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Abstract— This study introduces a lightweight hybrid solar
photovoltaic (PV) generation prediction model operating on 1-h
intervals, utilizing remote sensing data to enhance power grid
management. Multisource remote sensing data, including spatial
features from infrared satellite images and temporal data from
various hourly recorded datasets, capture spatiotemporal char-
acteristics. The model defines and synthesizes regions of interest
(ROI) and surrounding areas of ROI (ROIsurr) within satellite
images to reduce computational load. Integration of image and
numerical weather prediction (NWP) process modules ensures
accurate prediction. Comparative analysis against five machine
learning algorithms shows significant improvements, with up to
a 33.7% decrease in mean absolute error (MAE) and a 19.51%
decrease in root mean square error (RMSE). Additionally,
the model consistently meets ASHRAE Guideline 14 standards
and outperforms single-source data models. Experimentation
highlights the effectiveness of smaller ROIs in enhancing predic-
tive accuracy, demonstrating adaptability to climate variations.
This lightweight multisource remote sensing-based hybrid model
promises to guide smart grid operations and sustainable power
grid systems, advancing remote sensing applications in renewable
energy management.

Index Terms— Convolutional neural network (CNN)-long
short-term memory (LSTM), deep learning, lightweight, mul-
tisource data, region of interest (ROI), satellite image, solar
photovoltaic (PV) generation forecasting, spatiotemporal.

I. INTRODUCTION

THE proportion of renewable energy integrated into
primary power grids has demonstrated a progressive

uptrend, with projections indicating accelerated growth by
2030 [1]. Furthermore, renewable energy generation, which
includes solar and wind power, is expected to increase to up to
85% of the global power composition by 2050. Consequently,
congruent with these forecasts, the effective operation and
management of renewable energy-dependent grid systems are
imperative for the displacement of fossil fuels [2]. A fun-
damental obstacle lies in discerning the optimal equilibrium
between power provision and demand leveraging renewable
sources.
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From an environmental and economic perspective, solar
photovoltaic (PV) generation is a superior renewable energy
source. Therefore, large-scale solar PV power plant farms are
being constructed globally [3], [4], with a projected increase
of approximately 10% in 2021 compared to that in 2020 and
further growth expected in the future [5]. Compared to other
power generation facilities, solar PV generation can better
preserve the surrounding environment and incurs lower instal-
lation and operation costs. Moreover, this energy resource is
inexhaustible, as it harnesses direct current electricity through
the photoelectric effect triggered by the absorption of sun-
light in solar panels. Nonetheless, the foremost influencer
of solar PV generation, irradiance, remains susceptible to
uncontrollable external meteorological variables, such as cloud
cover [6], [7] and particulate matter (PM) [8], [9], thereby pre-
senting significant challenges to ensuring a consistent power
supply. Thus, it is essential to develop a precise solar PV
generation prediction model to maximize the economic effect
of solar PV generation and establish an efficient and stable
power supply plan simultaneously.

There are various methods for predicting solar PV genera-
tion based on the prediction time and other techniques. These
methods can be categorized into three types. The first type
is a method based on the predictive technique. Direct predic-
tion predicts solar PV generation using external independent
parameters, and indirect prediction first predicts the irradiance
through external independent parameters and then predicts the
solar PV generation through the predicted irradiance [10]. The
second type is based on prediction time. These methods can
be further divided into ultrashort-term prediction from seconds
to minutes [11], [12], short-term prediction of up to 48–72 h
[13], [14], medium-term prediction from days to weeks [15],
[16], and long-term prediction from months to years [17].
In employing these methods, selecting an appropriate predic-
tion period is crucial to achieving optimal performance. For
instance, ultrashort-term prediction is suitable for applications
demanding precision, such as microgrid power system control,
while long-term prediction is more apt for large-scale control
tasks such as power supply planning. The third type is based
on predictive parameters. The most prevalent approach for
predicting solar PV generation is numerical weather prediction
(NWP) [18]. It relies on continuously measured data of
external meteorological factors obtained either directly from
meteorological administrations or from areas surrounding solar
PV power plants [19]. Furthermore, certain prediction methods
utilize conventional statistical techniques such as ARIMA and
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SARIMA [20], [21], [22]. With the recent advancements in
computational capabilities, particularly with GPUs, a plethora
of machine learning algorithms such as deep neural networks
and long short-term memory (LSTM) models are increasingly
being employed [23], [24], [25], [26], [27]. Since NWP relies
on temporally measured data, it effectively captures the tempo-
ral dynamics of solar PV generation. However, the movement
of clouds driven by wind can significantly impact the amount
of irradiance, resulting in pronounced variability in generated
solar PV power. Accordingly, a range of remote sensing
methodologies has been employed in forecasting solar PV gen-
eration, with numerous studies focusing on techniques, such
as optical flow or convolutional neural network (CNN)-based
algorithms for this purpose. These approaches primarily rely
on remote sensing data and utilize indices or motion vectors
extracted from sky or satellite images to incorporate the spatial
characteristics of clouds into the prediction process [28],
[29], [30].

