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Abstract— This article proposes a novel spatiotemporal
(ST) fusion framework for satellite images, named robust
optimization-based ST fusion (ROSTF). ST fusion is a promising
approach to resolve a tradeoff between the temporal and spatial
resolution of satellite images. Although many ST fusion methods
have been proposed, most of them are not designed to explicitly
account for noise in observed images, despite the inevitable
influence of noise caused by the measurement equipment and
environment. Our ROSTF addresses this challenge by formu-
lating noise removal and ST fusion as a unified optimization
problem. First, we define observation models for satellite images
that may be contaminated with random noise, outliers, and/or
missing values. Next, we introduce certain assumptions that
naturally hold between the observed images and the target high-
resolution image. Then, based on these models and assumptions,
we formulate the fusion problem as a constrained optimization
problem and develop an efficient algorithm based on a pre-
conditioned primal–dual splitting method (P-PDS) for solving
the problem. The performance of ROSTF was verified using
simulated and real data. The results show that ROSTF performs
comparably to several state-of-the-art ST fusion methods in
noiseless cases and outperforms them in noisy cases.

Index Terms— Constrained optimization, primal–dual splitting
method, spatiotemporal (ST) fusion.

I. INTRODUCTION

THE analysis of temporal image series is necessary
and important in many remote sensing applications,

such as vegetation/crop monitoring and estimation [1], evap-
otranspiration estimation [2], atmosphere monitoring [3],
land-cover/land-use change detection [4], surface dynamic
mapping [5], ecosystem monitoring [6], soil water con-
tent analysis [7], and detailed analysis of human–nature
interactions [8]. These applications require time series of high-
spatial-resolution (HR) images to properly model the ground
surface. In addition, time series of high-temporal-resolution
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images are also needed to capture the changes in the ground
surface that occur over short periods of time.

However, there is a tradeoff between the temporal and
spatial resolution of satellite sensors, and no single sensor
can satisfy both requirements simultaneously. For example, the
Landsat sensors can acquire images with an HR of 30 m, but
they have a revisit period of up to 16 dates. On the other hand,
the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors can acquire images for the same scene at least once
per date, but the images are at a low spatial resolution (LR) of
500 m [9]. Therefore, the simultaneous acquisition of image
series of high spatial and high temporal resolution is a major
challenge in the remote sensing community [10]. A simple
solution to this challenge is to perform super-resolution on
the corresponding single LR image to estimate the unobserved
HR image [11], [12]. However, it is too difficult because the
spatial resolution gap between the two satellite images is often
quite large.

Spatiotemporal (ST) fusion (ST fusion) addresses this chal-
lenge by utilizing pairs of HR and LR images taken on
reference dates that are temporally close to the target date.
Specifically, the unobserved HR image on the target date is
estimated by combining detailed spatial structure extracted
from the HR images on the reference dates and spec-
tral changes captured from the differences between the LR
images on the reference and target dates. In ideal situations,
where a large number of reliable reference images are avail-
able, achieving accurate ST fusion would be straightforward
because the correct spatial structure and spectral changes are
readily available. In real-world applications, however, such
situations are very rare. Therefore, to achieve the desired ST
fusion in real-world applications, the following two require-
ments are important.

1) Minimum Reference Dates: ST fusion methods that
require minimum reference dates are preferred. In many
remote sensing applications, only one pair of images
on a reference date may be available due to cloud con-
tamination, inconsistencies in image acquisition timing,
or other factors. In addition, preparing another pair of
images can be time-consuming. Therefore, ST fusion
methods using a single pair of HR and LR images on
a reference date apply to a wider range of cases than
those using multiple pairs, although such a situation is
obviously challenging [13].
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2) Robustness to Noise: Due to the measurement equipment
and/or environment, satellite images are often contami-
nated with various types of noise, such as random noise,
outliers, and missing values [14], [15]. An estimated
HR image that remains noisy would significantly affect
subsequent processing. Therefore, it is imperative to
develop noise-robust ST fusion methods.

