the
considered real body is the Earth’s atmosphere (i.e., the
atmospheric constituents), the atmospheric brightness tem-
perature for ground observation, that means considering the
downwelling atmospheric radiation, is given by [21]

TB(r) = TB(0)e−τ(0,r)
+

∫ r

0
ke

(
r ′

)[
(1 − a)T

(
r ′

)
+ aTSC

(
r ′

)]
e−τ(r ′,r)dr ′ (K) (1)

where r⃗ = r s⃗0 denotes the propagation direction within
the Earth atmosphere, being s⃗0 the unit vector indicating
the observation direction. In (1), TB(r) is the brightness
temperature observed at the point r (where we assume that the
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ground receiving antenna is positioned), which consists of the
contribution of an atmospheric layer starting at level 0 (that,
in our case, is the top of the atmosphere): T (r′) is the physical
temperature at the generic intermediate point r′, TB(0) is the
brightness temperature at the boundary layer (i.e., the CB tem-
perature impinging on the top of the atmosphere TC = 2.73 K),
ks is the scattering coefficient, ke is the extinction coefficient,
a = ks /ke is the scattering albedo, τ is the optical thickness,
and, finally, and TSC(r) is the multiple scattering contribution.
The latter is given by the radiation temperature coming from
all the directions different from the considered propagation
direction (i.e., scattered from the surrounding atmospheric
particles), incident on the atmospheric particles located along
the considered propagation direction, and scattered toward the
observation direction.

Equation (1) can be written in a simplified form introducing
the sky mean radiating temperature Tmr (defined as the temper-
ature of the equivalent homogeneous isothermal atmospheric
layer)

TB(θ, ϕ) = TC e−τ(θ,ϕ)
+ Tmr

[
1 − e−τ(θ,ϕ)

]
(K) (2)

where the propagation direction is expressed through the
antenna azimuth ϕ and elevation θ angles.

Recalling that the atmospheric attenuation is
A(θ, ϕ) = −10log10[e

−τ(θ,ϕ)
] and by defining the antenna

noise temperature TA as the convolution between bright-
ness temperature impinging on the antenna and the antenna
directivity D(θ, ϕ)

TA(θ, ϕ) =
1

4π

∫
4π

TB(θ, ϕ)D(θ, ϕ)d� (K) (3)

it follows that:

A(θ, ϕ) = 10log10

(
Tmr − TC

Tmr − TA(θ, ϕ)

)
(dB). (4)

As a result, (4) allows retrieving A, the attenuation along the
path in dB, from the measured antenna noise temperature and
the CB temperature (hence, the technique name), provided that
an estimate of Tmr is available. In scattering-free conditions,
Tmr can be quite accurately estimated from surface meteo-
rological data [22], while in rainy ones, i.e., when ks in (1)
cannot be neglected, usual estimates of Tmr are not sufficiently
accurate [23]: indeed, this is the main weakness to the use of
the CB technique. Such limitation can be overcome when a
radiometer and a beacon receiver are pointed along the same
path, which allows deriving an accurate estimate of Tmr as
illustrated e.g., in [24] and [25]. In the absence of a beacon
receiver, different methodologies have been investigated in
the past to estimate Tmr under scattering-free conditions from
surface meteorological data. In this work, we take advantage of
the model described in the Appendix: Tmr is estimated from the
surface temperature TS (K) and the surface relative humidity
RHS (%), while taking in due account the dependence of Tmr
on the elevation angle [8].

The main issue for the CB methodology is that, using Tmr as
obtained from (12) under rainy conditions, TA(θ, ϕ) is likely
to exceed Tmr, which makes unusable the outputs of (4) [12].

B. ST Technique

The idea underpinning the ST technique is to exploit the
Sun as an equivalent space-borne electromagnetic radiator.
In this case, two consecutive measurements are carried out by
fixing the elevation angle θ0 while switching the azimuth angle
from ϕ0 to ϕ1 to alternatively point the instrument toward-
the-Sun (twS) and off-the-Sun (ooS), respectively. In the
former case, the brightness temperature measured by the MWR
consists of the contribution coming from the Sun, attenuated
by the atmosphere, as well as by the contribution of the
atmospheric emission itself. In the latter case, the measurement
is not affected by the Sun radiation, but only by atmospheric
emission [12], [13].