In numerous previous studies employing predictive param-
eter methods, researchers have predominantly relied on either
NWP or satellite data as single-source inputs. While NWP
data can accurately forecast solar PV generation by utilizing
climate information surrounding the solar PV power plant over
time, the prediction range is limited. As previously mentioned,
relying solely on numerically recorded wind direction and
speed data has its limitations in predicting the impact of cloud
movement driven by the wind. In contrast, satellite data can
provide a broader range of predictions by incorporating numer-
ous surface characteristics, which can address the challenge
of collecting precise data related to the surrounding area due
to a shortage of weather observation stations. However, it is
often infeasible to utilize accurate and detailed meteorological
data regarding temperature and humidity conditions in the
vicinity of a solar PV power plant. To overcome this limitation,
researchers have sought to enhance prediction accuracy by
integrating remote sensing techniques with NWP, thus consid-
ering the spatiotemporal characteristics of external parameters
relevant to solar PV generation [31], [32], [33], [34], [35].
By combining multiple sources of data instead of solely rely-
ing on NWP or remote sensing data individually, researchers
can simultaneously integrate spatiotemporal characteristics at
various scales.

Therefore, this study integrates remote sensing techniques
with NWP data, external meteorological parameters observed
at the solar PV power plant location, to utilize multisource data
including the spatiotemporal characteristics of PM moving by
clouds and wind over time. Further, a region of interest (ROI)
and the surrounding area of the region of interest (ROIsurr)

are set in the satellite image to process the vast quantity
of multisource data effectively. Finally, we propose a deep
learning-based hybrid spatiotemporal solar PV generation pre-
diction model that reflects the spatiotemporal characteristics
through the synthesis of the set ROI and ROIsurr.

Fig. 1 illustrates the overall framework of this study. The
spatiotemporal hybrid solar PV generation prediction model
designs an image process module based on an algorithm that
can predict cloud movement [36] and PM movement accord-
ing to the wind and incorporates the NWP process module

that processes the numerical data. The prediction accuracy
is increased by intensely reflecting the spatial characteristics
of the external weather parameters in the region where the
solar PV power plant is located, and the model computational
complexity is decreased by setting and synthesizing the ROI
and ROIsurr of the satellite image to learn the solar PV
generation prediction model. The contributions of this study
are given as follows.

1) Multisource data, combining NWP data and satel-
lite images, are employed to integrate remote sensing
techniques with NWP data, thereby facilitating the incor-
poration of spatiotemporal characteristics for precise
prediction of solar PV generation. The ROI and ROIsurr
are set based on the area of the solar PV power plant to
emphasize the spatial information in the area. The data
collection and preprocessing are described in Section III.

2) The design of the image process module, which
combines an encoder–decoder structure with a CNN-
LSTM-based ensemble algorithm, effectively captures
the movement of clouds and PM induced by wind. Two
identical image process modules are trained separately
on clouds and PM. The ROI and ROIsurr effectively cap-
ture spatial characteristics in satellite images using the
proposed image synthesis layer (ISL) within the image
processing network. The ISL enables the network to
adapt to different satellite image resolutions and sensor
characteristics, making it more robust and versatile in
handling diverse satellite imagery. This flexibility allows
the network to effectively capture the spatial character-
istics of the ROI and its surrounding area, enhancing
its ability to accurately delineate and analyze relevant
regions in satellite images. The NWP process module
learns the numerical data from the area around the solar
power plant and reflects the time-series characteristics
of the data that are observed at hourly intervals. Finally,
the output values from both the image and NWP process
modules are merged and utilized as multisource data
input for the proposed model. As a result, forecasts for
solar PV generation that consider their spatiotemporal
peculiarities are achievable. A detailed description of the
proposed model is provided in Section IV.

3) Setting the ROI and ROIsurr within satellite images
aims to enhance prediction accuracy and reduce model
complexity. Experiments comparing the model using the
original image with the model using the proposed ROI
image were performed with various machine learning
algorithms to analyze the influences of ROI and ROIsurr.
An additional experiment was performed to select the
optimal ROI size. Finally, the performance of the predic-
tion model was verified through k-fold cross-validation
for quantitative analysis. The performance evaluation
and comparative experiments are described in Section V.

II. PROBLEM FORMULATION

The proposed prediction model uses various input factors
to predict solar PV generation. The entire timeline is defined
as the union of the historical time set th and future time
set t f with a time step of 1 h: th ∪ t f = {t1, t2, . . . , th} ∪
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Fig. 1. Research framework.{
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}
. The equation for forecasting 1 h ahead
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is as follows:
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where f (·) is the artificial neural network architecture that per-
forms nonlinear calculations for predicting solar PV generation
in the proposed model. X Image

th and XNWP
th denote the prediction

output of the image and the NWP process modules that use
multisource data as the input. The image process module
processes data with satellite image data consisting of cloud
images XCloud

th and PM images XPM
th as inputs. At this time,

XCloud
th and XPM

th can be expressed as the output of the ROI
and ROIsurr images in the satellite image, which are combined
through the ISL. The NWP process module processes data
with the external meteorological factors XMF

th , air pollutant
factors XPF

th , and historical solar PV generation Y PV
th as inputs.

