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Sensor Independent Cloud and Shadow Masking
With Partial Labels and Multimodal Inputs

Alistair Francis

Abstract— A paradigm shift is underway in Earth observation,
as deep learning (DL) replaces other methods for many predictive
tasks. Nevertheless, most DL classification models for Earth
observation are limited by their specificity with respect to both
the sensors used (inputs) and classes predicted (outputs), leading
to models that only perform well for specific satellites and on
specific datasets. Cloud masking is typical of this, but is one
of the most important tasks to generalize across sensors, given
that it is required for all optical instruments. This work sets
out a framework to relax DL’s constraints on specific inputs
and outputs, using cloud and shadow masking as a case-study.
Centrally, a model which is sensor independent, and which can
simultaneously learn from different labeling schemes is devel-
oped. The model, Spectral ENcoder for SEnsor Independence
version 2 (SEnSeI-v2) extends the original version, by permitting
multimodal data [in this case Sentinel-1 synthetic aperture radar
(SAR) imagery and a digital elevation model (DEM)] to be
ingested, along with several other architectural improvements.
SEnSeI-v2, attached to SegFormer, is shown to have state-of-the-
art performance, whilst being usable on a range of multispectral
band combinations, alongside SAR and DEM inputs, without
retraining. The labeling schemes of eight datasets are not made
compatible through a reductive approach (e.g., converting to
cloud versus noncloud), rather, an ambiguous cross-entropy loss
is introduced that allows the model to learn from the different
labeling schemes without sacrificing the class distinctions of each,
leading to a model which predicts all of the constituent classes
of the different datasets.

Index Terms— Atmosphere, deep learning (DL), image analy-
sis, multisource data fusion, optical data, synthetic aperture radar
(SAR) data, thermal data.

I. INTRODUCTION

DEEP learning (DL) approaches have shown great suc-
cess when applied to satellite imagery for a number of

predictive tasks, often with higher performance in compar-
ison to traditional methods [1]. These traditional methods,
though, are often applicable (or translatable) to multiple sen-
sors by virtue of their use of physical rules. For example,
Fmask [2]—originally developed for Landsat sensors—was
straightforwardly translated to Sentinel-2, by removing the
thresholding tests related to the thermal bands, which Sentinel-
2 data does not include. Meanwhile, DL models are not readily
adaptable to new sensors, because of their expectation of a
fixed input structure (e.g., the same set of spectral bands,
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or for multimodal models, the same combination of instru-
ments). The lack of immediate generalisability of DL models
to multiple satellite sensors slows adoption and operational
deployment. This is because the cycle of model development
and validation, and the creation of datasets for training (in
the case of supervised models) and validation (for all models)
must be repeated for each sensor. Having previously intro-
duced sensor independence with Spectral ENcoder for SEnsor
Independence (SEnSeI) [3]—whereby a single model may be
trained and used on multiple multispectral sensors—this work
extends that effort, creating a cloud masking model which is
further generalized than before, whilst achieving state-of-the-
art performance.

Building on SEnSeI-v1, three main novel contributions
are offered here. 1) Several architectural improvements are
proposed for both SEnSeI and the DL model it is attached
to, leading to a more accurate predictor. 2) Cloud masking
is reformulated as a partial label learning problem, and a
novel ambiguous cross-entropy loss is proposed, whereby the
different labeling structures of the datasets are retained by
the model, rather than simplified and reduced. 3) Support for
multimodal inputs in SEnSeI is developed, with the model able
to ingest data from other sources of raster data, e.g., Sentinel-1
synthetic aperture radar (SAR) and a digital elevation model
(DEM) as optional, extra inputs complementing the primary
multispectral image.

Regarding the partial label learning paradigm, more con-
cretely, labels in the ground-truth represent possibilities
(commonly referred to as candidates in the field of partial
label learning), rather than precise, known solutions. This is
a different scenario to both fuzzy and multilabel processes,
which assert that AND statements can exist between different
labels in the real world. Instead, one can consider partial
labels as expressing OR statements in the labels. So, whilst
it is assumed that a given input cannot truly correspond
to multiple classes in the real world, the ground-truth does
not necessarily pinpoint which specific class is true, only
conveying possibilities.

The usefulness of multimodality is of great interest in
contemporary remote sensing research, but so far little focus
has been given to how it may affect the performance of cloud
masking algorithms. Perhaps this is because neither of the two
other obvious modalities one might use besides multispectral
instruments (SAR and DEM) are sensitive to the cloud.
Nevertheless, it may be that the information from SAR and
DEM can help to disambiguate clouds from noncloud, despite
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not being sensitive to them. This hypothetical disambiguation
could occur when spatial features between the multispectral
image are masked and the SAR and DEM rasters correlate
or not. When spatial features from the different instruments
align and correlate, then it is likely that they are looking
at the same surface (noncloud), and when they differ, then
it is possible that it is because the multispectral sensor is
viewing cloud features whilst the others still give informa-
tion from the Earth’s surface. This work seeks to explore
such possibilities, using the sensor-independent model that is
developed as a useful tool for rapidly testing different possi-
ble combinations of modalities, without any retraining being
necessary.

Previous experiments with SEnSeI [3] tested a set of
hypotheses about the generalisability of SEnSeI to different
sensors, and how it affected the performance of the model it
was attached to. These showed SEnSeI’s generalization across
different multispectral satellites (conveyed by its performance
on multiple labeled datasets over different sensors). However,
given the differences in labeling styles between these different
datasets, the previous work simplified the classification task to
a binary one: cloud versus noncloud.

In view of those previous findings, this work moves forward
to explore the topic further with three points of focus as
follows.

1) Model Improvements: The effects of the improvements
to the model architecture are measured against the pre-
vious version of SEnSeI, and other published methods.
Results found in Section V-A.

2) Partial Label Learning: The ability of a model to learn
from partial labels, and how such a framework can
unlock new capabilities whilst maintaining performance
in simplified tasks when compared to a nonpartial label-
ing approach. Results found in Section V-B.

3) Multimodality: The effect of adding different modalities
(SAR from Sentinel-1, and DEM data) to the inputs of a
cloud masking algorithm, measuring whether this extra
data is helpful or not, and in what circumstances. Results
found in Section V-C.

The results for these three experiments are measured on
Sentinel-2 cloud masking datasets. Therefore, a final experi-
ment is included to verify that SEnSeI version 2 (SEnSeI-v2)
is indeed sensor-independent, by showing its performance on
Landsat 8 and 9 data. Then, Section VI moves on to discuss—
in light of the results—how a data-centric approach could
be more efficacious for the cloud masking community than
a model-centric one. In particular, prioritizing the quality and
quantity of available data, considering its sampling biases, and
probing the utility of multimodal inputs.

II. RELATED WORK

A. Cloud Masking

Locating where clouds and their associated shadows
obstruct the view of the Earth’s surface from space is a core
problem that impinges on all optical satellite sensors’ gath-
ering of data. Cloud masking remains a challenging problem
that both satellite operators and end-users of their data have a

stake in. Understandably, many studies in cloud masking focus
primarily on the quantitative performance of their methods
against others. However, this work does not primarily seek
to compete with other methods but rather offers concepts
(sensor independence and partial label learning) that can com-
plement and augment any approach. Given this focus, it does
not make sense to solely focus this section on describing
the various choices of model design, and their concomitant
effects on performance, that exist in the literature. For this,
several excellent review papers have compared and contrasted
the different methods employed to mask clouds in satellite
imagery [4], [5], [6], [7]. This section will focus instead on
some of the remaining challenges that routinely degrade the
practical utility of cloud masks.

Thin cloud and shadow detection is still unsatisfactory for
many end-users of cloud masking algorithms. This is in part
because the definition of cloud—and in particular thin cloud—
is inherently difficult to pin down. Skakun et al. [8], for
example, found large disagreements between expert annotators
due to the subjective and diverse definitions used for the
thin cloud. As Tarrio et al. [6] note, cirrus clouds are often
situated at the boundary between what would be classed as
cloudy and clear. Of course, as thin cirrus clouds demonstrate,
cloudiness is not truly a categorical variable, it is a family
of atmospheric phenomena which we typically associate with
several parameters, including optical depth [9], cloud top
height [10], and cloud type (e.g., cumulus and cirrus) [11],
among others. All these parameters impact how clouds appear
in the different spectral channels of a sensor situated in space
above them.

