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Abstract— Sentinel-5P provides excellent spatial information,
but its resolution is insufficient to characterize the complex
distribution of air contaminants within limited areas. As physical
constraints prevent significant advances beyond its nominal
resolution, employing processing techniques like single-image
super-resolution (SISR) can notably contribute to both research
and air quality monitoring applications. This study presents
the very first use of such methodologies on Sentinel-5P data.
We demonstrate that superior results may be obtained if the
degrading filter used to simulate pairs of low- and high-
resolution (HR) images is tailored to the acquisition technology
at hand, an issue frequently ignored in the scientific literature
on the subject. Because of this, as well as the fact that these
data have never been deployed in any previous studies, the
primary theoretical contribution of this article is the estima-
tion of the degradation model of TROPOspheric Monitoring
Instrument (TROPOMI), the sensor mounted on Sentinel-5P.
Leveraging this model—which is essential for applications involv-
ing super-resolution—we additionally improve a well-known
deconvolution-based strategy and present a brand-new neural
network that outperforms both traditional super-resolution tech-
niques and well-established neural networks in the field. The
findings of this study, which are supported by experimental
tests on real Sentinel-5P radiance images, using both full-scale
and reduced-scale protocols, offer a baseline for enhancing
algorithms that are driven by the understanding of the imaging
model and provide an efficient way of evaluating innovative
approaches on all the available images. The code is available
at https://github.com/alcarbone/S5P_SISR_Toolbox.

Index Terms— Atmospheric pollution, degradation filter, image
enhancement, remote sensing, Sentinel-5P, super-resolution.

I. INTRODUCTION

WORLD Health Organization (WHO) reports that more
than 90% of the global population lives in areas
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where air pollution emissions exceed the recommended levels,
which makes air quality monitoring of vital importance for
global health [1]. Satellites have recently become commonly
employed for this purpose. On its path to their sensors, elec-
tromagnetic energy goes through the atmosphere twice, where
it is mostly absorbed and dispersed by aerosols. To create
concentration maps of these components, it is thus essential
to recognize how each of them react to light at distinct
wavelengths and locations. Satellites with a high spectral and
temporal variation typically measure the whole atmospheric
vertical column over a kilometer area of the surface. Since
the spatial concentration of pollutants may vary by an order
of magnitude over just a few hundred meters [1], providing
averaged data in wide areas results in significant degradation of
signals and consequently compromises quantitative analyses.
Fortunately, the most recent availability of sophisticated tech-
nology has enhanced the spatial resolution of satellite imagery.

Sentinel-5 Precursor (Sentinel-5P or S5P), the first European
mission intended specifically for observing our atmosphere,
is an example of such innovation [2]. S5P is a single satellite
mission responsible for monitoring air constituents, specifi-
cally ozone (O3), nitrogen dioxide (NO2), carbon monoxide
(CO), sulfur dioxide (SO2), methane (CH4), formaldehyde
(CH2O), aerosols, and clouds. Inevitably, for some applica-
tions, its spatial resolution of about 3.5 × 5.5 km2 may not be
enough. When monitoring trace gases in urban areas, a higher
spatial resolution can help distinguish sources of pollution,
track emissions, and assess air quality more precisely. Fur-
thermore, a few studies have demonstrated that applying a
high-resolution (HR) model over some areas can help enhance
air quality modeling [3] and support mitigation actions [4];
additionally, HR is more significant for studies of local air
pollution than for large-scale variations that are relevant to
climate studies [5].

Despite the fact that image sensors keep being improved,
no device can measure a physical signal with infinite pre-
cision [6]. Indeed, the grid of pixels that makes up the
image results from the combination of scans in the direction
orthogonal to the motion of the platform (cross-track direction)
and the one parallel to it (in-track direction) [6]. Thereby,
each pixel occurs whenever the sensor digitally samples the
continuous stream generated by the scanning, establishing its
spatial resolution [6]. Unlike in other applications, spatial
resolution in remote sensing is formally defined as the shortest
distance that the sensor can resolve on the ground or ground
range detected (GRD) [7]. As this range decreases, and
therefore spatial resolution improves, less incoming light is
detected by the sensor, thus affecting image quality. As HRs
are constrained by these physical limitations, certain scales
can only be inferred via image processing techniques [8].
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For this reason, spatial resolution enhancement of remote
sensing images is currently a very active research area. When
no external information is available, other than the original low
spatial resolution information, single-image super-resolution
(SISR) techniques must be employed to generate an HR image
by increasing the number of available pixels while preserving
fine details.

A. Related Works

Several approaches have been proposed throughout the years
to address SISR [8], [9], [10].

The earliest techniques used to handle the problem were
interpolation-based approaches. Theoretically, if the original
signal is band-limited and the sampling frequency is above
the Nyquist rate, the missing points can be perfectly retrieved
with a sinc function. As this would not be possible in real-
world scenarios, effective interpolation techniques are usually
obtained by approximating the ideal sinc function by piecewise
local polynomials passing through p + 1 samples [11], as in
bicubic interpolators (p = 3) [12], [13]. Nevertheless, they
are unable to retrieve high-frequency information, leading to
solutions with excessively smooth textures.

More powerful approaches are based on image reconstruc-
tion, which aims to produce a final super-resolved image
that has the same visual characteristics as the low-resolution
(LR) image but at a higher scale. Some first examples
are the iterative back projection [14] and the gradient pro-
file [15] SR techniques. Other important reconstruction-based
approaches used for SISR employ the projection onto convex
sets (POCS) [16] and the maximum a posteriori (MAP) [17]
methods. Even though the outcomes of reconstruction-based
approaches are far better than those of interpolation-based
techniques, the a priori employed is quite sophisticated, which
results in the need of an extensive level of competence.