The comprehensive mathematical framework of the ST
technique is described in [12] and [13], in which the reader
can find additional details; here, it suffices to focus on the key
concepts. As previously stated, the ST technique foresees to
alternatively switch the MWR antenna pointing from toward
the Sun to off the Sun at a given elevation angle. This
is continuously repeated as the elevation angle changes to
track the Sun’s diurnal trajectory. Using this approach, the
tropospheric attenuation AST can be estimated as [12], [13]

AST(θ0, ϕ0) ∼= 4.343 ln
[

T ∗
Bsun(θ0, ϕ0)

1T A(θ0, ϕ0)

]
(dB) (5)

where

1T A(θ0, ϕ0) = T A−twS(θ0, ϕ0) − T A−ooS(θ0, ϕ1) (K). (6)

TA−twS(θ0, ϕ0) and TA−ooS(θ0, ϕ1) are the antenna noise
temperatures measured when pointing toward and off the Sun,
respectively. T ∗

Bsun(θ0, ϕ0) is the Sun brightness temperature
multiplied by the beam-filling factor ( f�), i.e., the ratio
between the Sun radiation solid angle (�Psun) and the antenna
beamwidth radiation solid angle (�Pant), f� = �Psun/�Pant.
The latter can be affected by how precisely the antenna can
track the Sun [12], [13], [14]. For AST to be an accurate
estimate of the tropospheric attenuation, changing between
ooS and twS observations needs to be fast enough to assume
the atmospheric homogeneity (i.e., same optical thickness and
mean radiative temperature between two consecutive obser-
vations). This implies choosing ϕ1 large enough to prevent
the Sun from intersecting the field of view of the radiometer
antenna. Note that (5) requires to first evaluate the Sun bright-
ness temperature, to be performed in clear sky conditions,
as detailed in [12].

The ST technique permits circumventing the issue of esti-
mating Tmr by providing an attenuation retrieval method that
is reliable in all weather conditions, though also such a
technique presents some limitations. In fact, under severe rainy
conditions, the contribution of the Sun becomes negligible due
to the strong attenuation by rain particles. In this case, 1T A

in (6) may reach zero or even negative values, depending on
the radiometer noise and the atmospheric variability between
ϕ0 and ϕ1. This poses an upper limit to the application of
the ST technique for the retrieval of tropospheric attenuation
under rainy conditions [12].
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Fig. 1. Setup for automated radiometric measurements.

TABLE I
AVAILABILITY FOR THE MILANO ST MWR MEASUREMENTS

III. EXPERIMENTAL SETUP AND DATA COLLECTION

The radiometric data were collected in the framework of the
WRAD project funded by the European Space Agency, which
kicked off in 2019 to perform a W-band ST measurements
campaign [20] (45.48◦N, 9.23◦E). The ST-MWR, deployed
at Politecnico di Milan, features two channels at 23.8 and
31.4 GHz (Ka-band ) and two channels at 72.5 and 82.5 GHz
(W-band). The instrument is equipped with a hydrophobic
radome and a blower, both of which contribute to significantly
reducing the possible accumulation of water on the radome
surface, which, in turn, might contaminate the measurements.
The device was built by RPG Physics GmbH and takes
advantage of azimuth and elevation positioners (0.05◦ and
0.1◦ scan step, respectively) to enable different measurement
modes, namely: ST, CB, and file tracking (FTK). The latter
mode is conceived for a custom operation of the instrument:
the user can specify in an FTK file the daily time series of
the elevation and azimuth angles that the positioners will set.
Fig. 1 shows the architecture for the automated operation of
the instrument: the Office PC produces the daily FTK files,
executes the measurements schedule, and communicates with
the Host PC, which runs the RPG software (SW) to control the
radiometer. The measured data are stored on the Host PC and
can be easily retrieved by the Office PC for post-processing.

The WRAD dataset is nominally available from October
2019 to August 2021, but the accuracy of the antenna pointing
system was optimized only at the end of October 2020.
In addition, around mid-January 2021 the noise diode of the
W-band channels failed, which further limited the collection
of W-band data. Table I reports the actual period of Ka- and
W-band data availability between 2019 and 2021; two partially
overlapping periods are defined: “Period 1” (for the W-band
channel availability) and “Period 2” (for the Ka-band channel
availability). Though the availability of W-band data is limited
to approximately 2.5 months, these measurements definitely
represent a valuable dataset, given the overall scarcity of such
kind of data worldwide.

