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Abstract— The mechanism of connecting multimodal signals
through self-attention operation is a key factor in the success
of multimodal Transformer networks in remote sensing data
fusion tasks. However, traditional approaches assume access to
all modalities during both training and inference, which can
lead to severe degradation when dealing with modal-incomplete
inputs in downstream applications. To address this limitation,
we propose a novel approach to incomplete multimodal learning
in the context of remote sensing data fusion and the multimodal
Transformer. This approach can be used in both supervised and
self-supervised pretraining paradigms. It leverages the additional
learned fusion tokens in combination with modality attention
and masked self-attention mechanisms to collect multimodal
signals in a multimodal Transformer. The proposed approach
employs reconstruction and contrastive loss to facilitate fusion in
pretraining, while allowing for random modality combinations as
inputs in network training. Experimental results show that the
proposed method delivers state-of-the-art performance on two
multimodal datasets for tasks, such as building instance/semantic
segmentation and land-cover mapping when dealing with incom-
plete inputs during inference.

Index Terms— Data fusion, multimodal, remote sensing,
Transformer.

I. INTRODUCTION

REMOTE sensing becomes more and more important in
various Earth observation (EO) tasks. With the increas-

ing availability of multimodal RS data, researchers now can
develop more diverse downstream applications. Despite the
abundance of multimodal remote sensing data, each modality
captures only certain specific properties and, therefore, cannot
thoroughly describe the observed scenes. Thus, the use of
single-mode data results in limitations in many applications.
Multimodal RS data fusion addresses these limitations [1].
For instance, synthetic aperture radar (SAR) provides physical
structure information, while LiDAR collects both structure
and depth information [2]. Meanwhile, multispectral (MS)
and hyperspectral (HS) sensors measure radiation reflectance
across different wavelengths of the electromagnetic spec-
trum. By merging the complementary information present
in multimodal data, it is possible to improve the accuracy
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and reliability of many data analysis tasks, such as change
detection [3] and land-cover mapping [4]. To integrate the
complementary information provided by different sensors and
remote sensing products (e.g., land use and land cover),
traditional methods [5] exploit handcrafted features based on
domain-specific knowledge and fusion strategies that often are
not able to capture all the information present in the data.

Due to the growth of artificial intelligence methodologies,
deep learning shows great potential in modeling the complex
relationships between different modality data and is widely
used in remote sensing data fusion tasks. Among the others,
there are three main multimodal RS data fusion scenarios,
SAR optical [6], [7], [8], [9], LiDAR optical [2], [10], [11],
[12], and image map [13], [14], where the deep convolutional
neural networks (CNNs) and Transformer networks are widely
used. Nevertheless, deep CNNs methods assume that all
modalities are available during training and inference, which
can be a limiting factor in practical applications, as data
collection processes may miss some data sources for some
instances. In such cases, the existing multimodal data fusion
methods may fail to deal with incomplete modalities, leading
to severe degradation in performance. The approach used
in this situation is called incomplete multimodal learning
and aims at learning methods that perform inference, which
is robust to any subset of available modalities. A simple
strategy for incomplete multimodal learning using CNNs is
to synthesize the missing modalities using generative models.
For instance, generative adversarial networks (GANs) can
effectively overcome the problems arising from missing or
incomplete modalities in building footprint segmentation [15].
Another set of methods explores knowledge distillation from
the present modality to incomplete modalities. In this context,
Kampffmeyer et al. [16] proposed to use an additional net-
work, the hallucination network, for mitigating missing data
modalities in the testing of urban land-cover classification
tasks. The network takes a modality as input that is assumed
to be available during both training and testing, trying to learn
a mapping function from this modality to the missing one.

Although promising results are obtained, such methods have
to train and deploy a specific model for each subset of missing
modalities, which is complicated and often unreliable in down-
stream tasks. Moreover, all these methods require complete
modalities during the training process. Recent incomplete
multimodal learning methods for downstream tasks focus on
learning a unified model, instead of a bunch of distilled
networks. In this context, the modality-invariant fusion embed-
ding across different modalities may contribute to more robust
performance, especially when one or more modalities are
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missing. As a competitive multimodal data fusion model,
Transformer does not need to access all modalities in the
network training and inference because of its flexibility and
sequence modeling strategy, which can be effective in both
scenarios: with and without missing modalities. Current works
exploited Transformers for multimodal RS data fusion in a
complete fusion scenario, such as lidar and hyperspectral data
fusion [17]. For incomplete multimodal data fusion, MBT [18]
and Zorro [19] propose to fuse audio and video data using
learnable tokens in the Transformer network. However, the
definition of a dedicated Transformer for incomplete multi-
modal learning in remote sensing tasks has not been addressed
yet, and the existing multimodal RS data fusion methods do
not allow missing data in the training process. Moreover,
Ma et al. [20] point out that the vanilla Transformer tends to
be overfitted on one modality input.

Another limitation in the technique is that most multimodal
data fusion methods are based on the supervised learning
paradigm. Supervised approaches are task-specific and have
limitations to be generalized to other tasks. Moreover, training
on a large amount of multimodal data is cost expensive, and
collecting an adequate number of labeled data for each task
is challenging for end users. Thus, the research community
usually relies on a few fine-tuning steps on a pretrained model
to adapt a network to a specific task. Pretraining without
supervision has gained a lot of attention as it is more general
and does not require labeled data. The self-supervised learning
method for SAR-optical feature fusion [3] is an example of
such an approach. However, this pretraining approach needs
to access all modalities during network training.

In order to address the aforementioned issue, this article
proposes to exploit Transformer to build a unified model
for incomplete multimodal learning for remote sensing tasks,
which can be used in both the supervised and self-supervised
pretraining paradigms. This is achieved by using additional
learned fusion tokens for multimodal signal collection in the
network. However, only using the additional learned fusion
token cannot capture enough information from other modality
tokens. In this context, we use a modality attention block
to further distill different modality information to fusion
tokens. Using this technique, the proposed approach can
leverage reconstruction and contrastive loss to build fusion
across the different modalities in pretraining. Moreover, it can
use a random modality combination training strategy in
supervised training. This makes the learning and inference
feasible also when incomplete modality data are given as
input.