Nowadays, super-resolution based on image learning is
undoubtedly one of the most important areas of investigation in
the field [8]. These techniques learn from an external training
set potential relationships between LR and HR domains,
then use that information to create the final super-resolved
image [18]. Some classic approaches include sparse cod-
ing [19] and neighborhood embedding [20]. Other classic
approaches are the ANR [21] method and the A+ [22],
an advanced version of ANR.

More successfully, learning-based mapping approaches esti-
mate a mapping function from the input LR image to the
target HR image. Early works relied on one simple mapping
function, like kernel ridge regression [23], while more recent
methods [24], [25] employ several mapping functions. The
very latest techniques use deep neural networks.

Although there are significant differences between these
models, they all basically employ some essential com-
ponents, including model frameworks, upsampling tech-
niques, network designs, and learning procedures [10]. Early
lightweight deep neural networks proposed to address SISR
are either convolutional neural networks, like SRCNN [26],
FSRCNN [27], VDSR [28], ESPCN [29], and DSRN [30],
recursive networks, like DRRN [31], RFDN [32], and
DRCN [33], networks that employ the cascading mechanism,
like CARN [34] and CBPN [35], or networks that use mul-

tiscale fusion, like MSRN [36] and MCSN [37]. The results
of these early networks are satisfactory, but their perceptual
quality is relatively bad.

In particular, it has been demonstrated that the inter-
actions between distortion and perceptual features of an
image are complimentary yet competitive [38]. According
to the perception-distortion trade-off theorem, there is an
unreachable region in the perception-distortion plane. So, it is
impossible for any super-resolution technique to provide both
a low distortion error and a high perceptual quality, regardless
of the efforts made to create algorithms that come as close
as possible to the boundary. An intriguing finding is that
approaches based on generative adversarial networks (GANs),
like SRGAN [39], ESRGAN [40], and RankSRGAN [41],
[42], converge more closely to the bound. However, when
compared to more modern approaches, the batch normalization
employed in these models has a negative impact on quality.

Remote sensing data differs from other types of data and
over the years, the many different domains in which the
images of interest are applied have divided the research in this
field independently. In the process, the study of any potential
model has quickly progressed, integrating ever-more complex
components. For example, some authors have proposed the
integration of high-level semantics and low-level details [34],
[43], [44], and others local and non-local attention blocks
to extract features that capture the long-range relationships
between pixels. Different kinds of attention mechanisms are
employed for SISR: channel-attention, used in RCAN [45],
SeNet [46], SESR [47], and SAN [48], spatial-attention
in DRLN [49] and RFANet [50], and hybrid attention in
CSFM [51], [52], and HAT [53]. Further attention mecha-
nisms more recently introduced are non-local attention, like
in RNAN [54], pixel attention, like in PAN [55], and mul-
tiscale attention [56], [57]. Likewise, other important works
on this subject employ either diffusion mechanisms [58],
transformers [53], [59], residual information [45], [60], [61],
or knowledge distillation [62], [63], [64], [65].

Although super-resolution approaches are quite sophisti-
cated, the task surely has multiple challenges and research
gaps. Particularly relevant to our work is the fact that,
since real-world images undergo a specific degradation, even
complex models, if trained on simulated datasets, perform
badly in real-world scenarios [10]. A model assessed using
such data actually learns to “reverse” a different degradation
process, and may therefore be unable to generalize to another
distortion scheme. As a result, in real-world settings, state-
of-the-art super-resolution approaches often fail to perform as
intended [9]. Interestingly, in most studies, the degradation
model employed to simulate image pairs is independent of
the acquisition sensor, even for rather complex models, and
the issue remains to be investigated [9].

B. Contributions

In this article, we thoroughly explore the super-resolution
of Sentinel-5P images, a topic that has never been addressed
in the entire literature on the subject. As explained at the end
of the previous paragraph, the specific characteristics of the
sensor have a major influence on the operation of model-based
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super-resolution algorithms. So, their design must be adapted
to the acquisition technology of Sentinel-5P.

Hence, the majority of our research focuses on modeling the
spatial degradation induced by the sensor on the images. Then,
leveraging the knowledge of the spatial response of Sentinel-
5P’s sensors, we develop super-resolution approaches tailored
to the satellite at hand and provide a basis for algorithm
assessment.

Consequently, the main contributions of this article are as
follows.

1) The formulation of a reliable approximation of the
overall spatial response of Sentinel-5P’s sensors.

2) The improvement of a super-resolution algorithm based
on the widely accepted variational optimization.

3) The implementation of a deep-learning approach in
which the upsampling step is carried out by a transposed
convolution layer, and the upsampled image is then
enhanced by a series of convolutional layers.

4) The evidence of the superior performance of these
customized approaches in comparison to the methods
usually employed in the literature not only at reduced
resolution (RR), i.e., when the degradation filter used
to simulate the LR image is known, but also at full
resolution (FR).

The remainder of this article is organized as follows.
In Section II, we formalize the relationship between LR and
HR images employing a widespread representation of the
imaging model and subsequently formalize the task as an opti-
mization problem. Assuming the issue is non-blind, we then
focus our investigation on modeling the sensor degradation
that will be used for the proper design and assessment of
the super-resolution methods. The proposed SISR solutions,
which exploit the derived acquisition model within a classical
variational approach and a novel shallow neural network, are
described in Section III. After having thoroughly described the
images used, the protocols and quality indices, and the training
setting (Section IV), as well as justified the design of the
deep-learning model proposed (Section V), the experimental
results (Section VI) at RR and FR will basically demonstrate
how the degradation we have modeled affects super-resolution
algorithms, and how this issue, which is commonly over-
looked, poses a threat to the proper functioning of such
approaches.

II. SUPER-RESOLUTION OF SENTINEL-5P PRODUCTS

This section describes the problem addressed in this study.
Its main objective is to formalize the SISR problem of S5P
radiance products, highlighting the criticality of the imaging
model for both the optimization and the assessment of algo-
rithms. A specific formulation is motivated by the peculiarity
of the TROPOspheric Monitoring Instrument (TROPOMI)
acquisition process and the steps leading to the physical
derivation of the mathematical model proposed in this study
is accurately described.