A weather station is installed at approximately 20 m from
the MWR to monitor the surface pressure P , the relative
humidity RH, and temperature T . At the same distance,
a disdrometer is installed to measure the rain rate RR.

Fig. 2. Sample of the data measured by the ST-MWR during a clear sky
day, at 72.5 GHz. From the top-left corner, in a clockwise direction: TA , Sun
elevation, and path attenuation.

Fig. 2 shows a sample of the data measured by the MWR
during a clear sky day, at 72.5 GHz. The top left-hand
corner graph depicts the trend of the equivalent noise temper-
ature: TA−ooS is maximum at low values of the Sun elevation
(shown in the top right-end corner graph) because of the longer
tropospheric path, i.e., an increased sky noise contribution.
On the contrary, TA−twS is maximum in correspondence of the
Sun elevation peak because the Sun radiation is less attenuated
by the atmosphere, if compared to low elevations. Fig. 2 also
shows that the path attenuation estimated using the ST mode
is in very good agreement with the one estimated using the CB
mode (bottom graph), which is the reference for atmospheric
attenuation in the absence of precipitations [7].

Further results are shown in Fig. 3, which reports the
measurements collected during a rain event (see the bottom
left-hand graph depicting RR): as expected, there is a marked
discrepancy between the CB mode and ST mode attenuations,
the latter being the reference method under rainy conditions
(because of the impact of atmospheric particle scattering on
the CB method) [12].

IV. NEURAL NETWORK-BASED APPROACH

The results in Fig. 3 show that the attenuation difference
between the ST and the CB techniques reaches a peak of
3.5 dB, which gives a hint of how unreliable the latter approach
can be under rainy conditions. On the other hand, accurate ST
measurements are challenging: pointing precisely at the Sun
might not be an easy task, even more so at the W-band, due
to the reduction in the antenna beamwidth [14]. In addition,
ST measurements cannot be collected at night time.

This section proposes a new approach aimed at estimating
the tropospheric attenuation from radiometric measurements:
the objective is to preserve the advantages offered by the
ST technique (application in all weather conditions and high
accuracy), while circumventing the associated challenges, i.e.,
precise Sun pointing and collection of the data only during
the day. This goal can be achieved by resorting to an ANN,
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Fig. 3. Sample of the data measured by the ST-MWR during a rainy day,
at 72.5 GHz. From the top-left corner, in the clockwise direction: TA , path
attenuation, rain rate, and Sun elevation.

receiving as input TA measurements collected using the CB
approach (as well as meteorological ones), and providing as
output an estimate of the mean radiating temperature Tmr.
From the knowledge of the latter, the tropospheric attenuation
A can be calculated using (4). As described in detail in the
subsections below, the network training will take advantage of
the concurrent ST and CB measurements collected during the
WRAD campaign.

A. Data Preparation

The power of ANNs lies in the fact that they provide a
simple tool to model the relationship between given inputs
and outputs, which is especially useful if such a relationship is
mathematically complex and/or no closed-form solution exists.
This is the case of the RTE in scattering conditions.

Fig. 4 depicts the inputs and outputs of the proposed
ANN: the network is fed with the information provided by
the weather sensors and with the off the Sun radiometric
measurements, TA−ooS, which de facto correspond to CB mea-
surements. Although the rain rate measured at one point is not
fully representative of the precipitation along the whole (slant)
path, it is still expected to be a paramount input parameter. The
network output is the mean radiating temperature Tmr, which
is a key parameter driving the prediction of the tropospheric
attenuation through (4) [26]. It is worth pointing out that
TA−ooS in Fig. 4 includes all the available radiometric measure-
ments, while Tmr is estimated for a specific frequency channel:
though the network structure will not change, a different set
of coefficients will be derived for each of the four frequencies.
A further note is necessary on this point for the sake of clarity:
as the data availability periods in Table I are different for the
two bands, for Period 1, four channels were used as input to
the network, while for Period 2, only the Ka-band ones were
employed (as no W-band data are available in that period).