III. SATELLITE AND NUMERICAL DATA

Consecutive satellite images and numerical data measured
at 1 h intervals were used to train the solar PV generation pre-
diction model to reflect the spatiotemporal information of each
climate factor. The experimental period was set from August 1,
2020, to July 31, 2021, and a solar PV power plant located
in Incheon, South Korea, was selected as the experimental
subject. Given that solar PV generation is inactive at night,
the experimental timeframe was limited to 12 h (7:00 A.M.
to 7:00 P.M.).

A. Satellite Images

The experimental satellite images to reflect the spatial char-
acteristics of clouds and PM were captured by GK2A and pro-
vided by the National Meteorological Satellite Center (NMSC)
in Korea [37]. GK2A operates as a geostationary-orbit meteo-
rological satellite positioned approximately 36 000 km above
the equator. It can produce a total of 52 meteorological

products through 16 channels, and it enables faster monitoring
and preparation for meteorological disasters by capturing
images at up to 2-min intervals. GK2A captures images of
the Korean Peninsula with a spatial resolution of 2 km for
infrared channels and 0.5 km for visible channels. For this
experiment, two infrared satellite images featuring clouds and
PM were utilized.

Cloud movement influenced by wind significantly impacts
solar PV generation, as shadow occlusion results in lower
temperatures compared to the Earth’s surface. These effects
can be discerned through infrared satellite imagery. For that
reason, this study utilized near-infrared (1.38 µm) cirrus
images of the Korean Peninsula, measuring 900 × 900 pixels,
provided by the NMSC [38]. Similarly, the spatial charac-
teristics of PM suspended in the atmosphere were reflected
through infrared (12.3 µm) satellite images [39]. Both types of
images were captured at 1 h intervals. For the interpolation
of missing data, we improved the reliability and accuracy
of the interpolation process by incorporating data occurring
30 min after the missing data point, in addition to the standard
linear interpolation method, instead of relying solely on linear
interpolation using data before and after the missing data point.

Previous studies [31], [32] that have utilized existing satel-
lite data have made use of secondary outputs self-generated
from satellite units, such as atmospheric motion vector data,
cloud optical thickness data, aerosol optical depth data, and
insolation data. To mitigate the time-consuming process of
generating secondary outputs from satellite data, this study
opted to utilize infrared satellite images as a more efficient
alternative. By leveraging infrared satellite images, the data
calculation time was reduced, enabling faster processing and
forecasting analysis.

B. Numerical Data

The data on external meteorological factors and air pollu-
tants that affect solar PV generation prediction were provided
by the KMA [40] and Air Korea [41]. A total of 16 types
of external observational data composed of numerical values
(10 types of meteorological data including temperature and
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TABLE I
EXTERNAL OBSERVATIONAL VARIABLES OF THIS RESEARCH

humidity, and 6 types of air pollutants including PM10 and
PM2.5) were used. Furthermore, the solar PV generation data
of a solar PV power plant located in Incheon, which was the
experimental subject, were provided through the Open Data
Portal [42]. The external observational variables utilized in
the experiment are listed in Table I.

The weather and air pollutant observatory stations are
located 10 and 3 km away from the solar PV power plant,
respectively. The missing time periods in the measured numer-
ical data were interpolated using the k-NN algorithm with data
obtained 36 h before and after the missing time point. The
k-NN algorithm is renowned for its simplicity and its inherent
quality of refraining from imposing rigid assumptions upon
the data. Moreover, it exhibits a notable capability to adeptly
discern and encapsulate local patterns and oscillations in the
dataset by exclusively considering the nearest neighbor data
points when formulating predictions. In weather data analysis,
where significant daily variances are infrequent, a temporal
interpolation approach was adopted. This approach incorpo-
rates a comprehensive window of surrounding data, spanning
three consecutive days (equivalent to 36 h) both before and
after the missing data point. Additionally, three temporal
parameters representing the month, day, and time, along with
a parameter representing the power generated 1 h in the past,
were included to enhance the prediction performance of solar
PV generation through NWP. This augmentation strengthens
the time-series characteristics of the external observational
data.

IV. PROPOSED SOLAR PV GENERATION FORECASTING
MODEL

In previous studies [31], [32] utilizing multisource data,
numerical data such as wind direction and speed were
extracted from satellite images and used as input for the model.
However, extracting 1-D data from 2-D satellite images fails
to fully exploit the inherent characteristics of the images, rep-
resenting a limitation of previous studies utilizing multisource
data. Therefore, to fully utilize the 2-D information con-
tained in satellite images, this study applied the CNN-LSTM
algorithm.