Whilst the underlying physics and processes governing
clouds are complex and diverse, the data with which we work
is generally not capable of representing such rich information.
Thermal sensors can provide important physical measurements
of cloud and aerosol properties [12], but most multispec-
tral sensors (e.g., Sentinel-2)—for which cloud masks are
needed—do not give us much information regarding cloud
physics or composition. Therefore, we are necessarily still
in a situation where the majority of models output a coarse,
categorical representation of the complex underlying system,
and this coarse categorical representation is judged against an
equally coarse categorical ground-truth dataset for validation.
In the end, a boundary between what is and is not cloud must
be drawn (both spatially at their edges, but also in terms of
opacity and thickness), and this semantic boundary is always
a site where interdataset [8], [13] and intermodel [4], [7]
disagreement is high.

Motivated to optimize performance at this semantic bound-
ary, the designs of several models are guided by the difficult
issue of thin cloud retrieval. For example, Wu et al. [14]
offered a rule-based model based on the observation that a
thin cloud removes dark pixels from a given region. Many
algorithms rightly focus on the 1.38 µm cirrus band in
Sentinel-2 and Landsat 8 to detect thin clouds [2], [15], [16].
For DL approaches that consider larger spatial extents, the
smoothness of thin cloud areas versus clear areas can be seen
as a useful discriminative feature for the model to detect thin
clouds (e.g., [17], [18]), whilst Zhang et al. [19] showed a
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vision transformer-based architecture performs well for thin
cloud detection.

B. Beyond Supervised Learning

Partial label learning, as will be shown in Section III-B, is a
mode through which strictly supervised learning is relaxed.
It has long been recognized as a more general learning
paradigm to strictly supervised learning (e.g., [20], [21]). Two
common families of methods can be defined for learning from
partial labels: average-based strategies, and identification-
based strategies. As Lv et al. [21] defined them, average-based
strategies treat all classes labeled as possible as equally likely,
whilst identification-based strategies seek to disambiguate the
labels and treat the most likely label as the true class. Both of
these approaches aim to disambiguate the problem, converting
it into something resembling standard supervised learning.
However, disambiguation-free learning has also been proposed
by Zhang et al. [22].

Whilst partial label learning has not been previously pro-
posed for cloud masking (or, to the best of our knowledge,
any other problem in remote sensing), other approaches that
reduce the need for precise labels have been. For example,
Li et al. [23] showed how weak supervision can be leveraged
to train a high-performance cloud masking model, where each
patch during training is simply marked as cloudy or not
cloudy, rather than using a pixel-wise mask. Several papers
combine this patch-wise labeling approach with generative
adversarial networks (e.g., [24], [25]). These patch-wise label
methods show promise in reducing the amount of labeling time
needed for cloud masking. However, it is not straightforward
to extend this approach to cloud shadow detection, because
patches containing only shadow pixels are difficult to find,
given their tendency to be located close to clouds [23],
[25]. The difference between these methods and partial label
learning is the fact that they introduce ambiguity in the spatial
dimension, whereas partial labels retain spatial exactness,
but permit semantic ambiguity in the output classes of each
pixel.

Categorizing the previous approaches as “weakly super-
vised,” we can also consider training paradigms considered
to be “unsupervised.” For example, Xie et al. [26] recently
proposed Auto-CM, a method that exploits the different
spatio-temporal characteristics of atmospheric (clouds) and
surface (clear) features, to perform unsupervised mask-
ing and cloud-free mosaicking on time series, through a
self-supervised learning approach. By not using any specific
labeled training datasets, this method is also somewhat sensor
independent (though still requiring unlabeled multitemporal
data from a new sensor), and is shown to perform well on
Landsat 8, Sentinel-2, and PlanetScope data.

C. Multimodality

There has been a recent focus on multimodal models for
Earth observation [27], given that many problems are poorly
constrained when considering a single sensor’s data. For
example, Manakos et al. [28] fuse Sentinel-1 and Sentinel-2
data to accurately predict flood maps, noting that Sentinel-2 is

commonly used for this task but is impractical when atmo-
spheric conditions are unfavorable. Change detection using
fused Sentinel-1 and Sentinel-2 data also shows promise [29].
Using the same combination of instruments—Sentinel-1 and
Sentinel-2—Orynbaikyzy et al. [30] demonstrated a system
for the mapping of crop types, remarking on the improve-
ment in the performance of the multimodal approach versus
single sensor models. These positive results are reinforced
by Blickensdörfer et al. [31] who performed data fusion
across Sentinel-1 and -2, Landsat 8, as well as topographical,
meteorological, climatological, and environmental data to map
crop types.

Closer to the field of cloud masking, cloud removal (where
cloudy areas are inpainted with a predicted surface reflectance)
approaches often use a multimodal approach, where a sensor
typically unaffected by atmospheric conditions (most often
SAR) is used to inpaint the cloudy regions [32], [33], [34].
Clearly, in a range of domains, fusion across different data
sources permits more performant models, but necessitates the
creation of multimodal datasets. Until the publication of the
CloudSEN12 dataset [13], an openly available multimodal
dataset for cloud masking did not exist. With this dataset, the
community may now experiment with the utility of both SAR
and DEM information when masking clouds.

III. METHODS

This section provides an overview of the proposed approach,
before moving on to detail the technical details of each of
the primary contributions. The initial overview provides a
context that is relevant to both this work and the previous
implementation of SEnSeI [3].

Sensor independence can, presumably, be achieved through
many different approaches, which do not necessarily correlate
to the approach of SEnSeI. Where a nonsensor-independent
model is specialized to the specific physical measurements
made by its respective sensor, a sensor-independent one should
be able to ingest and—with some level of success—use data
that may come from some range or family of sensors. The
level of sensor independence of a given method can be loosely
defined by the breadth of different sensors that it can be used
on. A restricted form of sensor independence, then, could be
a model that is trained and used on a set of spectral bands
that many different sensors measure (e.g., a model that uses
only red green, and blue bands from many satellites). A more
ambitious form of sensor independence, as examined in this
work, can be achieved by designing a model that permits
arbitrary combinations of spectral bands (and possibly other
data, e.g., SAR or DEM) by a model.

In practice, SEnSeI achieves this by considering each band
of data as a separate input. This contrasts with the standard
approach of most multispectral vision models, which assume
that the same physical measurement (e.g., “Red”) appears
at the same place in the inputted data and that such data
consists of a fixed and unchanging set of bands. So, the
task of a sensor-independent model is to use some arbitrary
set of physical measurements (here assumed to be raster
images) that come from sensors with different characteristics.
In both SEnSeI-v1 and SEnSeI-v2, the problem is split into
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two relatively independent steps. The first is to encode the
information from the set of physical measurements into an
embedding space that is of a fixed dimensionality. The second
is to pass this embedding of fixed dimensionality to a DL
model, such as DeepLabv3+ or SegFormer, or any other model
that one might choose to apply.

In both versions of SEnSeI, descriptions of the physical
characteristics of the sensor are given to the model, via
a “descriptor vector.” Whilst not exactly the same between
versions 1 and 2 of SEnSeI, these descriptor vectors give the
model a way to understand what data it is being given. Similar
to the changes to the format of the descriptor vectors, the inner
workings of each version of SEnSeI are different, however,
both achieve the same goal. Namely, to build a representation
of the data in a space of a fixed size, which is independent
of the number of bands it is given. In both versions this
is achieved via a pooling operation at the end of SEnSeI,
which collapses the representation, making it independent of
the number of input bands it is given.

Having covered the general approach taken by both versions
of SEnSeI in pursuit of sensor independence, the follow-
ing subsections focus on: the differences and novel aspects
of SEnSeI-v2 (Section III-A), the ambiguous loss function
(Section III-B), and the models that SEnSeI-v2 are used with
(Section III-C).