The three main contributions of this article consist of the
following.

1) We propose to use modality attention and masked
self-attention in multimodal Transformer to build addi-
tional fusion tokens across different modalities, which
enable both contrastive and mask-reconstruction pre-
training for incomplete multimodal inputs.

2) Based on the proposed approaches, we use the random
modality combination training strategy in downstream
tasks, which ensures task performance with incomplete
inputs on inference.

3) We benchmark our approach on two datasets: the public
DFC2023 Track2 and the created quadruplet dataset,
obtaining results that show that the proposed approach
can be pretrained on a large-scale remote sensing multi-
modal dataset in a self-supervised manner. The proposed
approach achieves state-of-the-art performance when
compared with the vanilla multimodal Transformer [18]
on RS.

The rest of this article is organized as follows. Section II
presents the related works on multimodal RS data fusion,
multimodal masked autoencoder (MultiMAE), and multimodal
Transformer. Section III introduces the proposed approach
by describing the network architecture, modality attention,
masked self-attention, mask-reconstruction pretraining and
contrastive pretraining, as well as the random modality com-
bination training strategy. The descriptions of the datasets,
network setup, experimental settings, and downstream tasks
are given in Section IV. Experimental results obtained on
building instance/semantic segmentation and land-use land-
cover (LULC) mapping tasks as well as the ablation studies
are illustrated in Section IV. Finally, Section V concludes this
article.

II. RELATED WORKS

A. Multimodal RS Data Fusion

In recent years, deep learning methods have been widely
used in multimodal RS data fusion, including LiDAR optical
[2], [10], [11], [12], SAR optical [6], [7], [8], [9], and image-
map fusion [13], [14]. In the case of LiDAR-optical data
fusion, Paisitkriangkrai et al. [21] propose fusing optical and
LiDAR data through concatenating deep and expert features
as inputs to random forests. Several advanced techniques
have subsequently been developed, with the aim of enhanc-
ing feature extraction ability. Audebert et al. [22] suggest
the use of deep fully convolutional networks to investigate
the early and late fusion of LiDAR and multispectral data.
Similarly, Chen et al. [23] employ a two-branch network to
separately extract spectral–spatial–elevation features, followed
by a fully connected layer to integrate these heterogeneous
features for final classification. Other novel fusion strategies
are also introduced, such as the use of a cross-attention
module [24], a reconstruction-based network [25], and a graph
fusion network [26]. A recent study proposes a multimodal
Transformer network to fuse LiDAR and hyperspectral images
for classification [17]. Similar to LiDAR-optical fusion, many
researchers also develop the digital surface model (DSM) and
optical fusion methods, where the DSM can be acquired by
stereo-optical images. Also, SAR-optical data fusion widely
adopts deep learning methods. For example, Kussul et al. [9]
explore the deep CNNs in SAR-optical fusion for LULC
classification and demonstrate their superiority with respect to
traditional MLP classifiers. A recent study proposes a deep
learning architecture, namely, TWINNS, to fuse Sentinel-1
and Sentinel-2 time-series data in land-cover mapping [8].
Similarly, Adrian et al. [7] use a 3-D deep learning network to
fuse multitemporal Sentinel-1 and Sentinel-2 data for mapping
ten different crop types, as well as water, soil, and urban area.
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Map data, such as topography, land use, road, and census
data, may be combined with remotely sensed data to improve
the accuracy of image classification, object recognition, and
change detection. For example, Sun and Li [27] present a
method of data fusion of GIS and RS using a neural network
with unchanging data memory structure based on users’ aim.
Xu et al. [14] perform road extraction based on satellite images
and partial road maps using a two-branch partial to complete
network.

B. Multimodal Masked Autoencoder

The MultiMAE [28] is a novel self-supervised learning
algorithm that demonstrates state-of-the-art performance on
various vision benchmarks. Instead of relying on a contrastive
objective, the MAE utilizes a pretext task that involves recon-
structing masked patches of each input modality. It is based on
a standard single-modal ViT and modality-specific encoders.
The encoder is equipped with 2-D sine–cosine positional
embeddings following the linear projection. MultiMAE does
not make use of modality-specific embeddings, as the bias
term in each linear projection is sufficient. MultiMAE employs
a separate decoder for each task that is responsible for
reconstructing the masked-out tokens from the visible tokens.
The input to each decoder is a full set of visible tokens
from all different modalities, including the learnable modality
embeddings with 2-D sine–cosine positional embeddings. The
input is then followed by MLPs and Transformer blocks. Only
the masked tokens are considered in the loss calculation.

Suppose one of the input modalities is a tensor of dimen-
sions I ∈ RC×H×W , where H and W are the height and
width of the image, respectively, and C is the number of
channels. The input data are initially divided into nonover-
lapping patches S ∈ RL×P2C , where P is the height and width
of the patch and L = (H/P) × (W/P) is the number of
patches. These patches are then transformed into a sequence of
embedded patch tokens S′

∈ RL×D , using a patch embedding
function f p : R P2C

→ RD . A fraction pm of the sequence
tokens is randomly masked, and the remaining visible tokens
are fed into an encoder, which is a vision Transformer (ViT).
Due to the lack of positional information, additional positional
embeddings are then added to patch embeddings to capture
the spatial location of the patches. Each modality-specific
decoder is composed of multiple Transformer blocks that
are trained for all tokens, where the masked tokens are
replaced as the initialized learnable tokens. Each modality-
specific decoder produces a modality-specific reconstruction,
which is compared to the corresponding modality data using
mean-squared error (MSE) loss, computed only on masked
patches. Positional encoding allows the Transformer to encode
positional information. The positional encoding is

Encode(k, 2i) = sin
k

�
2i
d

, Encode(k, 2i + 1) = cos
k

�
2i
d

.