A. CNN-LSTM

CNN is used in various applications, such as natural
image classification, image recognition, and motion prediction
through computer vision [43], [44]. CNN-based networks
excel at extracting raw data features from original images used
for learning. Compared to the existing multilayer perceptron,

the CNN maintains the shape of the input and output data of
each layer and performs convolution through an image patch
instead of a single pixel. Therefore, CNN can reduce noise
and enhance efficiency using pooling layers, which aggregate
and amplify the features extracted from the image [45].

The recurrent neural network (RNN) algorithm compensates
for the inability of the artificial neural network to capture
the time relationships between the data [46]. The RNN uses
the analysis results of the previous layer as an input value
for the current layer by sharing weights between layers,
making it suitable for processing sequential data, such as
time-series data. However, the RNN forgets the most deleted
input information because its sensitivity to information in
the initial step decreases as learning progresses. Moreover,
issues such as gradient vanishing and gradient explosion arise
as the time step between data points increases, leading to
challenges in reflecting long-term dependencies. LSTM, which
is a type of RNN, was proposed to solve the long-term
dependency problem of RNNs [47]. Unlike the single hidden
layer of the RNN, LSTM comprises a cell state that stores and
passes key input information and three gates that can add and
remove various information from the data; this allows LSTM
to identify long-term relationships in the data accurately by
passing and learning only important information [48].

Although a CNN achieves excellent performance when
spatial characteristics are reflected, it has difficulty identifying
related information in consecutively captured images because
it uses only one frame at a time as input. The LSTM can
properly identify the features of consecutive temporal data,
but it is disadvantageous for processing input data such
as consecutively captured image frames. Thus, this study
applied a CNN-LSTM-based ensemble algorithm to develop
a hybrid solar PV generation prediction model that reflects
the spatiotemporal characteristics of external meteorological
variables. The CNN-LSTM algorithm, a modification of the
regions with CNN features (R-CNN) [49], combines the
advantages of both CNNs and LSTMs, making it well-suited
for optimizing spatial features and time-series characteristics
present in consecutively captured images [50], [51]. In this
approach, spatial patterns are identified and extracted through
the CNN, and these extracted patterns’ variability over time is
subsequently reflected through the LSTM to predict solar PV
generation. However, standard LSTMs do not inherently incor-
porate spatial information, as they employ full connections
for input-to-state and state-to-state transitions when processing
spatiotemporal data. To circumvent this limitation, all inputs
were combined with the CNN and used as a 3-D tensor with
two dimensions of columns and rows.

B. Semantic Segmentation

Semantic segmentation or dense prediction predicts the
labels of all pixels in an image. As one of the most important
areas of computer vision, semantic segmentation can fully
understand photos rather than simply classify them, leading
to its use in diverse applications, such as autonomous driv-
ing and inferring the relationships between objects. SegNet
was proposed to classify structures relating to autonomous
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driving such as roads, buildings, cars, and pedestrians in pixel
units [52].

SegNet largely consists of encoders and decoders. The
encoder network adopts a similar architecture to VGG16, a top
performer in the 2014 ImageNet competition [53]. However,
it is lighter than other algorithms because it omits the fully
connected layer of VGG16 and uses only 13 convolution
layers. Furthermore, it performs max pooling during encoding
and stores max pooling indices that represent the location
information. The decoder network of SegNet is constructed
by replacing the max pooling layers in the encoder with
upsampling layers. These upsampling layers receive the stored
max pooling indices from the encoder to perform upsampling.
This approach enhances boundary delineation and enables end-
to-end training; thereby, reducing the number of algorithm
parameters. The encoder and decoder of SegNet are similar
to the autoencoder equation and are expressed by (3). fθ (α)

denotes an encoder block, and gθ ′(β) denotes a decoder block

β = fθ (α) = s(Wα + b)

γ = gθ ′(β) = s
(
Wβ + b′

)
. (3)

In semantic segmentation tasks, U-Net is often used along
with SegNet. A study investigated predicting solar PV gen-
eration using satellite images [54]. However, U-Net performs
convolution after transferring the entire feature map from the
encoder to the decoder instead of pooling the indices, which
increases the model size and memory usage. SegNet does
not have the bridge network of U-Net and uses 10 times
smaller training parameters [55]. Thus, in this study, SegNet,
which has excellent computational efficiency, was set as a
baseline model to use four model inputs through two satellite
image types, improved, and applied to the solar PV generation
prediction model.

C. ROI and ROIsurr Synthesis Process Methods

R-CNN-based such as Fast R-CNN [56], Faster
R-CNN [57], and Mask R-CNN [58] are predominantly
employed for segmentation tasks. These models operate by
establishing multiple ROI to detect objects within an image.
Subsequently, these ROIs are projected according to the
size of the feature map and processed through ROI pooling.
The feature vectors that have undergone ROI pooling are
aggregated into a fully connected layer. While this approach
demonstrates impressive performance in object detection and
ROI classification within an image, it encounters challenges
in learning the spatial association and connectivity between
individual objects or ROI.