A. Model Improvements

1) Spectral Encoding: SEnSeI uses descriptor vectors
to provide information about the spectral characteristics
of the satellite sensor’s bands. Previously, in SEnSeI-v1 [3],
the descriptor for a given band is a vector of length 3, with
the minimum, peak, and maximum wavelengths of the spectral
response curve of the band. This is a simple but somewhat
crude representation, which has two obvious drawbacks.

The first drawback is that the exact shape of the spectral
response curve is lost. The second failing is more complex.
Using a single number to describe the change in wavelength
between 400 nm and 12 µm does not adequately reflect
the sharp nonlinearities in physical behavior that satellite
observations have as a function of wavelength within that
range. Whilst neural networks are able to represent nonlinear
functions, it is difficult for a model to map the complex
changes in the different sections of the spectrum (e.g., the “red
edge” in the region around 700 nm, where a sharp change in
reflectance occurs over vegetation).

One possible solution could be to fully describe the spectral
response over the entire wavelength range, such that the
descriptor is a long vector in which each value represents the
detector’s sensitivity in that wavelength region. This, however,
creates several other issues. First, it adds a layer of complexity
and prerequisite knowledge about the sensors that is not
always available, in that the spectral response curve (or some
approximation of it) is needed. Second, without careful regu-
larization during training, it could lead quickly to overfitting.
This is because of the large number of completely independent
parameters each descriptor would have, and the still relatively
small pool of possible spectral bands that one might encounter
in the set of sensors used during training. Such a situation

risks encouraging the model to focus on very small differences
in the spectral response curves of different sensors (a single
value in the descriptor representing the sensitivity at a specific
wavelength on the edge of a spectral response curve, for
example) in order to overfit to each sensors’ datasets’ biases,
rather than on what we might expect are more useful features
(larger discrepancies between spectral responses, which could
cause measured top-of-atmosphere (TOA) reflectance values
to differ significantly over the same surface).

Another solution is inspired by the work of
Vaswani et al. [35] who proposed positional encodings
to give transformer architectures explicit information about
each input’s position in a sequence. Transferring this idea
directly to wavelength, a spectral encoding is the output of
a set of sinusoidal functions, with a range of frequencies
multiplied by the wavelength’s value. Lower frequency
components of the encoding change slowly with wavelength
(giving coarse information about the wavelength), whilst
high-frequency components oscillate more rapidly with
wavelength (giving the model rich information about each
local part of the wavelength range). For a wavelength λ,
which is logarithmically scaled as

λnorm = log10(λ − 300) − 2 (1)

where λ is given in nanometres. so that the large differences
between optical bands and thermal bands are not too extreme
in the normalized value range. Then, a set of sinusoidal
embeddings fi (λ) are computed as

fi (λ) =

{
sin (ωiλnorm), if i even
cos (ωiλnorm), otherwise

where

ωi = 10 000−2i/Nω , for i = 1, . . . , Nω.

These spectral encodings have some advantageous charac-
teristics. Like the original descriptor vectors of SEnSeI-v1,
they do not need the full spectral response function, requiring
only the minimum and maximum wavelengths. They also
provide the model with both coarse and fine details across the
wavelength range, and change continuously and smoothly with
wavelength, unlike a full spectral response function’s features,
which may be used by the model to overfit more easily to a
specific band. These spectral encodings form the first part of
the descriptor vectors shown in Fig. 1, with Nω set as 32.

2) Multimodal Support: The spectral encoding described in
the previous section is able to represent diverse multispectral
bands, and these encodings form part of the descriptor vector
used by SEnSeI-v2. However, descriptor vectors can also be
constructed for nonoptical datatypes, with a straightforward
scheme to extend the vector features. To do this, as shown in
Fig. 1, some binary features are added to the end of the vector,
denoting whether the data is from a certain instrument type.
In the context of this work, data from multispectral (including
thermal bands), SAR, and DEM are used, however, one can
extend this concept to any other datatype—assuming it can be
represented as a raster over the same area as the other bands
used. When these binary variables are used, the space that
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Fig. 1. Schematic of descriptor vectors used for SEnSeI-v2. The first 64 entries contain the spectral encodings of a band’s minimum and maximum wavelength
(if it is a spectral or thermal band). The later section of the vector contains binary flags used to add support for other kinds of nonoptical data. For SAR data,
the first 64 positions—which for multispectral bands are used to encode the wavelengths—are instead used to indicate to the model whether a band is VV or
VH backscatter, or the incidence angle. DEM data is also indicated with its own binary flag, in which case the first 64 entries are simply filled with 0. Some
positions in the vector remain unused, allowing for future expansion to other data types.

the wavelength encodings occupy for multispectral bands is
liberated, allowing for information (e.g., VV versus VH in the
case of SAR) to be given to the model.

3) Multihead Attention: Computations within SEnSeI’s per-
mutation equivariant layers are done band-wise; each input
band’s descriptor corresponds to an output feature vector at
each layer. Whilst a one-to-one correspondence between input
descriptors and output feature vectors is needed, factoring
in information from all other bands’ corresponding feature
vectors is also desirable, as it allows SEnSeI to consider
the combinatorial effects of different bands on the outputted
representation.

In SEnSeI-v1 this information sharing was performed
with a “permutational block” which made N 2

b pair-wise
combinations for Nb bands, by concatenating their feature
vectors in pairs, and then sent them through a set of fully
connected layers. Then, it pooled those pair-wise combina-
tions back to Nb feature vectors. In this way, whilst each
output of the block corresponded to one of the inputs,
each had access to information from the other bands.
SEnSeI-v2 utilizes multihead attention to perform this same
information-sharing with the transformer architecture [35],
motivated by its remarkable recent performance in a num-
ber of applications, perhaps most notably natural language
processing.

An attention layer has three learnable weight matrices,
known as the query, key, and value matrices (WQ , WK ,
and WV , respectively). The layer uses correlations between
different members of the input sequence to generate useful
information (in our case, the sequence is an unordered set of
bands). A multiplication between the query and key weight
matrices, and the inputs, xi , are computed to generate the
queries and keys (Q = xi WQ and key K = xi WK , respec-
tively). A dot product of each pair of query and key is then
taken (leading to N 2

b dot products for Nb bands). These dot
products are softmax (conventionally scaled by the square
root of the dimensionality of the vectors d) and multiplied
by the value matrix, WK , to produce the output yi of the layer

corresponding to each input xi , such that

yi = softmax
(

QK T

√
d

)
WV . (2)

Extending this concept to multihead attention, this operation
is repeated with several weight matrices, and the outputs
of each are concatenated, and then transformed by a linear
layer into the desired final dimensionality of the output.
The transformer block’s specific hyperparameters used and its
placement within SEnSeI-v2 can be seen in Fig. 2.

4) Band Embedding: The previous version of SEnSeI used
“band multiplication” to mix the spectral information of each
band with the spatial array of values. This consisted of
multiplying each feature vector outputted by SEnSeI’s neural
network layers with the respective band’s pixel values at every
point in the image, leading to an X -by-Y -by-N output tensor,
where C is the number of embedded channels in SEnSeI’s out-
putted feature vector. At each spatial point, then, was a linearly
scaled copy of the feature vector corresponding to that band.
These tensors (each containing information corresponding to
an input band) were then pooled, to produce a fixed-size output
that could be straightforwardly used in a sensor-independent
fashion for a downstream task such as cloud masking (by a
model expecting a fixed number of input channels).