A. SISR Problem Formulation

A powerful mathematical description of the super-resolution
problem is based on the assumption that the available LR

representation of the scene observed by the satellite, say image
L, can be obtained from an HR representation of the same
scene H through a series of consecutive degradations that
simulate how the sensing technology acquires the scene [8].
This process can be formalized by the imaging model

L = (H ∗ K) ↓r + n (1)

where ∗ is the convolution operation with a blurring kernel
K, ↓r is the downsampling by a factor r , and n is an additive
noise. In all formulations, matrices are denoted with uppercase
boldfaced letters.

The operator K corresponds to the point spread function
(PSF) of the sensor, a function that weighs the measured
physical signal before it is integrated to produce the output
value [6]. If the performance is not limited solely by diffraction
and other noise corruptions arise, it can be modeled as a
zero-centered Gaussian function, whose standard deviation σ

depends on the specific acquisition sensor [8].
The image degradation model described in (1) is usually

recast in terms of a matrix formulation, which is easily obtain-
able by representing the involved images as column vectors.
Indeed, the image degradation process can be analogously
expressed as

l = Sh (2)

where l = vec(L) and h = vec(H) are the vector image
representations of L and H, respectively, obtained by stacking
their columns on top of one another. Additionally, S = CP
implements both the blurring and downsampling operations.
In all formulations, vectors are denoted with lowercase bold-
faced letters.

The imaging model can be expressed as in (2) if and only
if the following hypotheses hold for these matrices [66], [67].

1) The blurring matrix P can be approximated by a block
circulant with circulant blocks (BCCB) matrix, i.e., the
matrix representation of the cyclic convolution operator.
This hypothesis is met if and only if the blurring kernel
K is shift-invariant and periodic boundary conditions are
used for the convolution operator.

2) The matrix C is the downsampling operator, and its
conjugate transpose interpolates the decimated image
with zeros over the rows and columns, respectively.

The goal of SISR is inverting the acquisition process,
i.e., computing h given that l is available and S is assumed to
be known. This last assumption means that the SISR problem
is supposed to be non-blind.

The model described in (2) is a system of linear equations,
whose solution existence depends on whether it is possible to
find the inverse matrix S−1. As the amount of pixels available
in l is lower than the number of pixels in h, the matrix S is not
square and, even if it is still feasible to solve the system, the
inverse problem is inherently ill-posed, namely there exists an
infinite number of HR images corresponding to a single LR
image [67].

To compensate for the instability of solutions, it is necessary
to include a regularization factor in the optimization problem.
As a result, the SISR goal can be better achieved as the finding
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of an estimate ĥ of h, i.e., the solution of [10]

ĥ = arg min
h̃

[
L

(
Sh̃, l

)
+ τ 8

(
h̃
)]

(3)

in which the regularization term 8(·) is weighted by the
parameter τ , and the loss function L(·) is a consistency
term between the degraded version of the HR image and the
available LR image, both in column vector form.

B. PSF Model Formulation

The knowledge of the blurring kernel K in the imaging
model (1), or, equivalently, of the degradation operator S
in (2), is essential to employ the formalization just described in
the algorithms design and assessment. To create model-based
algorithms and generate images for performance evaluation
with the same features as the real images, the first step is to
establish an appropriate and manageable approximation of the
spatial response of the acquisition system, i.e., TROPOMI.

The TROPOMI is the sole payload of the S5P satellite. It has
four spectrometers (UV, UVIS, NIR, and SWIR), each with
its own detector and split in two halves (band 1–8), covering
almost 4000 overlapping channels between the ultraviolet and
the short-wave infrared, and it has a swath of roughly 2600 km
on the Earth’s surface [2]. TROPOMI operates in a push-
broom configuration [2]. This means that the signal from the
covered area is sampled as the satellite moves along-track,
and it is dispersed onto 2-D detectors: the signal sampled
in the direction orthogonal to the motion, i.e., cross-track
direction, is projected onto the rows, and the signal sampled
in the spectral direction is projected onto the columns. Light
from the entire swath is sampled in a period of approximately
840 ms, resulting in a ground pixel size of about 5.5 km along-
track. The amount of signals co-added during this period is
programmable between 1 and 256. In the cross-track direction,
the ground sample interval is equal to roughly 1.75 km.
However, row-binning is usually performed and, depending
on the number of rows summed during one frame transfer
in the detector, the resolution may change in the cross-track
direction too, with a lower limit of 3.5 km, corresponding to
a row-binning factor equal to two.

When an image of the target area is generated, a con-
version from object space coordinates to detector space
coordinates occurs. The pixel response function (PRF)
9prf[rdet, cdet](φ, ϵ,λ) is the function that describes the rel-
ative response of a single detector pixel [rdet, cdet], where
rdet indicates the rows and cdet the columns, as a function
of the object space dimensions, namely the azimuth angle
(φ), which is the observation angle in agreement with the
cross-track direction, the elevation angle (ϵ), which is the
observation angle in relation to the along-track direction, and
the wavelength (λ). The instrument transfer function is a
helpful idea for understanding the mapping between unequal
dimensions. In optical imaging systems, this function is the
Fourier transform of the PSF, and hence the mathematical
description of the projection of the object space (φ, ϵ,λ) onto
the image space [X, Y], which is not necessarily equal to
the detector space [rdet, cdet], mainly because of co-addition
and row-binning. The magnitude component of this complex

Fig. 1. Illustration of a PRF at a fixed wavelength of the UVIS detector.
The response has been interpolated in a predefined grid and centered in both
directions. The resulting function (in blue) was fit to a function (in red)
obtained by convolving a rectangular window with an asymmetric Gaussian
function.

function is the modulation transfer function (MTF) and it is
the transformation we require.