(1)

Here, k is the position, i is the index of feature dimension in
the encoding, d is the number of possible positions, and � is a
large constant. The position is defined as the index of the patch

along the x- or y-axis. Therefore, k ranges from 0 to H/P or
W/P . This encoding provides two unique dimensions, one for
x-coordinate and one for y-coordinate, which are concatenated
for the final encoding representation.

The mask sampling strategy employed in MultiMAE plays
a crucial role in achieving predictive coding across different
modalities. This sampling strategy ensures that most modal-
ities are represented to similar degrees. MultiMAE adopts a
symmetric Dirichlet distribution to select the proportion of
tokens per modality λ (λi ∼ Dir(α)), where

∑
λi = 1, λ > 0.

The concentration parameter α > 0 controls the sampling. For
simplicity and better representation, parameter α is set to 1 in
MultiMAE.

C. Multimodal Transformer

The self-attention blocks of Transformers build a natural
bridge among multimodal signals in a unified architecture.
Differently from the CNNs that use one network for each
modality, the Transformer only uses the same main archi-
tecture for all modalities with a modal-specific projector.
Transformers integrate input tokens from all modalities into
a single representation, while CNNs fuse features of each
modality through concatenation or tensor fusion. However,
such explicit integration requires the presence of all modalities
during training, which undermines the pipeline in case of a
missing modality. In contrast, Transformers use self-attention
to embed a holistic multimodal representation and handle the
absence of modalities by applying a mask on the attention
matrix. Thus, multimodal Transformers are more adaptable
to deal with modal-incomplete inputs. In addition, an easy-
to-train model is vital for multimodal learning. The training
load of a regular multimodal backbone increases as more
modalities are added. This happens because the backbone
typically contains separate submodels for each modality, which
must be trained individually. Instead, Transformers process
modalities altogether in a single model, significantly reducing
the training load.

However, Transformer models exhibit significant deteriora-
tion in performance with modal-incomplete inputs, especially
in the context of multimodal inference where Transformer
models tend to overfit the dominating modalities. To overcome
this challenge, MBT [18] builds a multimodal architecture
for video and audio, by using an additional fusion token to
force information among different modalities to pass through
by using cross attention. However, the representation of each
modality can also access to the others in MBT, which means
they are not independent. In [19], a modality-aware masking
mechanism is used in all attention operations to isolate the
allocation of latent representations of individual modalities,
which leads to a representation that is partially unimodal (i.e.,
part of the representation attends to a single modality) and
partially multimodal (i.e., part of the representation attends
to all modalities), thereby allowing for the use of contrastive
learning.

III. METHODOLOGY

In this section, we describe the proposed incomplete mul-
timodal fusion architecture with additional learned fusion
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Fig. 1. Overview of the proposed framework. The inputs to our model are optical images, SAR images, DEM, and maps. Each of those inputs is patched using
a 2-D convolution and projected to feature vectors. All inputs are concatenated with a set of learnable fusion tokens and added to the position embedding. Next,
we process these inputs through the Transformer encoder, where the modality attention and the masked self-attention strategy are applied. First, in pretraining,
task-specific decoders reconstruct the masked patches by using the output fusion tokens. Meanwhile, the global vectors of each modality and fusion tokens are
output using cross attention, which allows for the use of contrastive loss between each modality and corresponding fusion tokens. Second, in the supervised
training, the proposed framework can be trained on a specific downstream task by using a random modality combination training strategy.

tokens, modality attention, and masked self-attention. This
is done using as an illustration case, an optical-SAR-digital
elevation model (DEM)-MAP data fusion example. Then,
we introduce the details of both pretraining using recon-
struction and contrastive losses, as well as those of training
using random modality combination on downstream tasks (see
Fig. 1).

A. Network Architecture

The main architecture of the proposed approach is a ViT
with modality-specific patch projection layers for each input
modality. In detail, patches of each modality are projected
to tokens using a specific linear projection for each modal-
ity. In this work, we use a 2-D convolution to extract
16 × 16 patches and project them to the input dimension D.
Next, position embeddings are added to the projected vectors,
so that the model is able to localize and distinguish each
embedded patch. In addition to the multimodal input data, the
learnable fusion tokens are introduced as one of the inputs.
Differently to the bottleneck fusion tokens in MBT [18] and
Zorro [19], we use the spatial tokens for dense downstream
tasks, which have the same number of tokens of full input
patches. In order to get local features, we add 2-D sine–cosine
positional embeddings on the spatial fusion tokens and use the
modality attention to aggregate all modality information to

fusion tokens. Then, the projected patches together with the
learnable tokens are concatenated into a sequence of tokens
and given as input to the same Transformer encoder with
masked self-attention. Since all our input data have a 2-D
structure, we add 2-D sine–cosine positional embeddings after
linear projection. Following the setting of MultiMAE, we do
not consider any modality-specific positional embedding.

B. Modality Attention

We employ a modality attention mechanism to seamlessly
integrate diverse modality input embeddings into learned
fusion tokens for enhancing the feature learning capabilities.
The modality fusion block is constituted by a succession
of Transformer layers, each comprising multiheaded cross
attention (MCA), layer normalization (LN), and multilayer
perceptron (MLP) blocks. Let us consider a multimodality
input zl

= [zl
o, zl

s, zl
d , zl

m], encompassing an optical token,
an SAR token, a DEM token, and a map token, alongside a
fusion token zl

f . We denote a Transformer layer within the
fusion block as zl+1

f = Transformer([zl
f , zl

]), expressed as
follows:

zl
f = MCA(LN([zl

f , zl
])) + zl

f

zl+1
f = MLP(LN(zl

f )) + zl
f . (2)
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Here, the MCA operation performs dot-product attention,
with queries as linear projections of the fusion token and
keys/values as linear projections of each modality token.
In instances where a modality is absent, we substitute the ini-
tialized mask token zmask to account for the different numbers
of input modalities at each location due to the use of masking.