The target values of Tmr, necessary to train the ANN, are
derived from the peculiar WRAD dataset. Specifically, (4) is

Fig. 4. Inputs and outputs of the proposed ANN.

inverted as follows:

Tmr =
kTA−ooS(θ0, ϕ1) − TC

1 − k
(K)

k = 10
AST(θ0 ,ϕ0)

10 . (7)

When training an ANN, it is often required to scale the input
data to improve the network accuracy, especially if the range
of variation of the input features is strongly different, which
is the case for the ANN reported in Fig. 4. The most common
scaling techniques are normalization and standardization [27],
[28], the latter being considered in this work. Standardization
consists of scaling the original input feature X into a new
variable Xn whose mean value is 0 and whose standard
deviation is 1

Xn =
X − µ

σ
(8)

where µ and σ are the mean and standard deviation values of
X , respectively.

In addition, the logarithmic transformation is applied to the
target data Y to obtain the new variable Yn that has a more
skewed distribution of the output, which, in turn, contributes
to increasing the network accuracy [29]

Yn = log(Y ). (9)

Another key step in the design of an ANN is to divide the
available dataset into different subsets, each one used for a
different purpose: training, validation, and testing [30]. The
first set of data is used to train the model, i.e., to derive
the coefficients that map at best the inputs to the outputs.
The test dataset contains samples that are not used for training,
so they can be employed to assess independently the accuracy
of the outputs provided by the network. Finally, the validation
data are used to avoid overfitting, i.e., the network offers
an extremely high accuracy only when using the training
dataset, and consequently, a poor performance on any other
additional data. It is common to initially isolate 10%–20% of
total data for the test, the remaining part being employed for
training. Afterward, a further split could be applied (25%) to
training data to extract the validation dataset. In this work,
approximately 10% of Ka-band data and 15% of W-band
data are reserved for testing. The remaining data (90% and
85% for the Ka-band and W-band, respectively) then are split
into 75% for training and 25% for validation. With the aim
of maximizing the effectiveness of the ANNs, the available
data were selected for training/validation or testing based on
the rationale of maintaining the same balance between rainy
days and clear-sky days in each of the datasets: in fact, the
dynamics of the tropospheric attenuation under rainy condi-
tions is expected to be much higher (i.e., the estimation more
difficult) than during clear sky days. Specifically, Table II lists
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TABLE II
CLEAR-SKY AND RAINY DAYS SELECTED TO TEST THE ANNS

the clear-sky and rainy days selected to test the ANNs, while
the remaining ones were employed for the training/validation
phase.

The identification of rainy days was achieved by relying
both on the collocated weather sensors (mainly the rain
rate) and on the visual inspection of the data. In fact, the
disdrometer provides point measurements of the precipitation,
which is not always representative of the signature of rain on
the signal along the slant path.

B. Model Development

The ANN development was achieved by taking advantage of
the MATLAB Deep Learning Toolbox. Specifically, the “fitr-
net” function was used to train the network [31]. This function
trains ANNs with the fully connected feed-forward multilayer
perceptron (MLP) architecture, using the Limited Memory
Braydon Fletcher Goldfarb Shannon (L-BFGS) optimization
algorithm. The function optionally applies the input data
standardization. The overall implementation of the network
is summarized in Fig. 5.

A different network model is obtained for each frequency
channel: the details of each network are summarized in
Table III. The number of hidden layers and neurons is
determined by following the straightforward “trial-and-error”
approach: the network complexity was gradually increased
until no further significant improvements in the accuracy were
achieved, as further detailed in the next Section. Regarding the
neuron activation function, the rectified linear unit (reLU) was
chosen.

The selection of the number of hidden layers and neurons
is typically the result of a compromise. On the one hand,
a small number of hidden layers and neurons will yield limited
accuracy, as the ANN will not be able to properly represent the
complex relationship between the input and the output data.
On the other hand, large network architectures could result
in a high computational burden (and sometimes overfitting),

Fig. 5. Flowchart summary of the network training and test.