In SEnSeI-v2, this approach is improved by using learnable
embeddings for the band values, rather than a fixed multipli-
cation (see Fig. 2). For each band, b, with values in a spatial
array S(b), the corresponding feature vector from SEnSeI’s
fully connected layers, v(b), is sent to three further sets of fully
connected layers, whereby embedding parameters—gains α(b),
frequencies ω(b) and phase offsets φ(b)—are computed. These
parameters are used to embed the band’s information into the
output tensor with a sinusoidal function. Many families of
functions could have been used, but sinusoidal functions are
a natural choice because of their simplicity and their bounded
output range, which ensures the outputs do not diverge with
extreme values. The embeddings are computed band-wise,
meaning each band will be assigned a different group of
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Fig. 2. Flowchart of SEnSeI-v2 model. The red, green, and blue inputs
represent a set of bands, with corresponding descriptor vectors. In reality,
an arbitrary number of such inputs can be used, but only three are visualized
here for simplicity. Gray boxes represent neural networks with trainable
parameters. The specific hyperparameters shown here are the ones used during
training and testing of the model, however, performance did not seem strongly
linked to these hyperparameters and were found through trial-and-error. This
diagram can be compared and contrasted with [3, Fig. 2] to see how the design
of SEnSeI has changed.

parameters, but those parameters remain constant across the
spatial extent of a single image. The values of the embedded
output for each band, E (b), at spatial position x and y are

E (b)
i (x, y) = α

(b)
i sin

(
ω

(b)
i S(b)

i (x, y) + φ
(b)
i

)
(3)

where the i th index corresponds to one of the embedding
space’s C channels. This process is also demonstrated graph-
ically in Fig. 2. Finally, the embedded representations are
pooled across all Nb bands, by mean averaging their values,
in order to produce the final fixed size output of SEnSeI-v2

E(x, y) =
1

Nb

∑
b

E (b)(x, y). (4)

As with the original version of SEnSeI, a variable number
of input bands and their corresponding descriptor vectors have
been translated into an output representation with a fixed
number of channels. By necessity, pooling is used to create
this shared, universal feature space, but this pooling risks a
loss of information, especially for SEnSeI-v1, as the signal
from each band is overlaid crudely on top of one another in a
linear sum. The embedding parameters of SEnSeI-v2 give the
model a far greater ability to coordinate how (and where in
the space) it will represent each band’s values in a manner that
is potentially less prone to information loss, in comparison to
the linear, parameter-free multiplication used in the original
work.

5) Histogram Statistics: For computational simplicity,
SEnSeI performs most of its neural calculations on the descrip-
tor vectors, leaving the integration of the spatial image data
held in the bands until the very end. This is because, once
spatial data is introduced into the model, the subsequent layers
must all compute their outputs across image space, multiplying
the computational complexity enormously. However, failing to
consider any information held within the images is something
of a limitation, because SEnSeI-v1 could not use the TOA
reflectance values within each band to inform how it encodes
those same values. By analogy, this is akin to deciding
precisely where every piece of furniture will go in a room
that is to be decorated, without having any idea how big each
piece is beforehand.

In SEnSeI-v2, histograms of the image are computed, and
percentiles across this distribution for each band are fed into
the model (see Fig. 2). This allows SEnSeI-v2 to gain some
useful information about the kind of image it is dealing
with, without having to compute different outputs across each
and every pixel before the band embedding is performed.
It can then learn to embed the different bands in a way
that depends on the image statistics if it is helpful to do
so. Through experimentation, it was found that taking five
percentile values of the histogram—1%, 10%, 50%, 90%, and
99%—enhanced performance while not adding much to the
computation time. These five percentiles are calculated for
each band and then concatenated to the end of the descriptor
vector before continuing to be ingested by SEnSeI-v2’s neural
layers. Returning to the interior decor analogy, it is now
possible to see the overall size and shape of different pieces
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of furniture before the delivery truck arrives and to plan the
room’s layout accordingly.

B. Ambiguous Loss Functions

Whilst SEnSeI translates the varied inputs from different
sensors into a shared representation, there is also a need for
a strategy to use the outputs of the DL model (in this case
SegFormer [36] or DeepLabv3+ [37]) with labels from a
variety of different datasets with different class structures.

One way to understand the difference between partial label-
ing and other binary labeling strategies (for fuzzy labels, the
following distinction is not so informative) is to consider
the labels’ precision as judged against the real-world truth.
Unambiguous labels are assumed to be maximally precise.
This means (ignoring whatever errors are made in the anno-
tations themselves) that a positive annotation of a given class
corresponds to its existence in the real world 100% of the
time. By contrast, for partial labels, the precision of the labels
can be less than 100%, because a partial label will contain
classes marked as possible, that are not true.

By combining sensor independence with partial label learn-
ing, a framework is established to build models that have the
advantage of generalizing across sensors, whilst eliminating
the need to simplify the output class structure (usually this is
a simplification to cloudy versus noncloudy pixels). Instead,
partial label learning leads in a sense to a model that can
predict the union of classes included in the multiple datasets,
rather than their intersection. In this work, sensor-independent
models are trained which predict seven classes: land, water,
snow, thin cloud, thick cloud, cloud shadow, and no data
(which is included primarily to make inference easier on the
edges of large scenes) despite no dataset containing exactly
all these classes.

Training a model using partial labels requires us to find
a way of backpropagating useful information in the labels
without penalizing the model for making strong predictions
within the set of possible answers. For example, if a pixel is
known to be cloudy, but it is unknown whether it is a thin or
thick cloud, then the model should be penalized for predicting
other, noncloud classes, but it should not be penalized for
strongly predicting either thin or thick cloud, or both of
them with equal confidence. Here, two partial label losses
which exhibit this behavior are offered, based on the standard
cross-entropy and mean squared error losses.

For the set of all Nc classes ci ∈ C, let a partial label y
be defined as a vector with its i th entry, yi , corresponding
to the possibility of class ci being present. These are binary
values, where 0 means the class is impossible, and 1 means
it is possible. Similarly, let the predictor’s softmax output, p,
have entries pi , which are the confidences associated with each
of the Nc classes in C.

Our goal is to define differentiable loss functions to train
the multiclass predictor with partial labels. First, we can use
p to calculate the predictor’s possibility score, φ, which we
can define as the sum of the values of p for which the class
is labeled as possible

φ =

∑
i

yi · pi . (5)

This value, φ, allows us to calculate an ambiguous analog
to the standard cross-entropy loss, used commonly in classifi-
cation tasks

LCE = − log(φ). (6)

Alternatively, if we wish to compute a loss that is analogous
to the mean squared error, we can create a proxy prediction
vector, π , which replaces the values of p where a class is
possible, with an equal fraction of φ, such that at the index
of each possible class there is φ divided by the number of
possible classes

πi = (1 − yi ) · pi +
yi · φ∑

i yi
. (7)

Notably, φ (and by extension π ) have the useful feature that,
unlike p, they are not dependent on the individual confidence
values that the model outputted in p amongst the possible
classes, only their summed total, which allows the model to
freely distribute confidences amongst the classes which are
deemed possible for that sample.

The loss, LMSE, is then defined as the mean squared error
between y (divided by the number of possible classes) and π

LMSE =
1
Nc

∑
i

(
yi∑
i yi

− πi

)2

. (8)

It is also useful to consider the case that the labels are
exact and not partial and see what happens to the two loss
functions that have been introduced. In the nonpartial, fully
supervised case, where class k is the only possible label, then
φ = pk . Therefore, π = p in the nonpartial case, and so LCE
and LMSE equal the standard cross-entropy and mean squared
error between y and p. In the models trained in Section V, the
LCE is used, as it was found to perform better, converging to
a good solution faster than LMSE. Nevertheless, the derivation
of this loss may be of use to other applications and domains
for which cross-entropy is less well-suited.

C. Model Selection

Whilst one could use SEnSeI to directly predict values for
a supervised task such as cloud masking, in practice, it is
better to instead pass the embedded space outputted by SEnSeI
to a DL model, because the computations within SEnSeI do
not use the spatial information of the image. In this work,
DeepLabv3+ [37] and SegFormer [36] are used. DeepLabv3+

is a convolutional segmentation model. It uses a backbone
(in this work, the ResNet34 backbone is used) with atrous
convolutions. Atrous convolutional kernels are constructed
with gaps and are used to efficiently gather both local and
global information from the image. Meanwhile, SegFormer is a
transformer-based model, which uses an efficient self-attention
mechanism that allows the model to consider complex relation-
ships between different areas of an image. In picking these two
quite different models (a convolutional one and a transformer-
based one), it is hoped that sensor independence with SEnSeI
is shown to not be contingent on pairing with a specific kind
of DL model.
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IV. EXPERIMENTAL SETUP

A. Datasets and Class Structure

In total, eight labeled datasets are used during the training
and testing of the models in this work. Four from Sentinel-
2, two from Landsat 8, and one each from Landsat 7 and a
PerùSat-1. Each one of these has a different labeling structure.
In order to use these different datasets to train a single model,
a class structure must be defined that can be mapped via partial
labeling to each of the preexisting class structures used by
the datasets. Table I outlines how these mappings are defined
from the model’s 7-D classification to the different datasets.
This section first describes the format into which all datasets
were preprocessed and then details some specifics about each
of the datasets used.