In various fields, numerous studies focusing on synthesis
methods using multisource data as model inputs have typically
employed basic operations such as addition, concatenation,
and fully connected layers for each data type. However, these
methods often exhibit limitations, as they can be relatively
coarse and may overlook specific features due to their sim-
plistic approach of merely adding or connecting output values
from each layer. To address these limitations, MGM-GAN
proposed a gate mergence (GM) module to synthesize a
multimodal MRI effectively [59]. As different modalities

Fig. 2. Structure of ISL.

encompass distinct feature information across different loca-
tions, the GM module is employed for the automatic learning
of weights associated with various modalities at multiple
locations. This is achieved by training a combined weight
matrix through a convolution block, with each channel corre-
sponding to a single modality. Consequently, the GM module
enables adaptive enhancement of valuable information such as
edges or textures, while effectively suppressing unnecessary
information such as noise.

This study aimed to learn the spatial characteristics through
the efficient synthesis of the ROI and ROIsurr in satellite
images. To achieve this, an ISL was developed, drawing
inspiration from the projection-based method [60], [61] and
the GM module. The structure of the ISL is depicted in Fig. 2.
In the ISL, the ROI and ROIsurr are synthesized through the
dot product. It is noteworthy that the result value of the dot
product operation varies depending on the order of operations.
Therefore, to enhance the quality of results, convolution and
concatenate layers are applied after each of the two operation
sequences. The ISL can be expressed as follows:

A ∗ B = fConv(A · B) ⊕ fConv(B · A) (4)

where fConv(·), ·, and ⊕ represent the convolutional layer, dot
product, and concatenate operation, respectively.

D. Detailed Information and Training Process of Proposed
Lightweight Model

A total of five input channels, including spatiotemporal
characteristics, were used through multisource data to enhance
the prediction performance. In training, regarding the spatial
characteristics of the satellite image, if the original satellite
image is used unchanged, the range of the image includes
wider information than the point where the solar PV power
plant is located. Therefore, the ROI was set based on the
solar PV power plant, and the ROIsurr was set to the same
size along the ROI and then synthesized [31], [32]. This
approach facilitates effective training on the movement effects
of clouds and PM while reducing computational complexity.
Fig. 3 depicts the ROI and ROIsurr in the satellite image in red
and green, respectively.

Fig. 4 presents the detailed structure of the image process
module in the proposed model. The image process module
proposed in this study incorporates an ISL based on an autoen-
coder architecture, such as the SegNet-based algorithm [36],
to distinguish between cloud and ground-based images. This
enables the proposed model to effectively learn spatiotemporal
characteristics from two satellite images capturing clouds and
PM captured by infrared rays. Thus, the synthesis of ROI and
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Fig. 3. ROI (red) and ROIsurr (green) set in infrared cloud satellite image.

ROIsurr through the image process module enables the efficient
training of the two images. Furthermore, the CNN-LSTM-
based ensemble algorithm including ISL and autoencoder
was applied to strengthen the spatiotemporal characteristics
of continuously captured satellite images. The encoders and
decoders of VGG16 and SegNet have the same input and
output sizes. However, weights of the same size were extracted
through a max pooling layer in the encoder part because the
ROI and ROIsurr in the satellite image had different sizes. Four
convolutional and three max pooling layers were applied to the
encoder block, and three convolutional and three upsampling
layers were applied to the decoder block. All convolutional
layers used ReLU as the activation function. The synthesis of
ROI and ROIsurr occurred within the ISL in the encoder part
and subsequently passed through the decoder part, expressed
as follows:

XCloud
t = gθ ′

(
fθ

(
XCloudROI

t ∗ XCloudROIsurr
t

))
XPM

t = gθ ′

(
fθ

(
XPMROI

t ∗XPMROIsurr
t

))
. (5)

Thereafter, the output values were passed through the
CNN-LSTM, and training was performed in each cloud and
PM image process module.

If the ROI and ROIsurr of each image of clouds and PM
reflected the spatial information of the surrounding context
through the output value through the image process module,
numerical data were used to reflect the information of the
external meteorological factors, including time-series charac-
teristics affecting solar PV generation. This new input was
utilized as multisource data within the NWP process module.
The NWP process module employed LSTM to emphasize
the time-series characteristics of the numerical data measured
at 1-h intervals. Finally, after combining the results of the
image and NWP process modules through the element-wise
multiplication layer, learning was conducted using a new
LSTM to predict solar PV generation 1 h into the future.
To prevent overfitting issues as the model layers deepened,
a dropout layer was applied.

Fig. 4. Structure of image process module in the proposed model.

The platform for all experiments was a high-performance
server built on Ubuntu 18.04 with Intel(R) i9-10900X
CPU@3.70 GHz, 256 GB RAM, NVIDIA TESLA V100
2-way GPU. Python 3.6.13, Tensorflow 1.15.0, and Keras
2.1.0 were configured for the experimental environment.