TABLE III
DETAILS ON THE ANNS

especially while working with large datasets. In this regard,
the difference in the number of hidden layers indicated in
Table III might depend on the type of events predicted at
the different frequencies. W-band data are only available for
late Autumn and early Winter (Period 1), both characterized
only by stratiform events (slow variations in time and limited
rain intensity). On the other hand, Ka-band data cover a
longer period (Period 2) including different seasons, i.e.,
both stratiform and convective events (quick variation in time
and high rain intensity). As the networks associated with
Ka-band channels allow predicting Tmr under diversified rainy
conditions (stratiform and convective), their complexity can
be expected to be higher than the one associated with W-band
networks.

The performance of the network can be quantified by
inspecting the loss scores after each training, all expressed in
terms of mean squared error (MSE). It is common practice to
consider two types of loss scores: training and validation. The
former is a more general indicator of the network accuracy: it
is calculated on the testing dataset and it is used to iteratively
update the network parameters (weights and biases). The latter
is calculated on the validation dataset to point out possible
overfitting: this occurs when the two loss scores diverge at
some point in the training process. Fig. 6 offers a typical
example of the convergence of the abovementioned losses for
successful network training ( f = 31.40 GHz).

The overall training results for each network are listed in
Table IV.

V. RESULTS AND DISCUSSION

A. Daily Basis Analysis

The ANN performance can be assessed either by looking at
the prediction of Tmr, or, more informatively, directly in terms
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Fig. 6. Convergence of the training and validation losses for a successful
network training ( f = 31.40 GHz).

TABLE IV
TRAINING RESULTS FOR EACH NETWORK

of the tropospheric attenuation A. Fig. 7 compares A for a
clear-sky day (28 November 2020), as obtained by means of
the ST (AST) and CB (ACB) techniques (red solid line and
yellow dashed line, respectively) and as estimated using the
ANN (ANN, blue solid line). In this case, all curves are in
agreement: the CB technique is accurate in conditions with no
scatter, the ST technique offers good accuracy in all weather
conditions, and the ANN provides a precise prediction as well.
A more critical comparison is offered for two rainy days in
Fig. 8 (8 December 2020, light rain) and Fig. 9 (2 January
2021, moderate rain): as expected, the attenuation obtained
from the ANN approach better agrees with the reference
ST-based estimation, if compared to one derived from the
application of the CB framework. The discrepancy increases
with frequency due to the associated enhancement of the
tropospheric effects moving from the Ka-band to the W-band.
Fig. 9 clearly points out that the attenuation estimated through
the CB approach reaches higher values as the precipitation
intensity increases, thus leading to strong inaccuracies and,
in most cases, to the overestimation of A (see Fig. 10): this is
due to the inaccuracy of Tmr estimations obtained from surface
parameters, under rain conditions.

A more complete assessment of the prediction accuracy can
be obtained by evaluating the root mean square (rms) value of
the absolute prediction error ε, defined as

ε(t) = ACB/ANN(t) − AST(t) (dB) (10)

where ACB/ANN(t) is the attenuation estimated using either the
CB technique or the ANN approach, for every sample in a day,
while AST(t) is the ST-based attenuation.

Fig. 7. Trend of the tropospheric attenuation on 28 November 2020 (clear
sky), as estimated using the ST technique (red curve), the CB technique
(yellow curve), and the neural network approach (blue curve).

Fig. 8. Trend of the tropospheric attenuation on 8 December 2020 (light rain),
as estimated using the ST technique (red curve), the CB technique (yellow
curve), and the neural network approach (blue curve).

Figs. 11 and 12 depict the daily rms value, calculated
by considering separately the rain-free days and the rainy
ones, respectively. The former figure clearly indicates that
the prediction performance of the two methods is quite high
and fully comparable. In both cases, the rms value never
exceeds 0.8 dB both at the Ka-band and W-band, respectively.
The peak error in Fig. 11 at the Ka-band (≈0.5 dB at
23.84 GHz and ≈0.7 dB at 31.40 GHz) is associated with
the overestimation of the attenuation using the ST method at
the beginning of the day (elevation angle around 10◦), in turn,
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Fig. 9. Trend of the tropospheric attenuation on 2 January 2021 (moderate
rain), as estimated using the ST technique (red curve), the CB technique
(yellow curve), and the neural network approach (blue curve).