All input images were made into 512-by-512 pixel tiles,
where the resolution of all bands is made the same. In cases
where datasets were smaller than this (e.g., the scenes from
CloudSEN12 are 509 pixels across) they are bilinearly resam-
pled to 512. For those larger than 512 pixels, cropped patches
were taken with a sliding window. TOA reflectance values are
kept as physical, unitless values (typically between 0 and 1,
although certain geometrical and illumination conditions can
create values higher than this).

The masks are preprocessed in different formats, depending
on whether the partial or nonpartial loss is used. In the
nonpartial case, masks are simply one-hot encoded arrays
with the same spatial dimensions as the corresponding images
(512-by-512 pixels). The classes used depend on the labeling
strategy of the dataset. Meanwhile, for the experiments using
partial label learning, masks are not one-hot encoded but can
contain values of 1 in multiple classes per pixel. These classes
are held constant across every dataset: land, water, snow, thin
cloud, thick cloud, cloud shadow, and no data.

As well as an image and mask, each preprocessed sample
also comes with a metadata file, containing information about
the bands within the image, and the classes in the mask. This
information is useful in creating the descriptor vectors that
are given to SEnSeI and handling datasets with different class
structures.

1) CloudSEN12: CloudSEN12 is the largest cloud masking
dataset for Sentinel-2, with the most diverse set of annotated
images by some margin. Whilst the full dataset contains many
partially labeled and unlabelled images, in this work, only
the fully labeled portion of the dataset is used, comprising
10 000 image patches of 509-by-509 pixels. Each image patch
is labeled with four classes: clear, thick cloud, thin cloud,
and cloud shadow. The annotations were made using the IRIS
annotation tool [38], which allows for semiautomated labeling
at a significantly higher speed than when using purely manual
tools.

A compelling aspect of this dataset is its inclusion of
multimodal input data. For each Sentinel-2 image patch,
a coregistered Sentinel-1 GRD product from a similar date
is also provided, as well as a MERIT DEM patch. These are
used in Section V-C to test how auxiliary multimodal data (as
an optional addition to the primary sensor data) can impact
cloud masking performance.

Across the dataset, 2000 regions of interest are sampled,
each five times, leading to a total of 10 000 images. In the
experiments of Section V, training, validation, and testing
splits follow exactly those used by Aybar et al. [13], in order
to maintain comparability. CloudSEN12 is used as the primary
dataset for testing and comparison of models in cloud and
shadow masking performance because, unlike some other
datasets used, shadows are consistently marked, and thin and
thick clouds are distinguished, making it the most complete
and suitable of the datasets for testing. Another advantage is
that the dataset comes with several models’ results precom-
puted, allowing for comparisons across different cloud and
shadow masking models.

2) Sentinel-2 Cloud Mask Catalogue: The Sentinel-2 Cloud
Mask Catalogue [39], contains 513 patches, each 1022-by-
1022 pixels across, with three labels (clear, cloud, and cloud
shadow) marked. However, in some images, where shadow
was too difficult to mark, the annotations revert to sim-
ply cloud, noncloud. Similar to CloudSEN12, the Sentinel-2
Cloud Mask Catalogue was annotated semi-manually using
IRIS [38].

Alongside these pixel-wise annotations, nonmutually-
exclusive patch-wise tags are provided, offering details on
properties such as surface type and cloud thickness. In this
work, these are used to partially constrain the partial labels of
the training set. By way of example, if a patch in the dataset is
described as having “forest/jungle,” “mountainous,” and “open
water” attributes, but not “snow/ice,” then all clear pixels in
the image would be partially labeled as possibly land and
water, but not snow. Similarly, if “thin cloud” is marked as
present but not “thick cloud,” then all cloud pixels are treated
as unambiguously thin cloud, whereas if both “thin cloud”
and “thick cloud” tags were associated with the patch, then all
cloudy pixels would be classed as possibly being thin cloud
or thick cloud, in a partial label.

3) KappaSet: The KappaSet cloud masking dataset com-
prises 9251 patches, from 1038 Sentinel-2 products, of
512-by-512 pixels at 10 m/pixel. The dataset is labeled with
classes including clear, cloud shadow, thin cloud, and thick
cloud. Whilst globally distributed, there is a more dense
sampling over Europe than elsewhere, with a roughly equal
split between the different seasons.

4) CESBIO Reference Masks: Baetens and Hagolle [40]
provide labels for 31 full Sentinel-2 products, taken between
2016 and 2018 (seven other masks are also provided, primarily
to test the labeling scheme against the Hollstein [41] dataset,
and are usually excluded in model validation [7], [40]). The
scenes cover ten specific regions of interest, with between
two and four scenes from each location. The classification
scheme used separates clouds into low cloud and high cloud
classes, which do not correspond directly to thin and thick
clouds. Because of this, these classes are combined during the
experiments presented here, producing a single cloud class.

Interestingly, this is the only Sentinel-2 dataset used in this
work for which there are comprehensive pixel-wise classifica-
tions for land, water, and snow (where the Sentinel-2 Cloud
Mask Catalogue only provides scene-wise classification tags).
For this reason, this dataset is used in Section V-B to test the
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TABLE I
OVERVIEW OF THE EIGHT DATASETS USED IN THIS STUDY. TARGET CLASSES ON THE LEFT REFER TO

THE CLASSES OUTPUTTED BY THE MODELS TRAINED IN SECTIONS V-B AND V-C

models’ abilities in distinguishing between land, water, and
snow.

5) SPARCS: SPARCS [42] is a relatively small but
high-quality dataset of diverse cloud and cloud shadow masks
in Landsat 8. Consisting of 80 1000-by-1000 pixel masks
at 30 m/pixel, the dataset has labels for land, water, snow,
flooded, cloud, cloud shadow, and cloud shadow over water.
During training, the flooded pixels are treated as having partial
labels where both land and water are possible, and the cloud
shadow over water pixels are simplified to just cloud shadow.
This dataset is very useful for training in Section V-B because
it offers pixel-wise labels for land, water, and snow.

6) Landsat 8 CCA: The USGS released a dataset of labeled
Landsat 8 images, totaling 96 full scenes, referred to here as
Landsat 8 Cloud Cover Assessment (CCA) [43]. From each
of the eight biomes, 12 scenes are sampled globally, with a
range of different cloud cover conditions. Pixels are labeled
manually as clear, thin cloud, thick cloud, and cloud shadow,
however, there are only annotations for shadows in a subset of
scenes, as some were too difficult to annotate. In training, the
pixels of those scenes without specific cloud shadow labels are
treated as partial labels, possibly being cloud shadow, land,
water, or snow.

7) Landsat 8/9 CCA-Ext: A set of annotated scenes from
Landsat 8 and 9 were taken from the various validation
datasets [44], [45], [46] released by USGS (separate from the
Landsat 8 CCA dataset) in what is referred to in Table I as
“CCA-Ext.” Whilst it was originally planned to use all scenes
from the datasets, some were not possible to retrieve and so

were omitted. This dataset is used in Section V-D to test
models on Landsat data that has been unused during training
by any published algorithm to date.

The annotations were created with a similar style and by the
same annotator, as the Landsat 8 CCA dataset. Annotations of
shadows cast by clouds, however, are omitted, leaving three
annotated classes. In practice, when used in Section V-D, the
thin cloud and thick cloud classes are combined to reduce the
problem to binary classification of cloud versus noncloud.

8) Landsat 7 CCA: Similar in class structure and annotation
style to the Landsat 8 CCA, this dataset includes 207 scenes
(although, as in [3], only 197 could be processed properly).
The 197 scenes are sampled from a range of different latitu-
dinal bands, providing a diverse set of scenes with manually
derived labels [47].