As the PRFs are quite similar to asymmetric Gaussian
functions, they can be fit to Gaussian-like distributions. The
convolution along the elevation direction between an asym-
metric Gaussian distribution and a rectangular window yielded
the best fitting results. An example of a PRF at a fixed
wavelength of UVIS fit to a Gaussian-like distribution is shown
in Fig. 1. These responses are different from each other both
in spectral and spatial coordinates. With regard to the spectral
channel, we will only consider one channel at a time in
this article, hence the response taken into account for each
image, once a single channel has been picked, will be the
response associated with the corresponding channels. Here,
we would like to make some general statements about the
row coordinate, i.e., the spatial dimension, as the responses
are defined for each detector pixel. To this end, we did find
that the response at the exact center can be employed as the
response of all the detectors’ pixels in the central area of the
cross-track direction. This is due to the fact that distortions
at the swath’s center can be ignored; anyways, this is not
possible at its furthest borders, where the signal comes from a
wider region because of the curvature of the Earth’s surface.
This phenomenon is shown for the second detector (UVIS) in
Fig. 2. An additional experiment demonstrated that averaging
multiple responses results in a function that is much more
closely matched to the responses in this area, as shown in
Fig. 3 for the UVIS detector.

Once dispersed onto the detectors, pixels’ signals are
mapped onto the image space. As already said at the beginning
of this section, the image space is not necessarily equal
to the detector space and there is considerable freedom in
determining the exact area of the Earth covered by a single
image pixel. The following processes all impact on image
pixels’ responses.

1) Co-addition, which is the programmable sum of mea-
surements along-track in a predefined co-addition
period.

2) Row binning, namely the programmable sum of mea-
surements in the cross-track direction.
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Fig. 2. Plot shows the error computed by comparison of the effective
PRF, once it has been interpolated to a predefined grid and centered in both
directions, with the fit Gaussian-like function obtained from its discrete points
(in red) and with the fit Gaussian-like function obtained from the discrete
points of the PRF at the exact central index of the swath (in blue).

Fig. 3. Plot shows the error computed by comparison of the effective PRF,
once it has been centered in both directions, with the distribution obtained by
averaging the points of the central response with no other function (in red),
with two additional functions (in blue), with four additional functions (in
green), with six additional functions (in cyan), with eight additional functions
(in yellow), and with ten additional functions (in magenta).

3) Satellite motion. It will be assumed that the Earth is an
exact sphere and the satellite speed is constant, so that
the response can be perfectly elongated along-track.
Under these assumptions, satellite motion is represented
by a convolution between the response and a rectangular
window in the elevation direction along the angle that
the satellite covers during a certain co-addition period.

Thus, to accurately determine the actual spatial response
function in image space, the PRFs of all individual detector
pixels [rdet, cdet] that contribute to each image pixel [X, Y]

must be combined. In this way, the spatial response of one
image pixel during a single co-addition period can be formally
obtained.

Then, depending on the downscaling factor, such a response
can be sampled to estimate the function responsible for the

Fig. 4. Illustration of the PSFs for all the detectors for r = 4.

blurring, i.e., the PSF. We found that the blurring kernel K
resulting from the described operations can be fit very closely
by a Gaussian function with different standard deviations in
the along-track and cross-track directions; in particular, the
ratio of the sum of squared differences between the exact and
the Gaussian-shaped representation of the PSF and the sample
variance of the exact values of the PSF is lower than 1%. So,
the PSF expression can be easily obtained by computing the
gains of the MTF at the Nyquist frequency, i.e., the frequency
that is half the sampling rate, in both spatial directions.
Accordingly, at the end of all the experiments, the MTF of
Sentinel-5P was described as a Gaussian function with gains
at the Nyquist frequency depending on the considered detector.
A graphical representation of the PSFs for all detectors, with
r = 4, is provided in Fig. 4. As shown in the figure, the
second and third detectors are more similar to each other than
the other two. Indeed, the estimated values of the gains in
across-track and along-track directions, respectively, are equal
to 0.37 and 0.36 for UV, 0.44 and 0.74 for UVIS, 0.45 and
0.74 for NIR, and 0.15 and 0.20 for SWIR.

III. SUPER-RESOLUTION TECHNIQUES

The methods used in the experimental phase to point out
the essential role of the degradation model for super-resolution
algorithms are described in this section.

A. Non-Blind Deconvolution

As the operation ∗ of the imaging model described
in Section II-A is a convolution, the inverse operation,
i.e., a deblurring, can be addressed as a deconvolution oper-
ation. As already explained in Section II-A, if S is known,
as it is assumed to be in this case, it is possible to degrade an
estimate ĥ of the HR scene h with S and determine how far
apart its LR equivalent pixels are from l pixels. The Euclidean
distance can be easily determined, although other types of dis-
tances can be used. Its minimization, or what is known as the
objective function, is intuitively what one desires to achieve.
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This kind of regularization is known as least-squares method.
From the least-squares method, Tikhonov regularization can
be obtained by considering a shrinking parameter µ that is
used to reduce the norm of the estimate ĥ. This regularization
alone can easily result in Gibbs artifacts and so an additional
regularization may be included to the prime differences of
the estimate through a smoothing parameter λ. In short, the
objective function can be formalized as [67], [68]

Q = |l − Sĥ|
2
+ µ|ĥ|

2
+ λ|Dĥ|

2 (4)

where |x| denotes the Euclidean norm of a generic vector
x, the values µ and λ can change the contribution of each
regularization term, D is the matrix implementing the prime
differences, and |l − Sĥ| is the data fidelity term.

The solution ĥ can be efficiently computed via an iterative
algorithm. In this article, we employ the conjugate gradient
algorithm (CGA) [68].