C. Masked Self-Attention

Masked self-attention is the key block of multimodal Trans-
former in contrastive pretraining. Using masked attention,
we force part of the representation to attend only to itself,
while other parts can attend to the whole representation. In the
considered illustration case, the main goal of this approach
is to split the representation into five parts: a part that only
focuses on optical tokens, a part that focuses on SAR tokens,
a part that focuses on DEM tokens, a part that focuses on
MAP tokens, and the fusion tokens that consider the whole
representation. In this architecture, the self-attention in each
layer and the cross attention in the last layer both used this
masking strategy. Here, we introduce the masking binary
tensor m that specifies which vectors can access each other.
Entries of the masking matrix are mi, j = 1 if information
can flow from latent j to latent i . Versus, we set mi, j = 0.
The mask is applied to the standard attention output operation,
which performs on keys k, values v, and queries q , and can
be expressed as follows:

oi =

∑
j

mi j exp
(

q⊤

i k j
√

dk

)
∑

{ j ′,mi j ′ =1} exp
(

q⊤

i k j ′
√

dk

) · v j (3)

where the dk is the dimension of k vector. In order to keep
the performance of a single modality when other modalities
are absent, the modality-specific representation cannot access
the fusion representation or other modalities. This explicitly
prevents the information of the fusion stream from leaking
into the unimodal representation. This is the key to preserve
pure streams that correspond to single modality. Thus, after
applying this mask, the specific output os , oo, od , and om only
contains information coming from the SAR, optical, DEM,
and MAP inputs, respectively. The fusion output o f accesses
all outputs in the model.

D. Reconstruction Pretraining

In order to train our network in an MAE way, we use a
separate decoder for each generation task. The input to each
decoder is the spatial tokens output from the cross attention.
Following the same setting of MAE, we use shallow decoders
with a low dimensionality, which consists of two Transformer
blocks. MultiMAE mask across different modalities ensures
that the model develops predictive coding across different
modalities besides different spatial patches. According to
MultiMAE, we set a constant number of visible tokens at
512, which corresponds to 1/2 of all tokens in our experiment
(learned fusion tokens and four modality inputs with 256 ×

256 image size and 16 × 16 patch size). The proportion of
tokens per modality λ is sampled from a symmetric Dirichlet
distribution (λOptical, λSAR, λDEM, λMAP) ∼ Dir(α), where

λOptical + λSAR + λDEM + λMAP = 1, λ ≥ 0. For simplicity
and better representation of any possible sampled task, we use
a concentration parameter α = 1. As shown in Fig. 1, we adopt
reconstruction loss (l2 distance mean-squared error) to recover
the pixel color and l1 loss for height information following
MultiMAE and using cross-entropy loss (lce) on land-cover
map reconstruction:

LDEM = l1(Dec(o f ), DEM)

LSAR_Optical = l2(Dec(o f ), SAR) + l2(Dec(o f ), Optical)
LMAP = lce(Dec(o f ), MAP). (4)

E. Contrastive Pretraining

We also add the class token for each modality input data and
an additional global class token for the learned fusion tokens.
To integrate information from the encoded visible tokens of
other modalities, we add a single cross-attention layer using
these tokens as queries that cross attend to the encoded
tokens of the last self-attention layer. We utilize the standard
cross-attention operation and produce five different outputs:
the vector outputs for each modality and their corresponding
fusion vector outputs. This design opens the possibility to
use contrastive learning among different modalities and fusion
tokens. For a better multimodality alignment, we propose
to use extra contrastive loss between each modality-specific
output and the fusion vector. Specifically, given the optical
vector output zo = CA(zo, oo) and the corresponding fusion
output z f _o = CA(z f _o, o f _o), where CA is the cross-attention
operation and o f _o is the fusion tokens on the unmasked
optical token positions, the contrastive loss can be formulated
as follows:

Lc(zo, z f _o) = −E
S

log
esim(zi

o,z
i
f _o)/τ∑N

j=1esim(zi
o,z

j
f _o)/τ

 (5)

where sim is a similarity function (i.e., cosine similarity) and
S is a set that contains N −1 negative samples and one positive
sample. This equation introduces the loss for Optical-FUSION
contrastive training. In order to contrast the output of all
modalities, we define a contrastive loss between unimodal
representations and their corresponding fusion representations.
Thus, we can write the full loss as follows:

L = LDEM + LSAR_Optical + LMAP + Lc(z f _o, zo)

+ Lc(z f _s, zs) + Lc(z f _d , zd) + Lc(z f _m, zm).

(6)

F. Random Modalities Combination

Besides the network design, the training strategy is vital
to the performance of modal-incomplete inputs. The research
in [20] finds that the Transformer models tend to overfit the
dominating modalities in a task. To improve the robustness of
the proposed approach against modal-incomplete data, we pro-
pose to leverage a random modality combination training
strategy. Because of the proposed approach, we can ran-
domly choose the different modality combinations or unimodal
data in pretraining or supervised training on downstream
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tasks. During pretraining, multimodal inputs undergo ran-
dom masking, yielding diverse modality combinations at each
patch position. The modality attention block effectively inte-
grates the extant modalities into fusion tokens and adapts
to the absence of input modalities. This combination of
random masking and modality attention confers robustness
upon the network, particularly when confronted with local-
ized multimodal input absence. During supervised training
on downstream tasks, PatchDropout is employed as a form
of data augmentation. Furthermore, the selection of modal-
ities during network training is randomized, encompassing
unimodal input, modal-complete input, and modal-incomplete
input scenarios. The integration of masked self-attention and
additional learnable fusion tokens serves to maintain uni-
modal performance and accommodates the absence of entire
modalities. The proposed methodology distinguishes itself by
unifying all modalities through the incorporation of extra
learned tokens, thereby substantially mitigating the impact of
modal-incomplete inputs.

IV. EXPERIMENTS

In this section, we evaluate the proposed approach in
multiple settings. We first introduce the multimodal dataset
used in this work. Then, we present the details of both
pretraining and training on downstream tasks, as well as the
evaluation procedures. Finally, we ablate the performance of
the modal-complete and the modal-incomplete inputs to show
the proposed approach’s flexibility.