9) CloudPeru2: Launched in 2016, PerúSat-1 is an
RGB-NIR instrument with a resolution of around 2 m/pixel.
CloudPeru2 [48] is a labeled dataset of 153 scenes from this
satellite, split into 22 000 patches. The dataset is labeled as
cloud and noncloud.

B. Model Training

All models developed for this study were implemented and
trained using the PyTorch framework. The AdamW optimizer
was used with an initial learning rate of 1e−4 (after a warmup
schedule beginning at 5e−6), and a weight decay term of
1e−4. After validation loss reached a plateau, the learning rate
was then lowered to 2e−5 and then finally again to 5e−6.
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All models were trained with a batch size of 8, on a 24
GB Nvidia RTX 3090 GPU. Training took between 10 h for
the simplest, smallest model (SegFormer-B0, without SEnSeI,
trained on a single dataset) to two and a half days for the
most complex (Segformer-B2, with SEnSeI-v2, trained on all
available datasets).

Rather than pretraining SEnSeI as was done previously,
it can now trained simultaneously during the main super-
vised learning task, using the same autoencoder architecture
for estimating band values from SEnSeI’s outputs [3]. The
autoencoder is constructed by using another neural network,
which takes SEnSeI’s output and predicts the original values
of each band that was given to SEnSeI, optimized using a
mean squared error loss. For each band that was inputted, its
descriptor vector is concatenated onto SEnSeI’s output at every
pixel. Then, the neural network (a set of two fully connected
layers with 128 channels each, and a final layer which had one
output channel), predicts the value of each pixel for that band.
This ensures that the output of SEnSeI carries information
about the precise values that it was given, and was found to
greatly improve training speed, whilst simplifying the training
procedure by completely removing the pretraining step that
was implemented previously.

V. RESULTS

In all experiments, similar metrics are used to judge the
models’ performance. In all the tables of results, P refers
to precision, R to recall, F1 to the harmonic mean of pre-
cision and recall, BA to the balanced accuracy (the mean
of recalls of the positive and negative classes), and IoU to
the intersection-over-union (the ratio of successful positive
detections to the combined set of positives in predictions and
labels).

A. Model Improvement Experiment

This first experiment compares performance in the non-
multimodal, nonambiguous case. The goal of the comparative
exercise is to ascertain whether and by how much SEnSeI-v2
outperforms SEnSeI-v1, and which DL model performs best
both in isolation and when working with SEnSeI when
compared against other published methods. DeepLabv3+ and
SegFormer are used as archetypal examples of convolutional
networks (DeepLabv3+) and vision transformers (SegFormer),
to show SEnSeI’s ability to be paired with a diverse range of
models.

The other published methods are those provided by
Aybar et al. [13] and are not recomputed, with the exception
of the UNetMobV2 model, for which the authors’ github
package [49] was used. Instead of recomputing masks for
each method, the masks provided alongside the CloudSEN12
dataset are used. Unlike [13], the metrics reported here are
pixel-wise metrics across the entire dataset (rather than medi-
ans of the metrics across each image). Both methods of
presenting the results have advantages, as a user may indeed be
more interested in median performance, whilst in a statistical
sense it is difficult to compare precision and recall across
images with very different relative distributions of classes.

Given the interest here is on general model performance, the
standard pixel-wise approach is used.

For each of the four classes labeled in the dataset (clear,
thick cloud, thin cloud, and cloud shadow), precision P and
recall R are calculated, alongside metrics for super-classes.
These super-classes (cloud versus noncloud and invalid versus
valid) are formed by combining the separate classes to find
relationships that are of more interest and utility to a user
of cloud masking algorithms. They also allow for comparison
with methods (such as Fmask and s2cloudless) that do not
distinguish between all the original classes.

Table II summarizes the results of the experiment. When one
considers the three models used with SEnSeI (DeepLabv3+

and the two SegFormer models) a general trend emerges.
Performance of the nonsensor independent models is all very
high, with SegFormer-B2 consistently best in global metrics
(F1, BA, and IoU), although DeepLabv3+ performs at almost
the same level. Meanwhile, each model receives a hit to
performance when SEnSeI-v1 is used to make its sensor
independent (as has been previously shown [3]). However,
SEnSeI-v2 reverses this loss; sensor independence is achieved
with a negligible reduction in performance. Models are created
that can mask clouds using any and all combinations of bands
from Sentinel-2, whilst maintaining performance when using
all the bands, meaning models with added utility—applicable
to RGB, RGB-NIR, and other satellite sensors which consist
of a subset of Sentinel-2 bands—have been created with
essentially no loss in accuracy. A visual comparison between
several of the models can be found in Fig. 3.

Looking at all models, including those taken from
Aybar et al. [13], it seems that models trained on Cloud-
SEN12 (DeepLabv3+, SegFormer-B0, SegFormer-B2, and
UNetMobV2) all consistently outperform those which are not
(KappaMask, s2cloudless, and Fmask). Whilst the differences
are large enough to assume that there is some real gap in
objective performance, it should still be noted that training on
different datasets gives a model different biases, leading to
masks that are not necessarily incorrect but that can disagree
with the test dataset’s labels. The implications of these trends
are discussed further in Section VI.

B. Partial Labeling Experiment

This experiment introduces the partial labeling framework
to the model training, using the ambiguous cross-entropy loss
function detailed in Section III-B. The benefits of partial label-
ing are more qualitative than quantitative, in that it expands the
functionality of a model (by creating a richer, more specific
output), whilst not necessarily effecting the performance in
the simpler, original task. That being said, it is nevertheless
important to measure any difference in performance between
models with or without the ambiguous loss applied, to verify
that there is not a deleterious effect on performance.

Three models were trained using a standard (nonambiguous)
cross-entropy loss, with two classes (cloud versus noncloud) or
four classes (clear, thin cloud, thick cloud, and cloud shadow).
When training with two classes, it is possible to combine
training across different datasets and sensors, by reducing
all their respective class structures to this more basic one.
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Fig. 3. Visual results across a random sample from the CloudSEN12 test split. Not all models tested are displayed here, for the sake of conciseness. Thick
cloud is marked in , thin cloud in , and cloud shadow in , whilst clear areas are left transparent. Fmask does not separate thin and thick cloud classes
and so is just marked with the color of thick cloud.
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TABLE II
RESULTS OF EXPERIMENT ON SENSEI’S MODEL DESIGN COMBINED WITH DIFFERENT DL MODELS (FIRST NINE ROWS), AND OTHER PREVIOUSLY

PUBLISHED METHODS (LAST FIVE ROWS). METRICS CALCULATED OVER THE TEST SPLIT OF CLOUDSEN12 DATASET. IN THE FINAL FOUR
COLUMNS, “INVALID” PIXELS (CLOUDS AND CLOUD SHADOWS) ARE TREATED AS THE POSITIVE CLASS SO THAT THE DEFINITION OF

PRECISION AND RECALL ARE CONSISTENT BETWEEN IT AND CLOUD/NONCLOUD

TABLE III
RESULTS OF PARTIAL LABELING EXPERIMENT ON THE TEST SPLIT OF CLOUDSEN12. ALL MODELS USE THE SAME ARCHITECTURE (SENSEI-V2

WITH SEGFORMER-B2), GIVEN IT’S HIGH PERFORMANCE IN SECTION V-A. THE FIRST THREE MODELS ARE TRAINED USING A “REGULAR”
CATEGORICAL CROSS-ENTROPY LOSS, EITHER PREDICTING CLOUD VERSUS NONCLOUD (TWO CLASSES) OR ON THE FOUR CLASSES

FROM CLOUDSEN12. MEANWHILE, THE OTHER TWO ARE TRAINED WITH AN AMBIGUOUS CROSS-ENTROPY, AS DESCRIBED
IN (6), WITH THE SEVEN TARGET CLASSES FROM TABLE I

However, for a model with four classes, only datasets con-
taining those four classes can be used, which means only the
CloudSEN12 training split can be considered. These models
allow us to compare how performance is affected when
adding the ambiguous loss, with the two models trained using
ambiguous learning. Table III shows the performance of all
these models on the CloudSEN12 dataset. Fortunately, all
models perform similarly with respect to cloud/noncloud and
invalid/valid classification. This result is strong evidence that
using the ambiguous loss to introduce more specific classes
does not affect the model’s ability to classify pixels with the
original simpler classes.