B. S5Net

Mapping-based learning approaches handle the SISR prob-
lem by observing a training set of pairs of LR and HR images
and they attempt to find a mapping function between the LR
and the HR representations.

We have defined a neural network, which we will refer to
as S5Net, which conceptually matches the phases that make
up this transformation.

1) As image upsampling particularly affects the task,
a transposed convolution layer is employed. Transposed
convolution increases the size of the feature map by
inserting r −1 zeros between two consecutive pixels and
performing a zero padding. Then, it convolves the image
obtained with the kernel weights, which are initialized
to the 2-D version of the cubic polynomial kernel [13],
as it yielded the best results when compared with other
kernels.

2) Image representation is the process that takes each
patch in the upsampled image and represents it as a
high-dimensional vector in a given basis [69]. A lin-
ear representation can be obtained by convolving each
channel of the upsampled image n1 times with filters of
dimension f1 × f1 and adding a vector of n1 biases to
the result. At the end, the rectified linear unit (ReLU)
can be applied to the output, allowing a nonlinear
generalization of this step [70].

3) In nonlinear mapping, each n1-dimensional vector is
nonlinearly mapped onto an n2-dimensional vector. This
process can be seen as the convolution of the output
of the previous layer with a set of n2 filters of size
n1 × f2 × f2 and the subsequent addition of a vector
of n2 biases. Then, the ReLU function is applied. The-
oretically, additional layers may be added at this point
to increase nonlinearity, but this makes the model even
more complex.

4) Finally, in the reconstruction phase, the patch-wise HR
representation is combined to produce the super-resolved
image. Typically, for traditional methodologies, the final
image is generated by averaging the HR patches. In other

words, the n2-dimensional representation is convolved
with kernels of dimension n2 × f3 × f3 and then added
to a vector of c biases, where c is the number of channels
in the image.

We combined the four steps to create the neural network
depicted in Fig. 5, where the architecture that gave the best
results (and the architecture used in the experiments) is shown,
corresponding to the parameter selection n1 = 64, n2 =

32, f1 = 9, f2 = 5, f3 = 5. All the weights and biases in this
model must be tuned to the images employed for the specific
task in order to achieve optimal performance. The model’s loss
function is the mean-square error (MSE) and the learning rate
is set to 10−2. In addition, the network is trained considering
the same scaling factor r taken into account in the test phase,
as we observed that this choice has a significant impact on the
weights and biases learned by the neural network.

IV. EXPERIMENTAL TESTBED

In this section, we will go over the test configuration used
for assessing the algorithms’ performance: the datasets used,
the quality assessment protocol, and the experiments’ training
and testing settings.

A. Sentinel-5P Radiance Products

In this work, we specifically focus on the super-resolution of
Sentinel-5P Level-1B radiance products. They are available for
each orbit and band as netCDF4 files and contain the Earth’s
spectral radiance expressed as the rate of photons received per
unit area as a function of three dimensions: the index in the
cross-track direction, the index in the along-track direction,
and the index in the spectral direction. They additionally
contain the instrument configurations within the orbit. Each
combination of programmable instrument settings, like the
number of measurements co-added and the row-binning factor,
is uniquely identified by the combination of configuration ID
and version.

Each orbit spans eight bands (BD1 to BD8), each of which
has approximately 500 channels, and thus totals half of a
spectrometer, either UV, UVIS, NIR, or SWIR. The overall
orbit, as previously stated, comprises around 4000 channels.
Only a single channel at a time will be taken into account in
this article, hence each image is monochromatic. In the cross-
track direction, only the central area of the swath, i.e., the
range where the spatial responses are roughly comparable
to each other, as explained in Section II-B, was considered.
In this area and for the considered channel the row-binning
factor is always equal to two. As a result, no experiment
on the spatial response was undertaken as this parameter
changed. On the other hand, as already said in Section II-B,
the co-addition factor is programmable between 1 and 256.
An investigation conducted on the spatial responses when the
co-addition parameter varies revealed that gains at the Nyquist
frequency changed minimally.

In the experiments, two examples of such orbits are
employed, specifically orbits 28 317 and 29 729 taken on
January 4, 2023 and September 7, 2023, respectively. We
selected the central frequency of the second band of each
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Fig. 5. Illustration of the S5Net. Given a single channel of the LR image LR and the scaling factor r , the network is tasked to map it to a super-resolved
image SR. The first layer is a transposed convolution, whose weights are initialized to the cubic kernel. Then, the output image undergoes three convolutional
layers: a convolution with 64 kernels of dimension 1 × 9 × 9, a convolution with 32 kernels of dimension 64 × 5 × 5, and a convolution with a kernel of
dimension 32 × 5 × 5. The activation function employed is ReLU.

detector (BD2, BD4, BD6, and BD8), obtaining a total of eight
monochromatic images. Each image is 512 × 256 pixels in
size and it is obtained by cropping the orbit in two directions:
along-track between indices 2561 and 3073, and across-track
between indices 66 and 322, a portion that corresponds
roughly to the central part of the swath. In across-track, the
exception is the SWIR, where the indices are chosen in full
because the row-binning procedure does not occur. Anyways,
during the training step, all the images were considered in
their whole. Once cropped, the images retrieved from the
first orbit cover an area over India and Sri Lanka, while the
images obtained from the other show California and a small
part of Mexico. To keep things simple, the two datasets, each
comprising four images (called UV, UVIS, NIR, and SWIR in
the experiments), will be referred to as IN and US all through
the sections that follow.

B. RR and FR Protocol and Quality Metrics

The success of SISR depends on the quality of the generated
super-resolved images. Even though the ideal circumstance
to perform an image quality assessment is when there are
ground-truth images available, in remote sensing this is not
possible considering that the main reason why these techniques
are employed is the impossibility to acquire HR images in the
first place.