A. Prior Research

Many ST fusion methods have been proposed over the past
decades. They are generally categorized into five groups [16]:
unmixing-based, weight-function-based, Bayesian-based,
learning-based, and hybrid methods. Unmixing-based methods
estimate the pixel values of an HR image by unmixing the
pixels of the input LR images based on the linear spectral
mixing theory [17], [18]. Weight-function-based methods
generate an HR image by combining information of all
the input images based on weight functions [9], [19].
Bayesian-based methods use Bayesian estimation theory to
fuse the input images in a probabilistic manner [20], [21].
In the Bayesian framework, ST fusion can be considered a
maximum a posteriori (MAP) problem, that is, the goal is
to obtain an HR image on the target date by maximizing
its conditional probability relative to the input HR and LR
images. Learning-based methods model the relationship
between observed HR and LR image pairs and then predict
an unobserved HR image using machine-learning algorithms
such as sparse representation learning [22], [23], random
forest [24], and neural networks [25], [26], [27], [28], [29],
[30], [31]. Hybrid methods integrate two or more techniques
from the above four categories [32], [33].

Some of the unmixing-based, weight-function-based, and
Bayesian-based methods allow an arbitrary number of refer-
ence dates. In other words, they can handle the cases with
a single reference date. However, they are sensitive to noise
because they estimate an HR image at the pixel level based
entirely on reference images, which may be noisy. Thus, if the
input images are noisy, the output image will be severely
degraded.

On the other hand, in the context of learning-based methods,
a robust ST fusion network (RSFN) [28] has been established
to account for Gaussian noise. RSFN automatically filters
noise and prevents predictions from being corrupted by using
convolutional neural networks (CNNs), generative adversarial
networks (GANs), and an attention mechanism. Specifically,
the RSFN uses the attention mechanism to ignore noisy pixels
in two reference HR images and focus on clean pixels. This
method only works in situations where noisy pixels in the
two reference HR images do not appear at the same location.
In real-world measurements, however, such situations are rare
because noise generally contaminates the entire image, not just
parts of it. Furthermore, as mentioned above, RSFN requires
two reference dates.

B. Contributions and Paper Organization

Now, a natural question arises: How to achieve robust ST
fusion with only a single reference date? In this article, we pro-
pose a novel ST fusion framework for satellite images, named

robust optimization-based ST fusion (ROSTF), to estimate an
HR image on the target date while simultaneously denoising
an HR image on a single reference date.

Before formulating our optimization problem, we newly
define two observation models (they will be detailed in
Section III-A).

1) The first model describes the relationship between an
observed noisy image and the oracle noiseless image.
The model is designed under the assumption that the
observed image is not only contaminated with random
noise but also with outliers and missing values. Specifi-
cally, random noise is modeled by Gaussian noise while
outliers and missing values are modeled by sparse noise.

2) The second model represents the relationship between
an HR image and the corresponding LR image, based
on a super-resolution model [34].

We also introduce the following two assumptions about satel-
lite images (they will be detailed in Section III-B).

1) The reflectance may change significantly between the
reference and target dates, but the land structure (the
locations of the edges) does not. This is a very natural
assumption in the context of ST fusion.

2) An HR image and the corresponding LR image have
similar brightness. This assumption is necessarily true if
the HR and LR sensors have similar spectral resolutions,
as is the case with sensors like Landsat and MODIS [9].

Based on the observation models and assumptions, we for-
mulate the fusion problem as a constrained convex optimiza-
tion problem. Subsequently, we develop an efficient algorithm
based on the preconditioned primal–dual splitting method (P-
PDS) [35] with an operator-norm-based design method of
variable-wise diagonal preconditioning, named OVDP [36],
which can automatically determine the appropriate stepsizes
for solving the optimization problem.

The main contributions of the article are given as follows.
1) Robustness to Random Noise, Outliers, and Missing Val-

ues: As described above, no existing ST fusion methods
can handle random noise, outliers, and missing values,
although this type of noise contaminates satellite images
due to the measurement equipment and environment.
Thanks to the formulation that incorporates the first
observation model developed in Section III-A, ROSTF
is robust to such mixed noise.

2) Single Reference Date: Assumption 1) is very simple but
effective for ST fusion. By incorporating this assumption
as a constraint in the optimization problem, we realize
the mechanism to promote the estimated HR image
on the target date and the denoised HR image on the
reference date to have edges at similar locations. Thanks
to such a mechanism, ROSTF performs well even based
on a single reference date.