Interestingly, the only large difference in performance
between the models is seen in the model trained on all datasets
with an ambiguous loss, which shows a lower precision
and somewhat higher recall than the models trained only on
CloudSEN12. As discussed in Section II-A, this may be a sign
that the definitions of thin and thick cloud differ somewhat in

the other datasets, meaning that the model’s understanding of
thin cloud drifts further away from CloudSEN12’s definition
when other datasets are introduced.

Next, the CESBIO dataset is primarily used to explore the
ability of the model to learn to separate land, water, and snow
classes. The results from this experiment can be found in
Table IV. Results for other models on the cloud/noncloud task
are taken from [7], which does not report the performance
on other classes for any of the models. SEnSeI-v2 with Seg-
Former is able to learn how to separate land, water, and snow
classes when given training datasets that include such distinc-
tions, however the recall of water and snow is somewhat lack-
ing. Visually, the model seems able to pick up larger bodies of
water and snowy regions but misses smaller areas (see Fig. 4).

It is worth considering how challenging the task of sepa-
rating land, water, and snow is in this context, given the data
available to the model during training. Only two datasets—
the Sentinel-2 Cloud Mask Catalogue, and the SPARCS
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TABLE IV
RESULTS ON THE SENTINEL-2 CESBIO DATASET. NO SCENES FROM THIS DATASET WERE USED IN TRAINING (“ALL” MEANS ALL AVAILABLE

DATASETS EXCEPT CESBIO). THE FIRST TWO MODELS WERE TRAINED AND TESTED FOR THIS WORK, AND ARE THE SAME MODEL
WEIGHTS AS THOSE OF THE FINAL TWO ROWS OF TABLE III. ALL OTHER MODELS’ RESULTS ARE TRANSCRIBED DIRECTLY FROM [7].

THE “OVERALL” METRICS ARE CALCULATED ACROSS THE 5 CLASSES, WHILST “CLOUD/NONCLOUD” COLLAPSES THE Land,
Water, Snow, AND Cloud shadow CLASSES INTO A SINGLE CLASS. UNSURPRISINGLY, THE MODEL TRAINED WITH ONLY

CLOUDSEN12 HAS LARGE CONFUSION BETWEEN THE Land, Water, AND Snow CLASSES, BECAUSE IT IS NEVER
GIVEN EXAMPLES THAT DISAMBIGUATE THEM. THE RELATIVELY LIMITED NUMBER OF LABELS THAT DO
DISAMBIGUATE Land, Water, AND Snow CLASSES IN THE OTHER DATASETS GREATLY IMPROVE THE MODEL’S

PERFORMANCE IN THOSE CLASSES WHEN TRAINED ON “ALL” DATASETS

dataset—contain any annotations which separate land, water,
and snow from each other. Whilst partial labeling allows the
model to output several classes where previously it outputted
fewer, it remains necessary for there to be enough training
samples that disambiguate those classes, for the model to
successfully learn to separate them. To this end, the Sentinel-
2 Cloud Mask Catalogue is of limited use, because there are
only image-wise classifications that never provide the model
with sharp boundaries between the three classes within a patch
(see Section IV-A). This leaves only the 80 images from
the SPARCS dataset—the smallest of the seven datasets used
in training, and from a different sensor to the test set—to
fully disambiguate these classes. Therefore, model accuracy
between these classes is not expected to be high. Rather, it is
a success that the model learns something useful from this
relatively small number of labels, whilst also retaining the
ability to disentangle the more well-labeled class boundaries
(e.g., cloud versus noncloud).

C. Multimodality Experiment

The third experiment in this study concerns the effect of
multimodal inputs on the performance of the cloud masking
algorithm. The experiment was conducted by using a single
model (SegFormer-B2 with SEnSeI-v2, trained on all training
datasets) and using different band combinations (multispectral,
SAR, and DEM) at inference. Whilst this model has the same
architecture as some of those used in previous experiments,
it has been trained separately, with the multimodal data
included, hence the weights are not shared between this model
and those in other experiments.

Four different multispectral combinations from the
Sentinel-2 bands are used for testing. RGB (bands B02-4),
RGB and cirrus (bands B02-4 and B10), NIR and SWIR
(B05-12), and finally a combination of all 13 Sentinel-2
bands. The results of these, with and without SAR and DEM
inputs, can be seen in Table V. Overall, some interesting
patterns emerge when looking at the impact of the multimodal
inputs on the performance metrics. For band combinations
with fewer bands, a substantial increase in thin cloud recall
is found when adding SAR data, which becomes negligible
(even slightly negative) when using all Sentinel-2 bands. This
amplified the positive effect of Sentinel-1 data when using
fewer spectral bands suggesting that the model is able to
use the SAR in a complementary way, which subsequently
becomes redundant when all of Sentinel-2’s bands are
used. Meanwhile, the effect of adding the DEM seems to
be negligible for most band combinations, with a minor
exception being the NIR and SWIR, where a very small
increase in performance across most metrics is seen. This
band combination contains more low-resolution bands than
the others, and perhaps the DEM, which has a resolution of
30 m/pixel, gives the model slightly more information about
small-scale features in the image, that aid in its predictions.

Interestingly, whilst SAR data boosts certain performance
metrics considerably for band combinations with fewer bands
(e.g., RGB), it has a limited effect on the metrics regarding
more simplistic classifications (cloud versus noncloud and
invalid versus valid). This seems to suggest that the informa-
tion from SAR data is particularly helpful for the classification
of a relatively small population of pixels, whilst there is a large
majority of pixels for which there is no real impact.
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Fig. 4. Examples from the Sentinel-2 CESBIO dataset. Predictions were made using the model in the second row of Table IV, using all the available
Sentinel-2 bands. In the masks, land is left transparent, whilst water is marked in , and snow in . Meanwhile, cloud (both thick and thin) is marked in

, and cloud shadow in . The model is able to pick out larger areas of snow and water, but fails to segment smaller regions, misclassifying them as land.
Meanwhile, cloud and cloud shadow segmentation is generally good.

D. Sensor Independence
This final experiment is used to verify that SEnSeI-v2 does

indeed have sensor-independent characteristics as designed.
Three SegFormer models with SEnSeI-v2 were tested, only
differing in the training data used. The first is a model
specifically for this experiment, trained on only Landsat 8

(SPARCS and CCA datasets). The second and third models
are trained on Sentinel-2 data, and all available data, respec-
tively, and are the exact same models used in the final two
rows of Table III. For additional comparisons, several well-
known openly-available Landsat cloud masking algorithms
(Fmask [51], Cloud-Net [59], and ukis-csmask [60]) were also
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TABLE V
EXPERIMENTAL RESULTS FOR MULTIMODAL MODEL. ALL ROWS IN THE TABLE COME FROM A SINGLE SENSEI-ENABLED SEGFORMER-B2 MODEL,

TRAINED ON THE CLOUDSEN12 DATASET, INCLUDING THE SAR AND DEM BANDS. THE EFFECT OF ADDING SAR AND DEM DATA TO FOUR
SPECTRAL BAND COMBINATIONS IS DISPLAYED AS THE RELATIVE DIFFERENCE IN PERFORMANCE VERSUS THE NONMULTIMODAL INPUT

(GRAY LINES). LARGER CHANGES ARE MORE STRONGLY COLORED, WITH ANY CHANGE
LARGER THAN ±1% HAVING THE STRONGEST COLOR

used to process the scenes. A comparison with the model
of Mohajerani and Saeedi [61] was not possible because no
open-source implementation was available, and because the
results in their work seem to include large no data regions
at the sides of each scene in their final statistics, making any
intercomparison without full recomputation invalid.