When ground-truth images are not accessible, an RR
protocol can be employed [71]. The available LR image
can be scaled down using the imaging model described
in Section II-A and the SISR algorithm may be tasked to
super-resolve it to its original resolution. In this way, a ref-
erence can be used to assess the model’s accuracy. This
protocol is based on the premise that the model perfor-
mance is scale-independent and must therefore satisfy two
important properties: consistency, i.e., the LR version of the
super-resolved image must be as comparable to the original
input image as possible, and synthesis, namely a coarser LR
image can be generated by reducing the original image in
accordance with the imaging model.

An alternative approach consists of employing the images at
their original resolution, forgoing the use of a reference image.
This methodology, known as FR protocol, has the benefit of
testing the algorithms’ ability to infer missing features at the
size used in practice by assessing them at the actual resolution

of the images. This approach should be used in conjunction
with the RR protocol to avoid the uncertainties caused by the
scale-invariance assumption.

To evaluate the efficacy of image restoration algorithms,
a variety of quality metrics have been utilized in the literature.
Depending on the availability of a reference HR image, these
metrics can be divided into two categories.

1) Distortion measurements can be applied by leveraging
a reference image, which is available within the RR
assessment protocol. In this article, we will employ the
peak signal-to-noise-ratio (PSNR), the Erreur Relative
Globale Adimensionnelle de Synthése (ERGAS) [72],
the spatial correlation coefficient (sCC) [73], and the
universal image quality index (UIQI, or more simply
Q) [74]. The optimal value of ERGAS is 0, that of
Q and sCC is 1, while PSNR conveys an improving
performance as its value increases.

2) Perceptual metrics often exploit only the super-resolved
image and, for this reason, they are usually employed
in the FR assessment protocol. In particular, we use
the blind referenceless image spatial quality evaluator
(BRISQUE) [75]. As its values decrease, BRISQUE
indicates a better performance.

As they tend to evaluate the “look” of the reconstructed image,
perceptual metrics accuracy is lower than that of distortion
metrics, especially the ones directly related to the MSE,
i.e., PSNR and ERGAS.

C. Setting of Model-Based Algorithms

In the training phase of S5Net, the same procedure utilized
for the RR assessment protocol was used for producing a
couple of LR and HR images. In particular, to obtain the
results at FR, the available image was used as the desired
output during the training, while the corresponding input
image was generated by a single degradation with a scaling
factor r = 4. On the other hand, to obtain the results at
RR, the available LR image was used as the neural network
desired output in the test phase, while the image obtained by
a single degradation was used as the input. The latter image
was also used as the target image in the training phase, while
the network input was generated via a further degradation by
a scaling factor r = 4.
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Fig. 6. Logarithmic plot of the averaged RMSE obtained on the two images
on each single frequency by the CGA method when λ and µ vary in the
interval [0.00001, 100].

The experimentation section presents the results of the sole
fine-tuning phase, which was undertaken to specifically tailor
the network to the S5P images by adjusting the initial param-
eters of standard interpolation and super-resolution networks.
Therefore, as Wang et al. [10] explain in great detail, many
researchers in this field are moving toward partially online
learning: the network that was already trained on an extensive
dataset is additionally trained online on the image that will
be super-resolved employing the RR protocol. In the non-
blind deconvolution, the initial image in the CGA is set to
the result obtained from the interpolation with 23 taps, as this
choice yielded better results if compared to the method used
in [68]. The parameters µ and λ in the objective function were
chosen by conducting a sensitivity analysis of the algorithm in
respect with their changes for different images. In particular,
the analysis was carried out by varying both parameters in
the interval [0.00001, 100]. The averaged RMSE obtained on
both datasets, reported in Fig. 6, demonstrated that, when µ

varies in the interval [0.00001, 0.0001], the error does not
change significantly with λ in the interval [0.00001, 1]. For
this reason, the values of µ = 0.00005 and λ = 0.1 were
chosen to guarantee a robust behavior for all the images.
Moreover, the threshold parameter was set to δ = 0.0001 times
the norm of the low resolution image and the maximum
number of iterations was chosen to be equal to 200 to avoid
a high temporal complexity.

For each protocol and algorithm, two different training
approaches were considered. In the first approach, the input
image was obtained by degrading the output image via a
BCCB matrix P, defined by using the gains at the Nyquist fre-
quency derived from the PSF model described in Section II-B.
For the second one, the degradation matrix P was defined using
different values at the Nyquist frequency. We considered a
symmetrical filter with both gains at the Nyquist frequency
equal to 0.3, a value widely employed in the literature. The
scaling-dependent undersampling C matrix always matches the
hypothesis outlined in Section II-A. For simplicity, the two

TABLE I
Q, ERGAS, SCC, PSNR, AND BRISQUE INDICES FOR THE FOUR IMAGES

OF IN DATASET FOR S5NET WITH AND WITHOUT THE TRANSPOSED
CONVOLUTION LAYER. THE BEST RESULT IS IN BOLD FONT

TABLE II
Q, ERGAS, SCC, PSNR, AND BRISQUE INDICES FOR THE FOUR IMAGES

OF US DATASET FOR S5NET WITH AND WITHOUT THE TRANSPOSED
CONVOLUTION LAYER. THE BEST RESULT IS IN BOLD FONT

approaches will be referred to as “_match” and “_nomatch”
in the following.

The testing phase was conducted for all the techniques
described in Section III. The quality of the estimate produced
by each method was assessed at the end of the test using
the metrics specified in Section IV-B taking into account any
flaw caused by how each method performed at the borders
of the image. The computing time of each algorithm on
all images and for both protocols was additionally taken
under consideration. It should be mentioned that PyTorch
version 2.0.0 was used for collecting all findings on an Nvidia
GTX 1080 Ti GPU.