Fig. 10. Rain intensity trend and Sun elevation angles for 8 December 2020
(left side) and 2 January 2021 (right side).

likely due to an obstacle partially obstructing the path to the
Sun (e.g., construction crane). As for rainy days, the results
shown in Fig. 12 corroborate the findings reported in Figs. 8
and 9: while the rms associated with the ANN approach falls
approximately below 2 and 2.5 dB at the Ka-band and W-
band, respectively, the one obtained from the CB technique
reaches peaks of roughly 4.5 and 5 dB at the Ka-band and
W-band, respectively.

For the sake of completeness, Fig. 13 shows the same
information as in Figs. 11 and 12, but considering only the
ANN test dataset (rain-free plus rainy days).

B. Statistical Analysis

The statistical analysis of results is of key importance for
system design purposes, more specifically to determine the
atmospheric margin to be assigned to any Earth-space link.

Fig. 11. RMS of the prediction error using the ANN approach (blue dots)
and the CB technique (red dots): rain-free days (test plus training/validation
datasets).

Fig. 12. RMS of the prediction error using the ANN approach (blue dots) and
the CB technique (red dots): rainy days (test plus training/validation datasets).

Fig. 13. RMS of the prediction error using the ANN approach (blue dots)
and the CB technique (red dots): rain-free plus rainy days (only test dataset).

Figs. 14 and 15 depict the complementary cumulative
distribution functions (CCDFs) of the AST, ACB, and ANN,
at 31.40 and 82.50 GHz, respectively, for all the rain-free
samples. As already pointed out in Section V-A, a very
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Fig. 14. CCDF of the tropospheric attenuation at 31.40 GHz under rain-free
conditions.

Fig. 15. CCDF of the tropospheric attenuation at 82.50 GHz under rain-free
conditions.

good agreement emerges at 31.40 GHz by comparing the
different curves, while a slightly higher discrepancy is visible
at 82.50 GHz, up to 1 dB for the exceedance probability P
ranging roughly from 0.005 to 0.05.

As expected, a much larger difference between the different
approaches appears in Figs. 16 and 17, which show the CCDFs
of the tropospheric attenuation at 23.84 and 72.50 GHz,
respectively, for all the rainy samples: the lower the probability
value and the higher the frequency, the more marked is
the overestimation of ACB over AST, reaching approximately
15 dB for P = 0.001 and f = 72.5 GHz. On the contrary,
the discrepancy between ANN and AST is quite limited at both
frequencies, thus indicating the ability of the neural network
to provide accurate predictions of the tropospheric attenuation
also under rainy conditions.

C. All-Weather Combined Prediction Model

As discussed in Section II-A, the CB approach is a
well-established technique allowing an accurate retrieval
of the tropospheric attenuation in rain-free situations [7].

Fig. 16. CCDF of the tropospheric attenuation at 23.84 GHz under rainy
conditions.

Fig. 17. CCDF of the tropospheric attenuation at 72.50 GHz under rainy
conditions.

Fig. 18. CCDF of the tropospheric attenuation at 23.84 GHz: comparison
between the application of the AWCPM and the ST technique.

Moreover, whenever physically based closed-form inversions
are available, they should be preferred over empirical or
machine-learning techniques, which obviously have a lower
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Fig. 19. CCDF of the tropospheric attenuation at 72.50 GHz: comparison
between the application of the AWCPM and the ST technique.

Fig. 20. Summary of the Tmr analytical model development process.

Fig. 21. Trend of coefficient a2 in (12) at 82.5 GHz as a function of the
elevation angle.

degree of global applicability. In this context, this section
outlines a methodology to combine the advantages originating
from the high accuracy of CB inversions in scattering-free
conditions with those coming from the proposed ANN under
rainy conditions. The key prerequisite is the ability to spot the
presence of precipitation along the path, which can be achieved
by resorting to the Sky Status Indicator (SSI), defined as [32]

SSI =
TA−ooS(31.40) − 9.19

TA−ooS(23.84)
. (11)

Fig. 22. Trend of Tmr as a function of the elevation angle according to the
model in (12), for TS = 288 K and RHS = 50%.

Fig. 23. Mean radiating temperature as calculated from the RAOBS profiles
(see Fig. 20) and as estimated using the analytical model in (12); two full
years of the available dataset, f = 82.5 GHz and θ = 45◦.

Setting different thresholds on the SSI allows having an
estimate of the meteorological status along the path, namely
as follows.