3) Facilitation of Parameter Adjustment: The objective
function of the optimization problem of ROSTF con-
sists only of image regularization terms to promote
spatial piecewise smoothness. The other components,
corresponding to data fidelity based on the two obser-
vation models and our two assumptions, are imposed as
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hard constraints. Such a formulation using constraints
instead of adding terms to the objective function has the
advantage of simplifying parameter setting [37], [38],
[39], [40], [41], [42]: the appropriate parameters in the
constraints do not depend on each other and can be
determined independently for each constraint.

4) Automatic Stepsize Adjustment: To solve our optimiza-
tion problem for ST fusion, we develop an efficient
algorithm based on P-PDS with OVDP. The appropriate
stepsizes of the standard PDS [43] (and most other
optimization methods) would be different depending
on the problem structure, which means that we have
to adjust them manually. On the other hand, P-PDS
with OVDP can automatically determine the appropriate
stepsizes based on the problem structure, and thus our
algorithm is free from such a troublesome task.

This paper is organized as follows. We first cover the
mathematical preliminaries of our method in Section II and
then proceed to the establishment of our method in Section III.
In Section IV, we demonstrate the performance of ROSTF and
the effectiveness of each key component of ROSTF through
comparative experiments and ablation studies, respectively.
Experimental results show that ROSTF performs comparably
to several state-of-the-art ST fusion methods for noiseless
images and outperforms them for noisy images, thanks to the
effective work of each key component.

The preliminary version of this work, without considering
sparse noise, mathematical details, comprehensive experimen-
tal comparison, deeper discussion, or implementation using
P-PDS with OVDP, has appeared in conference proceed-
ings [44].

II. PRELIMINARIES

A. Notations

Let R be the set of all real numbers. Vectors and matrices
are denoted by bold lower and upper case letters, respectively.
We treat a multispectral image with spatial resolution N1 ×

N2 and spectral resolution (the number of bands) B as a vector
x = ([x]⊤1 , . . . , [x]⊤B )⊤ ∈ RN B(N = N1 N2), where [x]b ∈ RN

is the vector representing the bth band pixel values. Here, the
nth pixel of [x]b is denoted by xb,n ∈ R. Let 00(RN B) be
the set of all proper lower-semicontinuous convex functions
defined on RN B . The ℓ1-norm, ℓ2-norm, and ℓ1,2-norm of x are
defined as ∥x∥1 :=

∑
b
∑

n |xb,n|, ∥x∥2 := (
∑

b
∑

n |xb,n|
2)1/2,

and ∥x∥1,2 :=
∑

n(
∑

b |xb,n|
2)1/2, respectively. For an image

x ∈ RN B , let Dv and Dh ∈ RN B×N B denote the matrices for
computing the differences between vertical/horizontal adjacent
pixels, respectively, and let D := (D⊤v D⊤h )⊤ ∈ R2N B×N B . The
hyperslab centered at ω with a radius α is denoted as

Sω
α :=

{
z| |ω − 1⊤z| ≤ α

}
. (1)

Also, the ℓp-norm ball (p = 1, 2) with the center c and radius
ε is denoted as

Bc
p,ε :=

{
z|∥z− c∥p ≤ ε

}
. (2)

The indicator function ιC : RN
→ (−∞,∞] of a nonempty

closed convex set C is defined as

ιC :=

{
0, if x ∈ C,

∞, otherwise.
(3)

B. Proximal Tools

The optimization problem of ROSTF, to be formulated in
Section III-B, involves nonsmooth convex functions. To solve
such a problem, we introduce the notion of the proximity
operator of index γ > 0 of f ∈ 00(RN B) as follows:

proxγ f : RN B
→ RN B

: x 7→ argmin
y∈RN B

f (y)+
1

2γ
∥x− y∥2

2.

(4)

The Fenchell–Rockerfellar conjugate function f ∗ of the
function f ∈ 00(RN B) is denoted by

f ∗(y) := sup
x∈RN B
{⟨x, y⟩ − f (x)}. (5)

Thanks to Moreau’s identity [45], the proximity operator of
f ∗ is efficiently calculated as

proxγ f ∗(x) = x− γ prox 1
γ

f

(
1
γ

x
)
. (6)

Below, we present the specific proximity operators of the
functions used in this article. The proximity operator of the
ℓ1,2-norm is given by[

proxγ ∥·∥1,2
(x)

]
b,n
= max

1−
γ√∑B

b′=1 |xb′,n|
2
, 0

xb,n.