A. Description of Experiments

In order to showcase the proposed approach across the
different modalities, we train the proposed approach in both
a completely supervised paradigm and a fine-tuning paradigm
with pretrained weights. Many works have pointed out that
the pretrained big model on multimodal data can be beneficial
on downstream tasks [29]. The pretrained model can be then
used for arbitrary downstream tasks with the fine-tuning of the
task-specific decoder. Hence, we can train a giant model on a
large multimodal dataset with as many modalities as possible.
The pretrained model can strengthen the ability to extract
features that are only trained on a few or single-modality data.
In this section, we provide the details of the self-supervised
pretraining and the supervised training on downstream tasks
as well as the multimodal datasets.

B. Description of Datasets

We train and evaluate the performance of the proposed
approach on two multimodal datasets for two downstream
tasks, namely, building instance/semantic segmentation and
LULC mapping.

1) DFC2023 Track2—Building Instance/Semantic Segmen-
tation: The first dataset is the track2 dataset of DFC2023,
which comprises a combination of RGB images, SAR images,
and DSM data having a sample size of 256 × 256 pixels.
It consists of 5332 triplet samples for supervised training and
1335 for evaluation, where RGB images have three channels,
whereas both SAR images and DSM have one channel. While

the objective of the original task is building height estimation,
this study simplifies it as building instance/semantic segmenta-
tion. The dataset consists of images obtained from GaoJing-1,
GaoFen-2, and GaoFen-3 satellites, with the spatial resolutions
of 0.5, 0.8, and 1 m, respectively. Normalized DSMs (nDSMs)
are used as a reference in Track2 and are created from stereo
images captured by GaoFen-7 and WorldView-1 and -2 with
approximately 2-m ground sampling distance (GSD). The
dataset was collected from 17 cities across six continents and,
hence, is highly diverse in terms of landforms, building types,
and architecture. The labels of building instance segmentation
adopt the MS COCO format and are provided in a JSON file.
A sample of the labels is shown in Fig. 2 for illustration.

2) Quadruplet Dataset—Land-Use Land-Cover Mapping:
The second dataset considers diverse data sources obtained
from Google Earth engine (GEE) platform, encompassing
Sentinel-1, Sentinel-2, LiDAR DEMs, and dynamic world
(DNW) LULC maps, with a sample size of 256 × 256 pixels
(see Figs. 3 and 4). The dataset comprises 37 regions across
various landscapes and LULC classes in France and Australia.
It consists of 5340 quadruplet samples for training and
783 quadrupled samples for evaluation, where the Sentinel-1
images have two channels (VV and VH polarization channels),
the Sentinel-2 images have four channels (RGB and NIR
bands), and the LiDAR DEMs and the DNW LULC maps
are both with one channel. The Sentinel-1 mission provides
data from a dual-polarization C-band SAR instrument and
produces the calibrated and orthocorrected S1 GRD products.
We download the data from the COPERNICUS/S1_GRD
category on GEE, resampling it into 10-m resolution and using
dual-band VV+VH. Similarly, we download the Sentinel-2
data from the COPERNICUS/S2_SR_HARMONIZED cate-
gory, which provides multispectral imaging with 13 spectral
bands suitable for large-scale LULC mapping. We resample
the Sentinel-2 data into 10-m resolution and use the RGBN
bands in this work. Two types of LiDAR DEMs are provided
in this research. In France, we utilize the RGE ALTI dataset,
which is a DEM created using airborne lidar, with a pixel
size of 1 m. We resample this dataset to 10 m, with a
vertical accuracy that ranges from 0.2 to 0.5 m and an
average accuracy of 7 m in steep slope areas. In Australia,
we use a DEM 5-m grid derived from 236 individual LiDAR
surveys conducted between 2001 and 2015. We compile and
resample the available 5-m resolution LiDAR-derived DEMs
using a neighborhood-mean method to create 10-m resolution
datasets for each survey area, which we used in this work.
The DNW map dataset comprises globally consistent, 10-m
resolution, near real-time land-use and land-cover predictions
derived from Sentinel-2 imagery. It features ten bands that
include estimated probabilities for each of the nine LULC
classes (water, trees, grass, crops, shrub and scrub, flooded
vegetation, built-up area, bare ground, and snow and ice).
It also has a class “label” band indicating the class with
the highest estimated probability, which makes it suitable for
multitemporal analysis and custom product creation. Finally,
we utilize the labeled class reference from the UrbanAtlas
2018 database containing 27 LULC classes as the label of this
dataset. The dataset provides integer rasters with index labels.
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Fig. 2. Example of DFC2023 Track2 data sample containing RGB and SAR images, DSM, and ground truth.

Fig. 3. Example of quadruplets dataset containing Sentinel-1, Sentinel-2, and DEM data.

Fig. 4. Example of DNW map and European urban atlas data.

We create raster maps with 10-m resolution that geographically
match the Sentinel-1/-2 images using the open-data vector
images freely available on the European Copernicus program
website.

3) Downstream Tasks: We evaluate the proposed approach
against state-of-the-art methods on two downstream tasks:
building instance/semantic segmentation and LULC mapping.
In particular, the evaluation is performed on the super-
vised learning and the fine-tuning paradigms. For these two
downstream tasks, we replace the pretrained decoders with
randomly initialized Mask2Former [30]. Mask2Former incor-
porates masked attention to discern localized features and
forecast outputs for panoptic, instance, and semantic segmen-
tation within a unified framework. The model predicts binary
masks associated with global class labels, thereby streamlin-
ing tasks related to semantic and panoptic segmentation and
yielding notable empirical results. At the core of Mask2Former

lies a specialized Transformer decoder equipped with pre-
defined queries. This decoder integrates a masked attention
operator, strategically extracting localized features by con-
fining cross attention within the foreground region of the
predicted mask for each query, as opposed to encompassing
the entirety of the feature map. In the following, we give an
overview of the two tasks.