V. ABLATION STUDY

To evaluate how the performance of S5Net changes in
relation to the modules it contains, we carried out an ablation
study on all the eight images. Given the importance of the
upsampling phase in single-image super-resolution techniques,
the ablation study involved the transposed convolution layer,
whose effectiveness was assessed by replacing it with the
classical bicubic interpolator.

The study’s findings are shown in Tables I and II, in which
“S5Net_cubic” denotes the S5Net without the transposed
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TABLE III
Q, ERGAS, SCC, AND PSNR INDICES FOR THE FOUR IMAGES OF IN

DATASET. THE TIME IN SECONDS IS PROVIDED TOO. THE BEST
RESULT IS IN BOLD FONT AND THE BEST RESULT BETWEEN THE

“_NOMATCH” AND “_MATCH” CASES IS UNDERLINED

convolution layer. In order to simplify the analysis and avoid
focusing on the algorithms’ distinct performance with the RR
and FR protocols, all indices described in Section IV-B are
reported in the same table, alongside the averaged value for
each index and technique computed by taking into account all
channels together. The best results for each index appear in
bold in both cases.

With the exception of a single channel of the second dataset,
where the difference is still negligible, the network trained
with the transposed convolution layer consistently performs

TABLE IV
Q, ERGAS, SCC, AND PSNR INDICES FOR THE FOUR IMAGES OF US

DATASET. THE TIME IN SECONDS IS PROVIDED TOO. THE BEST
RESULT IS IN BOLD FONT AND THE BEST RESULT BETWEEN THE

“_NOMATCH” AND “_MATCH” CASES IS UNDERLINED

better than the network trained with the bicubic interpolator.
To be more precise, we attain an appreciable improvement in
each quality index for RR alongside a substantial enhancement
in FR performance, estimated on average in 1.92 BRISQUE
quality classes.

This demonstrates that the transposed convolution layer—
which, in contrast to the basic interpolator, learns the weights
during the training phase—remains a crucial component of
image reconstruction, particularly in cases when the reference
image is unavailable.
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Fig. 7. False-color representation (NIR as red, UVIS as green, and UV as blue) of the ground-truth image and some super-resolved images for IN dataset
and the RR protocol.

VI. EXPERIMENTAL RESULTS

In this section, we will discuss the experimental findings
obtained on the eight images introduced in Section IV-A.
The results obtained by the algorithm we improved, namely
the deconvolution-based approach described in Section III-A,
which we will call “CGA,” and the network we designed,
“S5Net,” which is described in Section III-B, will be compared
to the outcomes of some well-established approaches: the
“Cubic” interpolator [13], the “SRCNN” network, the first
neural network proposed for SISR [26], “PAN,” a quite recent
neural network based on pixel attention, proposed in [55], and
“HAT” [53], a very recent neural network based on a hybrid
attention transformer. The main goal of the experimental phase
is to underline the difference in the results obtained by the
experiments in which the simulated images are generated by
taking into account the filter discussed in Section II-B, which
we will call “_match,” and the tests in which standard values
for the filter gains at the Nyquist frequency are employed,
namely “_nomatch” cases, hence to provide concrete evidence
of what has been theoretically examined thus far. These
findings are an important step toward the application of such
techniques for data that have never been used in the literature
for the same intent.

A. RR Assessment

Tables III and IV provide Q, ERGAS, sCC, and PSNR
indices of the SR of the four images of each dataset for
all the approaches, respectively. The average value obtained

for each dataset and index considering all channels together
is shown too, alongside the time in seconds taken by each
algorithm. Additionally, in both the tables, bold represents the
best result for that index among all algorithms, while the best
performance between the “_nomatch” and “_match” versions
of the same algorithm for a specific index is underlined.

The first important finding of the evidence given is that
the proposed network behaves far better than all other
approaches examined in most cases, even when compared
to well-established networks in the field, especially the most
recent ones. As the results reported suggest, while developing
a super-resolution technique, an appropriate design of the
degradation filter employed to generate the LR simulated
image is crucial when the HR ground-truth image is not
obtainable. The need for the degradation filter to be appro-
priately defined arises from the fact that it describes the
blurring and downsampling processes that occur during image
capture, as it was covered in Section II-A. As a consequence,
if image capture is not precisely simulated, the inverse problem
given in Section II-A becomes far tougher and could result
in misleading solutions. The issue is much more significant
when employing satellite images for quantitative analyses,
when each pixel value contributes significantly. That is why,
in our study, minimizing the error on the pixel, i.e., optimizing
the indices directly related to the MSE, is essential. This is
particularly relevant for Sentinel-5P radiance data, which are
used for creating extremely accurate air pollution maps.

Some super-resolved images are shown in Fig. 7. It contains
the false-color representation, employing the NIR channel as
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Fig. 8. Difference of MSE values obtained by CGA_nomatch and
CGA_match for IN dataset.

red, the UVIS channel as green, and the UV channel as blue,
of the ground-truth image and the products of some benchmark
methods, namely cubic interpolator and SRCNN, compared to
the results of CGA_nomatch, CGA_match, S5Net_nomatch,
and S5Net_match for IN dataset. The same portion of the
image is zoomed in all the pictures to clearly show the
discrepancies in pixel reconstruction of the same algorithm
under different conditions. Despite the fact that a visual
assessment of the images supports what was previously said
about the metrics’ results, as already stated, we are more
concerned with the preciseness of the pixel values. For this
reason, in Figs. 8 and 9, we show the difference of the MSE
obtained by CGA and S5Net, with no-matching filters and with
matching filters, for the IN and US scenes, respectively. The
more green colored the map is (positive values), the bigger the
error for the no-matching cases. The maps have been generated
at the same scale. As can be observed, when the filters used
in the two scenarios have more comparable gains, i.e., the

Fig. 9. Difference of MSE values obtained by S5Net_nomatch and
S5Net_match for US dataset.

UV, for which they are practically equal, and the SWIR, the
difference has significantly less impact on the performance of
both algorithms. In any case, green appears more frequently
than red in all the maps, and this confirms what was stated till
this point.