1) SSI < 0.4: clear sky;
2) 0.4 ≤ SSI < 0.87: cloudy conditions;
3) SSI ≥ 0.87: rainy sky conditions.
Therefore, taking advantage of the SSI, the follow-

ing All-Weather Combined Prediction Model (AWCPM) is
devised.

1) For each instant, calculate the SSI from TA−ooS at
23.84 and 31.40 GHz.

2) If SSI < 0.87 (scattering-free conditions), apply (4) to
obtain A.

3) If SSI ≥ 0.87 (scattering conditions), apply the proposed
ANN to derive A.

It is worth mentioning that the SSI is a statistical tool:
0.87 is a sort of average threshold maximizing the accuracy in
identifying the presence of precipitation along the path [32].
The misidentification of meteorological conditions will typ-
ically occur for the heavy cloud/light rain cases, neither of
which is critical for the retrieval method’s accuracy. In fact,
when SSI ≥ 0.87 but no rain is actually present along the
path, the ANN has proven to be accurate. On the other hand,
if SSI < 0.87, but some light rain is actually present, the CB
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approach is still expected to provide accurate results, as the
amount of scattering is quite limited. This is proven by the
results reported in Figs. 18 and 19 at 23.84 and 72.50 GHz,
respectively: the agreement between the retrievals obtained
using the AWCPM and the ST technique, used as a reference,
is very good for all exceedance probability values. Comparable
results, not included for the sake of brevity, are obtained at
31.40 and 82.50 GHz.

VI. CONCLUSION

This work proposed a novel mixed physically-based/ML
approach to measure tropospheric attenuation A affecting
Earth-space links in all weather conditions. The measurement
technique relies on the use of MWRs, and, as such, it offers
a valid less expensive alternative to carrying out typical prop-
agation experiments that exploit space-borne beacon signals.
This is even more so at the W-band, for which no long-term
measurements nor space-borne signals (from GEO satellites)
currently exist. Moreover, the proposed approach combines the
advantages originating from the accurate A retrievals provided
by the well-established CB approach in clear-sky conditions
with the benefits coming from ML techniques, which can
offer a simplified solution for the estimation of A in rainy
conditions, if compared to the application of the RTE and/or
the ST technique.

Four ANNs were devised to convert the antenna noise
temperature TA measured by a four-channel Ka-band/W-band
MWR into mean radiating temperature Tmr at 23.8, 31.4,
72.5, and 82.5 GHz, from which A can be easily derived.
The networks, which also receive as input the local mete-
orological parameters, were properly trained and tested by
taking advantage of the concurrent CB and ST measurements
collected by the RpG radiometer deployed at Politecnico di
Milano, Milan, Italy, under the ESA-funded WRAD project.
Tests have shown that, in scattering-free conditions, the ANN
prediction accuracy is comparable to the one provided by
the more customary CB technique (e.g., average RMSANN =

0.18 dB and RMSCB = 0.23 dB), while in rainy conditions, the
ML approach achieves a lower estimation error (e.g., average
RMSANN = 1.39 dB and RMSCB = 3.20 dB). Based on
these results, and considering the sound physical basis of the
well-established CB measurement technique, an AWCPM was
devised, which combines the benefits of the CB technique
and of the ANN: taking advantage of the SSI to identify
precipitation along the path, the former is applied in scattering
free conditions, while the latter is employed during rain events.
Statistical results indicate that AWCPM offers a very accurate
prediction of the CCDF of A both at the Ka- and W-band,
which, in turn, represents a key piece of information for the
design of Earth-space links.

Starting from these encouraging but preliminary results,
future work will include corroborating AWCPM by taking
advantage of more extensive additional Ka-/W-band mea-
surements collected in other sites (e.g., Rome, NY [12]):
while the model’s framework is expected to be applicable
worldwide, the accuracy of the ANNs derived in this work
for different measurement periods and in other sites might
decrease. Additionally, the use of ANNs with memory layers

TABLE V
COEFFICIENTS B IN (13) FOR EACH COEFFICIENT

A IN (12) AT f = 23.84 GHZ

TABLE VI
COEFFICIENTS B IN (13) FOR EACH COEFFICIENT

A IN (12) AT f = 31.4 GHZ

TABLE VII
COEFFICIENTS B IN (13) FOR EACH COEFFICIENT

A IN (12) AT f = 72.5 GHZ

[e.g., long short-term memory (LSTM)] will be taken into
account to further improve the accuracy of AWCPM.