a) Building instance/semantic segmentation: We follow
the Mask2Former but replace the backbone with the proposed
network. In the supervised experiments, we train the whole
network from scratch using a random modality combination
strategy. In the fine-tuning experiments, we consider two
strategies, one is to update the network on the pretrained
ViT-T backbones trained only using reconstruction loss, and
the other is to update the whole network on the pretrained
ViT-T backbones trained using reconstruction and contrastive
losses. We train our model on DFC2023 Track2 train split and
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report the validation accuracy on the validation split. Along
with the results of building instance segmentation, we also
provide the binary building semantic segmentation results.

b) LULC mapping: We still use the Mask2Former with
the proposed backbone on the quadruplet dataset to generate
LULC maps. However, we consider seven classes merged
from the semantic hierarchy defined by UrbanAtlas. For that,
we extract seven semantic classes by taking the argmax of
the prediction head. The same training strategy as that of the
building instance segmentation is used in this task. We train
our model on 10 (5340 samples) cities and report the validation
accuracy on the other 2 (783 samples) cities.

4) Architecture Details: The proposed approach uses a
ViT-T as the main structure and consists of 4 and 5 input
adapters with a patch size of 16 × 16 pixels for the pretraining
in the two different tasks. Differently from the standard Mul-
tiMAE, we add the learnable fusion tokens as input by using
an additional input adapter to add 2-D sine–cosine position
encoding. The fusion tokens are as many as the number of
patched inputs of each modality.

After adding the position encodings, the fusion tokens with
all modality inputs are given as input to a modality attention
block. In self-attention, we use the masked algorithm to avoid
the fusion information leak to a single modality. In order to
get the global features of each modality and the corresponding
fusion tokens, we use an additional cross-attention layer to
map the patch embeddings into the vector output. Then,
an auxiliary contrastive loss is added between each modality
output vector and the corresponding fusion output vector.

For mask-reconstruction pretraining, we follow the same
setting of the MultiMAE decoder but without positional
embeddings and cross-attention layer. The fusion tokens are
projected into the decoder dimension by using a linear projec-
tion layer and then added to a learned modality embedding.
After this, two Transformer blocks and a linear projector are
used to project and reshape it to form an image or a map.

For the two downstream tasks, we adopt the same set-
tings from Mask2Former. For the pixel decoder, we use two
MSDeformAttn layers applied to feature maps with resolution
1/8, 1/16, and 1/32 and use a simple upsampling layer with
lateral connection on the final 1/8 feature map to generate
the feature map of resolution 1/4 as the per-pixel embed-
ding. We use the Transformer decoder with four layers and
100 queries for instance segmentation, two queries for binary
building semantic segmentation, and nine queries for LULC
mapping. We use the binary cross-entropy loss and the dice
loss for the mask loss. The final loss is a combination of
mask loss and classification loss. For instance segmentation,
we use the standard AP@50 (average precision with a fixed
IoU of 0.5) metric. For semantic segmentation, we use the
mean intersection-over-union (mIoU) metric.

5) Training Details: For pretraining, we train our model
for 1600 epochs on 6667 triplet data on the DFC2023 Track2
dataset and 6123 quadruplet data on the quadruplet dataset,
individually. We use the AdamW optimizer with a base
learning rate of 1e − 4 and a weight decay of 0.05. We warm
up training for 40 epochs, starting from using cosine decay.
We set the batch to 40 using a single NVIDIA RTX 3090.

All data are resized to 256 × 256. The number of nonmasked
tokens given to the encoder is set to half of all tokens on
the two datasets. For the second dataset, where we use the
land-cover map as an additional modality input with 64-D
class embeddings.

For instance segmentation and semantic segmentation using
Mask2Former, we use AdamW optimizer and the step learning
rate schedule. We use an initial learning rate of 1e−4 and a
weight decay of 0.05. A learning rate multiplier of 0.1 is
applied to the backbone with the pretraining and not in the
supervised learning. We decay the learning rate at 0.9 and
0.95 fractions of the total training steps by a factor of 10.
We train our models for 50 epochs with a batch size of 10 in
both the building segmentation task and the building instance
segmentation task and 30 epochs with a batch size of 30 in
the LULC mapping task.

Concerning the training strategy involving random modality
combinations at each iteration, we systematically adjust the
selection of input modalities and the spatial random mask,
as required by the constraints imposed by the sample feature
size in the mini-batch gradient descent process. The selection
of input modalities adheres to a uniform distribution, and the
spatial random mask employs a symmetric Dirichlet distribu-
tion to determine the proportion of tokens associated with each
modality.

C. Experimental Results

1) Multimodal Comparison: We evaluate the proposed
approach with the two paradigms; one is supervised from
scratch, and the other is fine-tuning with pretrained weights.
Considering no dedicated Transformer for incomplete multi-
modal remote sensing data fusion, we compare the proposed
approach against a technique that uses origin self-attention
and the same number of learnable fusion tokens, termed
MultiViT, on modal-complete and modal-incomplete inputs
for building instance/semantic segmentation and LULC map-
ping tasks. The results reported in Tables I and II reveal
that the proposed approach outperforms MultiViT in build-
ing instance/semantic segmentation tasks when evaluated
with modal-complete inputs. Similarly, in the context of
the LULC mapping task, the performance of the proposed
approach excels over that of MultiViT. With regards to
modal-incomplete inputs, the proposed approach performs
impressively well on all modal-incomplete inputs and single-
modality inputs for both tasks due to the joint use of the
modality attention block and the masked self-attention as
well as the random modality combination training strategy.
For building instance/semantic segmentation, there is a visible
dominance of RGB images over all other modalities, followed
by DSM, while SAR images make the slightest contribution to
the task, even causing noise. In this situation, MultiViT com-
pletely overfits on dominant modality inputs and fails on the
task with single-modality inputs when evaluated with modal-
incomplete inputs. Similarly, for LULC mapping, Sentinel-2
images along with the DNW map have a significant influence
on the task, followed by Sentinel-1 images and DEM. The
proposed approach achieves the best performance with an
mIoU of 0.278 with modal-complete inputs, whereas MultiViT
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TABLE I
QUANTITATIVE EVALUATIONS OF THE PROPOSED APPROACH VERSUS MULTIVIT WITH COMPLETE AND INCOMPLETE MULTIMODALITY INPUTS ON THE