V. EXPERIMENTS RESULTS AND DISCUSSIONS

A. Experimental Setup

The entire experimental period was divided into three
groups to train the spatiotemporal hybrid solar PV gener-
ation prediction model: training, validation, and evaluation.
To account for the significant influence of seasonal variations,
particularly in South Korea, data from the 1st to the 24th of
each month were allocated to the training set, while data from
the 25th to the 30th were assigned to the test set. Additionally,
data of equivalent size to the test set were randomly extracted
from the training set to form the validation set.

The ROI and ROIsurr were delineated within the satellite
image to examine the surrounding influences on the solar
PV power plant’s location. Two comparison experiments were
performed to identify the influences of the ROI and ROIsurr: the
original satellite image was directly learned (original image),
and the ROI and surrounding region were used together
(ROI image). For the original image experiment, the 900 ×

900 pixel image was modified to 450 × 450 pixels to reduce
the computational complexity and memory usage. Various
machine learning algorithms were employed as baseline mod-
els for the optimal solar PV generation analysis prediction.
In addition to the CNN-LSTM algorithm, which is the most
basic machine learning technique using images, this study also
compared SegNet and U-Net, which are the most commonly
used semantic segmentation approaches, with the proposed
model. The sizes of the ROI and ROIsurr were set to 30 ×

30 and 90 × 90, respectively. Furthermore, two additional
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experiments with varied sizes of ROI and ROIsurr were per-
formed to analyze the prediction performance based on the
sizes. The sizes of the ROI were set to 5 × 5 and 50 × 50,
and those of the ROIsurr were set to 15 × 15 and 150 × 150 for
the comparative analysis.

B. Performance Evaluation Indicators

This study considered five different performance evaluation
indicators to verify the performance of the proposed spatiotem-
poral hybrid solar PV generation prediction model. These
metrics including the mean absolute error (MAE), root mean
square error (RMSE), and SMAPE were determined. Although
the mean absolute percentage error (MAPE) is frequently used
to assess the prediction performance because it enables abso-
lute evaluation, it cannot be used if the actual observed value
is zero because it returns an infinite value. Given that solar
PV generation measurements near sunrise and sunset may
occasionally register as zero, the MAPE’s applicability in this
context is limited. To address this limitation, the study adopted
SMAPE for evaluating the absolute prediction performance of
the proposed model. Unlike MAPE, SMAPE calculates the
error relative to the average of the actual and predicted values,
thereby avoiding issues with zero values. Moreover, SMAPE
is expressed in terms of ratios rather than absolute numbers,
facilitating the comparison of model efficacy across various
datasets and models. The expressions of MAE, RMSE, and
SMAPE are shown as follows:

MAE =
1
n

n∑
i=1

∣∣y′

i − yi
∣∣ (6)

RMSE =

√√√√1
n

n∑
i=1

(
y′

i − yi
)2 (7)

MAPE(%) =
1
n

n∑
i=1

∣∣∣∣ yi − y′
i

yi

∣∣∣∣ (8)

SMAPE(%) =
1
n

n∑
i=1

∣∣yi − y′
i

∣∣
|yi | +

∣∣y′
i

∣∣ . (9)

In addition to the aforementioned evaluation metrics, further
validation of the prediction model was conducted based on
two standards outlined in the ASHRAE Guideline 14 [62],
which establishes minimum acceptable performance levels and
assists energy managers in determining standardized energy
and demand savings. These standards include the mean bias
error (MBE) and coefficient of variation of the RMSE [CV
(RMSE)]. The expressions for the MBE and CV (RMSE) are
as follows:

MBE(%) =
1
n

n∑
i=1

(
y′

i − yi
)

(10)

CV(RMSE)(%) =
1
ȳ

√√√√1
n

n∑
i=1

(
y′

i − yi
)2

. (11)

The ASHRAE Guideline 14 specifies two standards for the
MBE and CV (RMSE) in terms of monthly and hourly
predictions. For hourly prediction, the MBE should be within

±10%, and the CV (RMSE) should be within 30%. The
average value was calculated by applying the absolute value
to the resultant value because the MBE may produce negative
values.

Deep learning models typically demand substantial com-
putational resources for both training and inference tasks; as
the model size increases, the amount of computation increases
proportionally, and accordingly, the required power consump-
tion and training time increase. Hence, the development of
lightweight technologies, which require minimal storage and
computational resources while maintaining high inference
speeds, is essential. Performance comparisons of model weight
reduction are primarily based on the number of parameters
used and the amount of computation. In this study, to compare
the lightweight performance of the proposed model, a number
of parameters and floating point operations (FLOPs) were used
for the analysis.