APPENDIX

A new analytical model is proposed to estimate the mean
radiating temperature, according to its dependence on the
elevation angle (as pointed out, e.g., in [8]) and on the ground
values of pressure (PS), temperature (TS), and relative humid-
ity (RHS) (whose correlation with Tmr is discussed in [12]
and [26], for example). The model was devised by resorting
to ten years of radiosonde observation (RAOBS) collected
twice a day (0 and 12 UTC) at Milan/Linate airport, lying
at a 5 km distance from the site where the MWR is installed.
As summarized in Fig. 20, the model was developed using the
vertical profiles of pressure (P), temperature (T ), and relative
humidity (RH) as input to the MPM93 mass absorption model
proposed in [33] to calculate the mean radiating temperature
Tmr( f, θ), for a given elevation angle θ and each of the four
radiometric frequencies f . The analysis of the results pointed
out that Tmr is linearly correlated to TS and RHS (as also dis-
cussed in [12]), and only weakly dependent on PS , which was
therefore neglected in the model development. Specifically,
the following equation was used to relate the mean radiating
temperature to the ground meteorological variables

Tmr( f, θ) = a0( f, θ) + a1( f, θ)TS + a2( f, θ)RHS (12)

where the coefficients a j ( f, θ) ( j = 0, 1, 2) were regressed
from the calculated Tmr( f, θ) and the RAOBS first-level
values of the temperature (TS—in K) and relative humidity
(RHS—in %) profiles (see Fig. 20).

The process illustrated in Fig. 20 was repeated for different
elevation angles, ranging from 10◦ to 90◦. Finally, the follow-
ing double exponential model for the coefficients a0, a1, and
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TABLE VIII
COEFFICIENTS B IN (13) FOR EACH COEFFICIENT

A IN (12) AT f = 82.5 GHZ

TABLE IX
MEAN VALUE (K) OF THE ERROR FIGURE IN (14)

TABLE X
ROOT MEAN SQUARE VALUE (K) OF THE ERROR FIGURE IN (14)

a2 was derived

a j ( f, θ) = b0, j ( f )eb1, j ( f )θ
+ b2, j ( f )eb3, j ( f )θ (13)

where j = 0, 1, 2 indicates the a coefficient number and θ

is the elevation angle expressed in degrees. The coefficients
bk, j (k = 0, 1, 2, 3 indicating the b coefficient number) are
listed in Tables V–VIII for 23.84, 31.4, 72.5, and 82.5 GHz,
respectively.

As an example, Fig. 21 shows the trend of coefficient a2
at f = 82.5 GHz, which is precisely fit by the expression
in (13). Similar results are obtained for a0 and a1.

Fig. 22 shows the trend of Tmr as a function of the elevation
angle according to the model in (12), for TS = 288 K and
RHS = 50%: the 10◦–90◦ peak-to-peak variation of Tmr is
approximately 2, 1.5, 7, and 4 K at 23.84, 31.4, 72.5, and
82.5 GHz, respectively.

Fig. 23 compares the mean radiating temperature as calcu-
lated from the RAOBS profiles (see Fig. 20) and as estimated
using the analytical model in (12). Results refer to two full
years of the available dataset at f = 82.5 GHz and θ = 45◦.

The discrepancy between the curves in Fig. 23 can be
quantified by using the error figure ε defined as

ε(t, f, θ) = T E
mr(t, f, θ) − T M

mr (t, f, θ) (K) (14)

where T E
mr(t, f, θ) and T M

mr (t, f, θ) are the mean radiating
temperatures estimated using the model in (12) and calculated
from the RAOBS measurements, respectively, and t represents
the RAOBs launch number. Tables IX and X offer a compre-
hensive description of the T M

mr model performance by listing
the mean value (E) and the root mean square (rms) value
of the error figure in (14), for each of the four radiometric
frequencies and as a function of selected elevation angles.
Results indicate quite a stable performance, with E ranging
between −0.1 K and 1.9 K, and with rms limited to 3.4 K.
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