DFC2023 TRACK2 DATASET. RESULTS ARE REPORTED ON AP@50 FOR INSTANCE SEGMENTATION AND MIOU FOR SEMANTIC SEGMENTATION
AND CONSIDER THE SUPERVISED RESULT (SUP.) AND THE FINE-TUNING RESULT WITH THE MASK-RECONSTRUCTION PRETRAINED

WEIGHTS (FINE. W/G) AS WELL AS THE FINE-TUNING RESULTS WITH BOTH MASK-RECONSTRUCTION AND CONTRASTIVE
PRETRAINED WEIGHTS (FINE. W/G&C)

TABLE II
QUANTITATIVE EVALUATIONS OF THE PROPOSED APPROACH VERSUS MULTIVIT WITH COMPLETE AND INCOMPLETE MULTIMODALITY INPUTS ON

THE QUADRUPLETS DATASET. THE RESULTS ARE REPORTED IN TERMS OF MIOU VALUES AND CONSIDER THE SUPERVISED RESULT (SUP.) AND
THE FINE-TUNING RESULT WITH THE MASK-RECONSTRUCTION PRETRAINED WEIGHTS (FINE. W/G) AS WELL AS THE FINE-TUNING

RESULTS WITH BOTH MASK-RECONSTRUCTION AND CONTRASTIVE PRETRAINED WEIGHTS (FINE. W/G&C)

overfits on DNW maps, and performs slightly better when the
DNW map is present but fails when it is not present in the
inputs.

In the context of the fine-tuning paradigm, the proposed
approach is assessed through two distinct pretraining methods:
one that employs mask-reconstruction pretraining and the
other that combines mask-reconstruction and contrastive pre-
training. The outcomes of the evaluation for both tasks are pre-
sented in Tables I and II. As one can see, different tasks show
controversial results. Specifically, in the case of the building
instance segmentation task, the training-from-scratch model
demonstrates superior performance compared to all other mod-
els. The fine-tuning outcome related to mask reconstruction
is ranked as the second best, while the fine-tuning result
involving both mask-reconstruction and contrastive pretraining
exhibits comparatively diminished results. In the building
semantic segmentation task, the results of the training-from-
scratch model and the fine-tuning on both mask-reconstruction
and contrastive pretraining achieve comparable performance.
This performance surpasses that observed in the fine-tuning
result solely based on the mask-reconstruction pretraining.
In contrast, for the land-cover mapping task, the fully finetuned
model, incorporating both mask-reconstruction and contrastive
pretraining, is the top-performing model among all the mod-
els listed in the tables. This demonstrates the potential of
mask-reconstruction and contrastive pretraining in augmenting

downstream LULC tasks. By comparing two fine-tuning
results, it becomes evident that the inclusion of contrastive
pretraining yields further enhancements in performance com-
pared to the exclusive utilization of mask-reconstruction
pretraining.

For the single-modality input, our goal is not to show state-
of-the-art performance in this setting, as we are trying to
solve the dramatic degradation of unimodal inference with
a multimodal backbone. Here, we show the ability of the
proposed approach to produce meaningful unimodal outputs
when fed with unimodal data. To do this, we only input
one modality and neglect other modality inputs. As we can
see on both datasets (Tables I and II), the MultiViT suf-
fers significant degradation from missing of modalities and
completely fails to work on the nondominated modalities.
In contrast, the proposed approach using the random modality
combination strategy achieves high performance also when
only one modality is available. This is due to the fact
that in the proposed models, some capacity is allocated to
each modality specifically, and the model is able to produce
unimodal outputs. Besides the quantitative analysis, we also
provide a visual qualitative comparison. Figs. 5 and 6 show
the results of building instance/semantic segmentation and
LULC mapping, respectively. For building instance/semantic
segmentation, similar to Table I, the proposed approach with a
supervised paradigm achieves the best performance followed
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Fig. 5. Results of the proposed approaches in the supervised and the two fine-tuning paradigms versus MultiViT on DFC2023 Track2 dataset and consider
the supervised result (sup.) and the fine-tuning result with the mask-reconstruction pretrained weights (Fine. w/G) as well as the fine-tuning results with both
mask-reconstruction and contrastive pretrained weights (Fine. w/G&C).

by the results of fine-tuning. The MultiViT achieves the worst
performance, especially with the modal-incomplete inputs.
For the LULC mapping task, the fine-tuning with contrastive

and mask-reconstruction pretrained weights outperforms other
approaches, while MultiViT exhibits reliable performance only
with DNW input.
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Fig. 6. Results of the proposed approaches in the supervised and the two fine-tuning paradigms versus MultiViT on the quadruplets dataset and consider
the supervised result (sup.) and the fine-tuning result with the mask-reconstruction pretrained weights (Fine. w/G) as well as the fine-tuning results with both
mask-reconstruction and contrastive pretrained weights (Fine. w/G&C).

In addition to the performance of the proposed approach
on different modality combinations, an in-depth analysis
of individual modalities and their combination for each

task is conducted based on the outcomes derived from
the proposed supervised learning framework. Concerning
building instance/semantic segmentation tasks, optical images
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prominently contribute as the primary modality, followed by
DSM data, while SAR images exhibit a comparatively smaller
impact. In the context of building instance segmentation, SAR
images provide limited beneficial information, and similar
results are obtained by the exploration of various modality
combinations. The simultaneous integration of SAR, opti-
cal, and DSM data obtains optimal performance, with the
joint usage of optical and DSM data yielding comparable
results. Conversely, joint deployments of SAR either with
optical or DSM data result in a suboptimal performance. For
the LULC mapping task, DNW maps emerge as the most
significant contributor, with Sentinel-2 images exhibiting a
similar performance to DNW maps. In contrast, Sentinel-1
images contribute less significantly, and DEM fails to pro-
vide essential information. The joint use of DNW maps and
Sentinel-2 images outperforms individual deployments, sur-
passing outcomes achieved without their integration. Notably,
the combined usage of Sentinel-1/-2 images and DNW maps
achieves the highest performance, even surpassing the integra-
tion of all four modalities. In some cases, the use of a singular
modality may introduce noise, potentially impacting the over-
all performance of multimodal data fusion. The proposed
approach, emphasizing incomplete multimodal remote sensing
data fusion, not only advances the understanding of modality
contributions but also facilitates a judicious selection of the
most appropriate modality combination during inference.