We want to underline that the distinction between the two
scenarios, which is typically overlooked in the past studies,
becomes particularly evident after approximately 400 s of
training for the neural network and a maximum of 200 itera-
tions in the deconvolution algorithm. As it has been previously
addressed, it is crucial that the simulated data remain consis-
tent with the data provided to the algorithm being evaluated if
the results are to be as expected. This is even more important
for the Sentinel-5P case, where the gains at the Nyquist
frequency tend to strongly diverge from the widely used value
(i.e., 0.3), especially for UVIS, NIR, and SWIR detectors.

In summary, a gain of 0.74 dB for S5Net and 0.84 dB
for CGA may be obtained by comparing the “_nomatch” and
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“_match” scenarios. The proposed method also proves to be
computationally efficient, as it is always faster than more
sophisticated state-of-the-art networks, in particular PAN and
HAT, and often faster than or at least equal to SRCNN.

B. Full Resolution

A good degradation process modeling can significantly
improve all super-resolution techniques that depend on it.
When there is no ground-truth image available, this is even
more vital. To avoid that the validity of the numerical results
could be affected by the matching image degradation process
in the RR protocol and in the CGA and S5Net algorithms,
we used the no-reference metric discussed in Section IV-B to
evaluate the algorithms’ accuracy at FR too.

Table V provides the BRISQUE index of the SR of the
eight images, alongside the time in seconds taken by each
algorithm. The same font code, as in Tables III and IV, namely
the bold and underlined characters, is used to indicate the best
values among all the algorithms and between the “_nomatch”
and “_match” versions of the same algorithms, respectively.
The averaged value obtained for each dataset considering all
channels together is shown too. As pointed out in the preceding
section, the proposed network performs better than all tradi-
tional methods and neural networks in most cases. We would
like to point out that, unlike the prior RR example, for the
second dataset, the PAN network exceeds expectations, albeit
marginally. Nonetheless, the network in question is extremely
complex, and the BRISQUE index, as a no-reference metric,
must be supplemented by a visual assessment. Anyways, even
in the no-reference evaluation scenario, we would like to draw
attention to the difference in the performance of the same
algorithm when the degradations in the simulated and test
data are different (“_nomatch”) in comparison with the case
in which they are the same (“_match”) as the proper design of
the degradation filter employed to generate the LR simulated
image is much more vital for the no-reference evaluation
scenario.

Some super-resolved images are shown in Figs. 10 and 11.
In particular, they show a false-color representation of the
products of the same methods shown in the RR scenario,
in addition to PAN, to visually analyze its findings, for the
IN and US datasets, respectively. In particular, in Fig. 10,
the false-color representation is the same as Fig. 7, while,
in Fig. 11, the single channel of SWIR is employed as red,
that of NIR as green, and that of UVIS as blue, in order
to include all detectors. Then, to clearly demonstrate the
variations in pixel restoration of the same method under
different conditions, the same area of the image is zoomed
in all the cases. The analysis of the images supports both the
numerical findings and previous assertions made regarding the
proposed network and also highlights a superior quality with
respect to PAN, although not revealed by quantitative indexes.
When the degrading filter for the simulated images is supposed
to be a predetermined model that is independent of the sensor
acquisition features, the quality of the reconstruction is worse,
and this is quite obvious from the images, especially for the
S5Net.

TABLE V
BRISQUE INDEX FOR THE EIGHT IMAGES OF BOTH DATASETS. THE TIME

IN SECONDS IS PROVIDED TOO. THE BEST RESULT IS IN BOLD FONT
AND THE BEST RESULT BETWEEN THE “_NOMATCH”

AND “_MATCH” CASES IS UNDERLINED

In summary, S5Net and CGA gain 1.2 and 1.4 qual-
ity classes on BRISQUE, respectively, when comparing the
“no_match” and “_match” scenarios.

The spectral consistency of the channels was not investi-
gated in this work because the four spectra were processed
independently. However, a visual inspection reveals that the
S5Net output is more similar to systems that process all
channels equally, resulting in less spectral distortion. In fact,
this premise raises new insights for future research.
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Fig. 10. False-color representation (NIR as red, UVIS as green, and UV as blue) of some super-resolved images for IN dataset and the FR protocol.

Fig. 11. False-color representation (SWIR as red, NIR as green, and UVIS as blue) of some super-resolved images for US dataset and the FR protocol.

VII. CONCLUSION

Sentinel-5P’s capability to gather a variety of geographical
information on atmospheric components has made it an essen-
tial instrument in the field of Earth observation. Still, there
are constraints when zooming in on smaller geographic areas,

and it is tricky to get accurate contextual data. To fill this
resolution gap, researchers frequently employ sophisticated
techniques like single-image super-resolution. In the scientific
literature, assessing super-resolution algorithms often involves
pairs of LR and HR images. Though, these HR counterparts
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are created by applying degrading filters on the LR data
that are typically designed independently of how the sensor
acquires the images. The study covered in this article is a first
attempt to apply model-based super-resolution techniques to
Sentinel-5P data. More specifically, we demonstrate that it is
possible to get better results than those commonly reported
in the literature by properly generating the degradation filter
required to create LR and HR image pairs. The results of
the research support the benefit of a newly developed, more
realistic degradation model and provide a fundamental accu-
racy assessment, both of which are critical when comparing
more sophisticated super-resolution techniques. Additionally,
we improve a well-known variational optimization method
and present an innovative mapping-based strategy that makes
use of deep learning, S5Net. This strategy outperforms other
conventional approaches in the field, including interpolation,
the deconvolution-based model and well-known neural net-
works. This study provides a potential starting point for getting
improved air quality monitoring accuracy, and subsequently
enabling more extensive and in-depth observations of air
contaminants and atmospheric components over different geo-
graphic areas.
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