(7)

The proximity operator of the indicator function of the hyper-
slab in (1) is expressed as follows:

proxγ ιSω
α
(x) =


x+

η1 − 1⊤x
N B

1, if 1⊤x < η1,

x+
η2 − 1⊤x

N B
1, if 1⊤x > η2,

x, otherwise

(8)

where η1 = ω − α and η2 = ω + α. The proximity operators
of the indicator functions of the ℓ2-norm ball and the ℓ1-norm
ball in (2) are calculated by

proxγ ιBc
2,ε

(x) =

 x, if x ∈ ιBc
2,ε

,

c+
ε(x− c)
∥x− c∥2

, otherwise
(9)

and a fast ℓ1-ball projection algorithm [46], respectively.

C. P-PDS With OVDP

The standard PDS [43] is a versatile and efficient prox-
imal algorithm that can solve a wide class of nonsmooth
convex optimization problems without using matrix inversion.
However, it is troublesome to manually set the appropriate
stepsizes of the standard PDS. Therefore, we adopt P-PDS [35]
with OVDP [36], a method that automatically determines the
appropriate stepsizes according to the problem structure.
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Let yi ∈ RKi (i = 1, . . . , N ) and z j ∈ RL j ( j = 1, . . . , M).
Consider convex optimization problems of the following form:

min
y1,...,yN
z1,...,zM

N∑
i=1

gi (yi )+

M∑
j=1

h j
(
z j
)
,

s.t.


z1 =

∑N

i=1
G1,i yi ,

...

zM =
∑N

i=1
GM,i yi

(10)

where gi ∈ 00(RKi ) (i = 1, . . . , N ), h j ∈ 00(RL j ) ( j =
1, . . . , M), and G j,i : RKi → RL j (i = 1, . . . , N , j =
1, . . . , M) are linear operators. P-PDS with OVDP solves (10)
by the following iterative procedures:

ȳ(n)
1 ← y(n)

1 − γ1,1

∑M

j=1
G⊤j,1z(n)

j ,

y(n+1)
1 ← proxγ1,1g1

(
ȳ(n)

1

)
,

...

ȳ(n)
N ← y(n)

N − γ1,N

∑M

j=1
G⊤j,N z(n)

j ,

y(n+1)
N ← proxγ1,N gN

(
ȳ(n)

N

)
,

z̄(n)
1 ← z(n)

1 + γ2,1

∑N

i=1
G1,i

(
2y(n+1)

i − y(n)
i

)
,

z(n+1)
1 ← proxγ2,1h∗1

(
z̄(n)

1

)
,

...

z̄(n)
M ← z(n)

M + γ2,M

∑N

i=1
GM,i

(
2y(n+1)

i − y(n)
i

)
,

z(n+1)
M ← proxγ2,M h∗M

(
z̄(n)

M

)
where γ1,i (i = 1, . . . , N ) and γ2, j ( j = 1, . . . , M) are step-
size parameters. The stepsize parameters can be determined as
follows [36]:

γ1,i =
1∑M

j=1

∥∥G j,i
∥∥2

op

, γ2, j =
1
N

(11)

where ∥ · ∥op represents the operator norm defined by

∥G∥op := sup
x̸=0

∥Gx∥2

∥x∥2
. (12)

III. PROPOSED METHOD

From now on, we will focus on cases with a single reference
date. Specifically, we consider a situation where both HR and
LR sensors observe the same scene on the single reference
date, but on the target date, only the LR sensor observes
that scene and not the HR sensor. Let the HR image on
the reference date, the LR image on the reference date, and
the LR image on the target date be hr ∈ RNh B , lr ∈ RNl B ,
and lt ∈ RNl B , respectively. Our method, ROSTF, estimates
the desired noiseless HR image on the target date, denoted
by ĥt ∈ RNh B , based on these three observed images, while
simultaneously denoising hr . A general diagram of ROSTF is
shown in Fig. 1.