C. Experimental Results of Proposed Lightweight Model

Performance comparisons with existing algorithms were
conducted to evaluate the influence of the ROI and ROIsurr in
satellite images on the proposed lightweight model. A total
of 12 experiments were conducted for 6 models. Table II
summarizes the experimental results. While no significant
difference in performance was evident between the origi-
nal model group and the ROI and ROIsurr model group
based on SMAPE, an improvement in prediction performance
was observed across all models for the ROI and ROIsurr
based on MAE and RMSE metrics. This result demonstrates
that using satellite images to predict solar PV generation
instead of the unmodified original image is more effective
for applying an ROI based on the solar PV power plant
and intensively learning the relevant section. The prediction
performance likely decreased when using the unmodified
original image in the prediction model for learning due to
the excessive inclusion of unnecessary spatial characteristics
of the location region of the solar PV power plant. The
overall prediction performance of the models increased in
the order of SARIMAX-LSTM, U-Net, CNN-LSTM, SegNet,
the GM module, and the proposed lightweight model. The
SARIMAX-LSTM model suffers from performance degrada-
tion due to the extraction of 2-D satellite image data into 1-D
data, unlike other models that utilize the full 2-D image data.
Notably, the proposed lightweight model achieved the best
performance in all performance evaluation indicators except
for SMAPE. While the GM module outperformed slightly in
terms of SMAPE, the difference was only 0.017%. According
to the ASHRAE Guideline 14, the model utilizing the original
image of SegNet and ROI and ROIsurr of SARIMAX-LSTM,
SegNet, GM module, and the proposed lightweight model
satisfied the MBE criteria. However, only the GM module
and proposed lightweight model using the ROI and ROIsurr
satisfied the CV (RMSE) criteria. Remarkably, the proposed
lightweight model using the ROI and ROIsurr achieved an
overwhelmingly high performance of 0.027% for the MBE.

The results of model weight reduction indicate that all
models, except for SARIMAX-LSTM, achieved significant
weight reduction when utilizing the ROI and ROIsurr compared
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TABLE II
COMPARISON OF EXPERIMENTAL RESULTS USING ORIGINAL IMAGE AND ROI AND ROIsurr IMAGE

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS OF MODEL USING

SINGLE-SOURCE DATA AND PROPOSED MODEL USING
MULTISOURCE DATA

to using the original image. The model with the greatest weight
reduction was CNN-LSTM, the parameters were 98.919%,
and the FLOPs were 99.067% lightweight. The proposed
lightweight model also achieved substantial weight reduction,
with parameters reduced by 98.407% and FLOPs reduced by
98.485%. Thus, in all experimental cases, when the ROI and
ROIsurr were used, a weight reduction of at least 90.145% was
achieved, which is higher than that achieved by the models
using the original image.

A comparative experiment was conducted with a model
using single-source data to determine the importance of using
multisource data in the solar power generation prediction
model. The structure of the single-source data model mirrored
that of the proposed model, incorporating NWP and image
process modules. Table III presents the comparison results
between the proposed model using multisource data and
the model using single-source data, revealing a discernible
disparity in performance.

Fig. 5 shows the results that were extracted from January
30th and February 25th to 27th among the results from
November 30th, 2020, to March 30th for the ROI and ROIsurr
model groups. Although all models demonstrated predictions
closely aligned with the actual observed solar PV generation
data, the proposed model exhibited the most accurate results.
All models reliably predicted solar PV generation when
the solar power was uniformly generated in sunny weather.
However, inaccuracies were evident on days characterized
by significant fluctuations in external meteorological factors,
as observed during the second peak on February 25th. Accord-
ingly, an additional experiment was performed to predict solar
PV generation more accurately.

D. Experimental Results According to ROI Size

An experiment to set the optimal ROI size was conducted
to increase the proposed model prediction accuracy. The ROI

Fig. 5. Results of solar PV generation prediction model using ROI image
and ROIsurr image.

in the satellite image reflects spatial information on external
meteorological factors in the region of the solar PV power
plant. If the ROI is too diminutive, it might inadequately
capture spatial characteristics. Conversely, an excessively
large ROI could lead to superfluous learning of irrelevant
information akin to utilizing the original image, poten-
tially compromising performance. In the proposed lightweight
model, the ROI and ROIsurr were initially set at 30 × 30 and
90 × 90, respectively, encompassing an area spanning 60 ×

60 km and 180 × 180 km around the solar PV power plant.
Five new sets of ROI sizes were established based on

the previous ROI dimensions, encompassing both larger and
smaller configurations (ROI: 5 × 5, 10 × 10, 20 × 20, 40 ×

40, and 50 × 50; ROIsurr: 15 × 15, 30 × 30, 60 × 60, 120 ×

120, and 150 × 150). To determine the optimal ROI size,
prediction models were assessed for each ROI dimension using
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TABLE IV
RESULTS OF SIXFOLD CROSS-VALIDATION BY ROI SIZE

Fig. 6. Box and whisker plot of sixfold cross-validation by ROI size.

k-fold cross-validation. In the previous experiment, the test set
period was designated as five days from the 25th to the 30th of
each month within the entire experimental period. Therefore,
each month was divided into six equal parts of five days each;
the k-value in the k-fold cross-validation was set to 6 and
the experiment was performed identically using the proposed
lightweight model. Table IV displays the results of the sixfold
cross-validation tests, while Fig. 6 depicts a box and whisker
plot illustrating the model performance across different ROI
sizes.