In Table VI, results from SEnSeI-v2 with SegFormer-B2
are shown with various band combinations, which align with
the bands used by the other models that were tested. Overall,
the models show mixed success on the dataset, with a large
spread in performance. Focusing first on the model trained
with only Sentinel-2 data, the performance is, as one might
expect, worse than the models trained with Landsat 8 data,
although, it is relatively similar in performance to Cloud-Net
and ukis-csmask. The model trained with Landsat 8 data
performs well, with a substantial increase across all metrics
from the model trained with Sentinel-2, and outperforming the
other models by some margin. Finally, and most promisingly,
the model trained with all available data outperforms all
others. This is evidence that the model has the capacity to
learn from multiple sensors in a mutually beneficial, addi-
tive way, suggesting that sensor independence does not just
lead to the wider usability of models, but also to higher
performance.

VI. DISCUSSION

The partial labeling strategy is extremely helpful when
combining different cloud masking datasets. However, par-

TABLE VI
RESULTS ON THE LANDSAT 8/9 CCA-EXT DATASET. THE

SEGFORMER-B2 MODEL WHICH WAS ONLY TRAINED WITH
SENTINEL-2 SHOWED ONLY THE BANDS OF LANDSAT 8/9 WHICH

ARE SIMILAR TO THE ONES FOUND IN SENTINEL-2 (SIX BANDS
IN TOTAL). THE THREE MODELS WHICH ARE FROM

OTHER WORKS WERE RUN USING THEIR
DEFAULT PARAMETERS

tial labeling could have general applicability in the domain
of supervised learning. Currently, classification datasets are
generally created with the assumption of precise labels, such
that if an annotator is unsure of the label because multiple
interpretations could be considered valid, then they still must
choose a single class for that sample. In this work, ambigu-
ous class structures were found in the mapping of differing
categorizations, offering a coherent, joint representation of the
unaligned labeling schemes. However, in the future, datasets
could be created that more naturally reflect ambiguities, at the



5405018 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

point of annotation. For fields such as cloud masking in
which considerable uncertainty exists at the semantic bound-
aries between classes (e.g., what is thin cloud versus thick
cloud), annotating with partial labels may produce a less
biased dataset. Clearly, the strict adherence to precise per-pixel
labeling leads to datasets that must define a boundary in a
fuzzy region of the input space, whilst permitting ambiguity in
labels may allow for consistent, comparable definitions across
different sensors and datasets. Whilst the models trained in
this article did not seem to be negatively impacted by the
more complex class systems permitted by the ambiguous loss
(see Table III), it is possible that for significantly smaller
models, where the capacity to learn the more specific class
structures is limited, that partial label learning may hurt perfor-
mance in the more basic tasks such as binary cloud/noncloud
classification.

Cloud masking datasets do not only differ in their output
structures and semantic class definitions but also in the sam-
pling distribution of input data. As demonstrated clearly by
the violin plots of Jeppesen et al. [62, Fig. 3], the Land-
sat 8 SPARCS and CCA datasets differ greatly with respect
to their reflectance distributions, for example. Differences like
these inevitably exist between many of the datasets used here,
because of the varied aims and priorities of their creators. The
diversity of dataset sample distributions impinges strongly on
any claims made about a cloud masking method’s generaliz-
ability from results on a single dataset. To this end, sensor
independence and partial labeling offer a way of smoothing
such sampling biases, whereby the combination of multiple
datasets entails a more diverse spread of data, both in training
and validation.

Moreover, the specific architecture and size of DL cloud
masking models seem to have a minimal effect on per-
formance when trained on the same data. For example,
in Section V-A, there is less than half a percent difference
in all F1 and BA metrics (see Table II) for DeepLabv3+,
SegFormer-B0, SegFormer-B2, with or without SEnSeI-v2,
and also the UNetMobV2 of Aybar et al. [13]). This remark-
ably consistent performance—across convolutional networks
and vision transformers—is a strong indication of the singular
importance of data, over model design, in the current state-of-
the-art cloud masking. Many near-optimal architectures exist,
and measured performance is in fact modulated primarily
by the size and quality of training data available. Cloud-
SEN12 has increased by an order of magnitude the quantity
of Sentinel-2 available for training and testing, however,
it is likely that this is still a limiting factor to supervised
methods’ performance. Rather than creating or tweaking state-
of-the-art models, it may be more fruitful for the cloud
masking community to follow a data-centric approach, pri-
oritizing a continual increase in the quality, quantity, and
diversity of available data, through large, open, collaborative
dataset creation.

The recent focus of the Earth observation community on
multimodality is well-founded. Richer, more diverse input
spaces permit more complex, nonlinear relationships to be
found, with the results of Section V-C being but one example.
One potential drawback to multimodality, however, is the extra

dependencies it attaches to the deployment of a model. If all
modes of data used in training are necessary for the running
of the model, then gaps in data availability may become
an issue (and an ever more serious one as the number of
different input modes increases). Multimodality, in this work,
is treated as an auxiliary, optional feature of the model, through
SEnSeI’s ability to ingest and fuse different combinations of
data. Therefore, if those auxiliary inputs are not available for a
given scene, then cloud masking may still be performed with
reasonable performance. The same logic is also true during
training, as the optional nature of the auxiliary inputs means
that SEnSeI can be trained both on data with and without those
auxiliary bands.

Whilst the results of Section V-C show limited value for
multimodal inputs when used alongside the full set of Sentinel-
2 bands, satellites with fewer spectral channels stand to gain
from utilizing multimodal models. Of particular interest to the
cloud masking community, the boost to thin cloud recall seen
from SAR inputs should motivate future works to include
SAR in model inputs, given how challenging thin cloud
retrieval can be, as is argued in Section II-A. Tentatively,
these results may aid operational satellite providers to weigh
up the additional engineering requirements of multimodal
models against the potential gain in performance, for a given
spectral combination. SEnSeI’s design certainly lessens the
difficulty of including multimodal inputs in a cloud mask,
however, for operational products it may nevertheless be chal-
lenging to access other modalities in real-time during cloud
masking.

VII. CONCLUSION

SEnSeI-v2 is considerably more capable than SEnSeI-v1,
adding sensor independence to models that maintain their per-
formance in comparison to specialized single-sensor versions
(see Section V-A), or even surpassing them (see Section V-D),
and extends the descriptor vector scheme to permit SAR and
DEM data (see Section V-C). The partial labeling and loss
strategy leads to a model that can learn more specific classes
(e.g., land, water, and snow) from datasets that have such
labels, whilst also being able to continue to use datasets for
which those classes are not disentangled. The ambiguous loss,
however, still assumes that classes are mutually exclusive.
In reality, such a constraint is not always desirable (e.g.,
the surface under thin cloud can still be seen, and therefore
perhaps classified). In the future, the ambiguous loss could
be extended or replaced to allow for these complex interclass
relationships to be expressed by the model, whereby certain
classes could remain mutually exclusive (e.g., a pixel cannot
be both land and water) but others are permitted (e.g., cloud
shadow falling over snow).

Assumptions and constraints remain in the descriptor vec-
tor’s parameter space that future work could relax. For
example, temporal information is not provided in the descrip-
tor vectors’ parameters, which would allow SEnSeI to ingest
multitemporal time series data. By doing so, this could boost
the performance of cloud masking directly, with information
from other times giving the model a helpful prior with which to
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judge the cloudiness of the target scene. In addition, such tem-
poral information could also allow a model to perform cloud
removal, as done by Ebel et al. [63] and Stucker et al. [64],
but with the ability to do so on a flexible, cross-sensor basis.
Temporal information in the descriptors could also permit
masking of clouds at night, which is important for sensors that
observe the Earth at night (e.g., [65]). Resolution (and other
geometric factors) are not encoded by the current descriptor
vectors, but could also be included in future work to allow the
model to treat different resolutions of data in different ways,
given that clouds’ spatial nature changes with the resolution
one uses.

This article necessarily focused on a single, well-known
case study: cloud masking. However, neither the architecture
of SEnSeI-v2 nor the definition of the ambiguous loss func-
tion, are in any way specific to this task. For many tasks (e.g.,
land cover and land use, crop type mapping, etc.) there are
multiple existing datasets that could be combined using the
partial labeling strategy in a similar fashion to here.

A repository with code relating to this project can be found
on GitHub [66].
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