2) Ablation Studies: To ensure robust performance in the
presence of modal-incomplete inputs, an exhaustive analy-
sis on how the various strategies influence the effectiveness
of the proposed approach is undertaken. Despite the good
performance of the proposed approach on different modality
combinations outlined in the final results, the use of a train-
ing strategy involving random modality combinations serves
to mitigate overfitting on dominant modalities in which its
impact on the performance of modal-complete inputs remains
ambiguous.

Incorporating masked self-attention avoids information
flow from one modality to the other, thereby preserv-
ing modality-specific information through the network,
as highlighted in the final results. This proves particularly
advantageous for unimodal inputs, contributing to a better
performance with the modal-incomplete inputs. Masked self-
attention is mainly used in contrastive pretraining to maintain
the independence of each modality, especially when dealing
with text and images. Meanwhile, masked self-attention is not
mandatory in mask-reconstruction pretraining and supervised
training. Concurrently, the utilization of masked self-attention
introduces a constraint on the interaction between disparate
modalities, which warrants a more in-depth ablation study
within the framework of supervised training to furnish insights
into its potential benefits in this specific context.

Furthermore, modality attention assumes a pivotal role in
assimilating information from the current modality into addi-
tional fusion tokens for each patch token, thereby enhancing
the meaningfulness of the representations encoded by the
extra fusion tokens. The efficacy of modality attention requires
further validation through dedicated ablation studies, aligning
with the detailed analysis of individual modalities and their

TABLE III
QUANTITATIVE EVALUATIONS OF THE PROPOSED APPROACH ON THE

DIFFERENT SETTINGS OF MASKED SELF-ATTENTION (W/O MASK),
RANDOM MODALITY COMBINATION TRAINING STRATEGY (W/O

RANDOM), AND MODALITY ATTENTION (W/O ATTENTION)
WITH COMPLETE AND INCOMPLETE MULTIMODALITY

INPUTS ON THE DFC2023 TRACK2 DATASET. RESULTS
ARE REPORTED IN TERMS OF AP@50 FOR INSTANCE

SEGMENTATION AND mIoU FOR
SEMANTIC SEGMENTATION

TABLE IV
QUANTITATIVE EVALUATIONS OF THE PROPOSED APPROACH ON THE

DIFFERENT SETTINGS OF MASKED SELF-ATTENTION (W/O MASK),
RANDOM MODALITY COMBINATION TRAINING STRATEGY (W/O

RANDOM), AND MODALITY ATTENTION (W/O ATTENTION)
WITH COMPLETE AND INCOMPLETE MULTIMODALITY

INPUTS ON THE QUADRUPLETS DATASET. THE RESULTS
ARE REPORTED IN TERMS OF mIoU

combination presented in the final results. To evaluate the
generalizability of the proposed components, all ablations
were performed on both tasks: the building instance/semantic
segmentation and LULC mapping on the supervised paradigm,
reinforcing the comprehensive analysis of modalities and their
combinations conducted in the final results.

We first validate the importance of the random modal-
ity combination training strategy on downstream tasks in a
supervised paradigm. As shown in Tables III and IV, the
model without the modality random combination training strat-
egy experiences severe degradation with modal-incomplete
inputs and even without an improvement on the result of
modal-complete inputs. In addition, we test the effect of
the modality attention by removing it from the proposed
network. The corresponding results show a significant drop
in performance, indicating that the modality attention enables
superior interaction of the fusion token with each modal-
ity and facilitates learning more discriminative features for
downstream tasks. For masked self-attention, we show the
supervised results without masked self-attention for both
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tasks (see Tables III and IV). In the first row, we remove
the masked self-attention blocks while keeping the random
modality combination training strategy, which results in a
comparable or even worse performance with respect to the
proposed approach. This is probably because even masked
self-attention hinders the interaction between different modal-
ities; however, the use of masked attention helps to maintain
unimodal performance and benefits the whole training process.
The benefits of the use of masked self-attention also can be
found in pretraining. Compared with the mask-reconstruction
pretraining, the use of masked self-attention in the combination
pretraining helps to avoid the information flow from one
modality to the other. As one can observe (see the semantic
segmentation results in Tables I and II), the unimodal inference
performs close to the modal-incomplete inputs, as the modality
streams are more independently treated. In contrast, the results
without contrastive pretraining tend to overfit dominant modal-
ities and are relatively poor on other modalities. Moreover,
lower performances are observed on one single modality.

V. CONCLUSION

In this work, we have introduced an incomplete multi-
modal learning framework for multimodal remote sensing
data fusion, which can be used in both supervised training
and self-supervised pretraining paradigms. Unlike previous
multimodal remote sensing data fusion approaches, the pro-
posed approach enables the training and inference of models
with modal-incomplete inputs. By using the modality attention
mechanism and masked self-attention, we are able to pretrain
the network using contrastive and reconstruction losses in the
MultiMAE framework and also to train the network from
scratch or fine-tune the model on downstream tasks using a
random modality combination strategy. This strategy allows
the network to maintain high performance even when dealing
with modal-incomplete inputs or a single modality in the
inference stage.

We evaluated our model on two multimodal remote sensing
datasets, demonstrating flexibility in network training and
inference, and state-of-the-art performance when presented
with modal-incomplete inputs. It is worth noting that this study
focused solely on different modality raster data.

In future work, we plan to optimize the computational
efficiency of the proposed approach and incorporate diverse
modalities of data, such as text and vector data, into the
proposed framework.
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