According to the analysis results, all six models satisfied the
ASHRAE Guideline 14 standard. Excluding ROI 5 × 5 and
ROI 40 × 40 from the set of performance evaluation metrics,
an increase in prediction accuracy is observed as the size of
the ROI diminishes. Particularly for ROI 5 × 5, limitations
in feature extraction capacity are evident due to the small
input image size within the encoder segment of the proposed
model. Additionally, the loss of information that occurs as
the model progresses to deeper layers is believed to have
a notable impact. Therefore, underscores the importance of
precisely defining the ROI size, centered on the region of the
solar PV power plant in the satellite image, for accurate solar
PV generation prediction.

E. Universally Applicable Input Data for the Proposed
Model

The proposed model integrates remote sensing data, satel-
lite images, and numerically recorded meteorological data as
multisource inputs. Satellite images are provided in various
formats depending on the source organization and the satellite
used. They are typically available in image formats such as
PNG or data array formats such as NetCDF, BUFR, etc. When
satellite images are provided in NetCDF format, conversion
to image format can be achieved using dedicated for data
visualization. In cases where dedicated software is unavailable,
conversion can still be carried out using various libraries or
tools. For images provided directly, they can be used as input
for the proposed model without further processing. However,
if the data are in array format, conversion to image format
is necessary before applying it to the model. Typically, pixel
values in image data range from 0 to 255, applicable to
both grayscale and color images. To convert data arrays into
image data, each value in the array can be divided by 255,
normalizing the data to a range between 0 and 1. Following
this method, the data can be effectively applied to the proposed
model, regardless of the type of satellite data provided.

The most accurate and reliable numerically recorded mete-
orological data for solar PV forecasting are obtained directly
from measurements taken at solar PV power plants. However,
acquiring such data for model development purposes can pose
challenges due to various factors, including security concerns
and data storage cycles. As an alternative, weather observation
data provided by organizations such as the Meteorological
Administration or other relevant authorities can be utilized.
These observations typically cover the areas surrounding solar
PV power plants and offer valuable insights into meteoro-
logical conditions that influence solar PV generation. While
not as precise as direct measurements from solar PV plants,
leveraging this meteorological data remains a practical and
effective approach for solar PV generation forecasting.

Most artificial satellites typically cover highly large areas
at once during observation, rather than focusing solely
on one region or country. Geostationary satellites such as
GK2A, employed in experiments, not only prioritize capturing
South Korea but also include neighboring countries, enabling
the use of the proposed model. Furthermore, it is anticipated
that analysis will be feasible in new countries as well, based on
the results of this study, by leveraging satellite and numerical
data from those respective countries.

VI. CONCLUSION

The proposed lightweight spatiotemporal hybrid solar PV
generation prediction model operates on 1-h intervals, facil-
itating stable and efficient management and power supply
planning for power grid systems. To compensate for the short-
comings of existing single-source data forecasting, multisource
data were used to reflect the spatiotemporal characteristics.
Spatial features were derived from two infrared satellite
images, while temporal characteristics were captured through
16 types of numerical data recorded hourly. Weight reduction
in the prediction model was achieved by setting the ROI and
ROIsurr in the satellite image. Furthermore, the image and
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NWP process modules were used to process the multisource
data. The image process module reflects spatial characteristics
by synthesizing the ROI and ROIsurr through the ISL and
strengthens the time-series characteristics of continuously cap-
tured satellite images with the CNN-LSTM-based ensemble
algorithm. The output value of the image process module is
combined with that of the NWP process module, and the
time-series characteristics of the observed weather variables
are integrated to finally predict the amount of solar PV
generation.

A comparative analysis was performed with the baseline
model of five machine learning algorithms to evaluate the pre-
diction performance of the proposed lightweight model. In a
total of 12 cases, the prediction performance was improved
when the ROI image was used compared to when the original
image was used; furthermore, the performance improved by
up to 33.7% and 19.51% based on MAE and RMSE, respec-
tively. Moreover, the proposed lightweight model consistently
satisfied all standards outlined in the ASHRAE Guideline 14.
The performance of the proposed model was also the best
compared to the model utilizing single-source data. To fur-
ther comprehend the impact of the ROI size in the satellite
image, an experiment aimed at determining the optimal ROI
size for the proposed lightweight model was conducted.
According to the verification results obtained through sixfold
cross-validation for a total of five ROIs, a smaller ROI size
yielded better performance. To further comprehend the impact
of the ROI size in the satellite image, an experiment aimed at
determining the optimal ROI size for the proposed lightweight
model was conducted.

The proposed lightweight multisource data-based hybrid
spatiotemporal solar PV generation prediction model offers
a versatile solution for adapting to climate variations by
providing accurate and precise forecasts of solar PV genera-
tion. In the future, this model holds promise in guiding the
operation of smart grids, particularly when integrated with
energy storage systems. Furthermore, it could play a pivotal
role in designing future power grid systems that prioritize
power prosumers and emphasize sustainability and efficiency.
Through its ability to harness multisource data and incorporate
spatiotemporal characteristics, the model is poised to con-
tribute significantly to the advancement of renewable energy
utilization and grid management strategies.
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