A. Observation Models

Let ĥ ∈ RNh B and l̂ ∈ RNl B be a noiseless HR image
and a noiseless LR image, respectively, taken on the same
date. We introduce observation models for a noisy HR image
h ∈ RNh B and a noisy LR image l ∈ RNl B . Specifically,
we consider that the observed satellite images h and l are
possibly contaminated with random noise, outliers, and miss-
ing values. Random noise added to ĥ and l̂ is modeled by
Gaussian noise nh and nl with standard deviation σh and σl ,
respectively, while outliers and missing values affecting ĥ and
l̂ are modeled by sparsely distributed noise sh and sl with the
superimposition ratio rh and rl , respectively. By modeling the
noise in this manner, the observation models for h and l are
described as

h = ĥ+ nh + sh,

l = l̂+ nl + sl . (13)

Here, σh > σl and rh > rl generally hold since HR images
often contain more severe noise than LR images. This is
because the amount of light received per pixel decreases as
the number of pixels increases [47].

On the other hand, l̂ can be approximated by the image
obtained by blurring and downsampling ĥ, known as a typical
super-resolution model [34], as follows:

l̂ = SBĥ+m (14)

where B ∈ RNh B×Nh B is the spatial spread transform matrix
introduced in [48], S ∈ RNl B×Nh B is the downsampling matrix,
and m ∈ RNl B is the modeling error. This model has been
widely used in the ST fusion literature [49].

B. Problem Formulation

We introduce the following two assumptions about the
noiseless HR and LR images on the reference and target dates,
that is, ĥr , l̂r , ĥt , and l̂t .

1) The reflectance may change significantly between the
reference and target dates, but the land structure does
not. This is a very natural assumption in ST fusion and
is implicitly accepted in previous studies. If the land
structure has not changed significantly, the edges of ĥr

and ĥt appear at almost the same locations, implying
that the difference between Dĥr and Dĥt tends to be
small. We measure the similarity of these edges using
the ℓp (p = 1 or 2) norm as ∥Dĥr − Dĥt∥p.

2) The HR and LR images taken on the same date have
similar average brightness per band. For example, the
difference in average brightness of the bth band of ĥt

and l̂t , expressed as∣∣∣∣ 1
Nl

1⊤
[̂
lt
]

b
−

1
Nh

1⊤
[
ĥt

]
b

∣∣∣∣ (15)

is expected to be small. This is necessarily true if the HR
and LR sensors have similar spectral resolutions, as is
the case for Landsat and MODIS [9].

Based on these assumptions and the observation models
in (13) and (14), we formulate the fusion problem as the
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Fig. 1. Illustration of our method, that is, ROSTF.

following constrained convex optimization problem:

min
h̃r ,̃ht ,

s̃hr ,̃slr ,̃slt

∥∥∥Dh̃r

∥∥∥
1,2
+ λ

∥∥∥Dh̃t

∥∥∥
1,2

s.t.



∥Dh̃r − Dh̃t∥p ≤ α,∣∣∣cb − 1⊤
[
h̃t

]
b
/Nh

∣∣∣ ≤ βb (b = 1, . . . , B),

∥hr −

(
h̃r + s̃hr

)
∥2 ≤ εh,

∥lr −
(

SBh̃r + s̃lr

)
∥2 ≤ εl ,

∥lt −
(

SBh̃t + s̃lt

)
∥2 ≤ εl ,

∥̃shr∥1 ≤ ηh,

∥̃slr∥1 ≤ ηl ,

∥̃slt∥1 ≤ ηl

(16)

where λ is a balancing parameter. The variables h̃r and h̃t

correspond to the estimates of ĥr and ĥt , respectively, and
s̃hr , s̃lr , and s̃lt correspond to the estimates of sparse noise
superimposed on hr , lr and lt , respectively. Each term in
the objective function and each constraint have the following
roles.

1) The two terms in the objective function promote spatial
piecewise smoothness of h̃r and h̃t , with the hyperspec-
tral total variation (HTV) [50] as regularization.

2) The first constraint encourages Dh̃r and Dh̃t to be
similar based on Assumption 1). The parameter α con-
trols the degree of similarity. Hereafter, the constraint is
referred to as the edge constraint.

3) The second constraint is designed based on Assumption
2). Since lt is contaminated by noise, we do not use
the average brightness of [lt ]b itself, that is, 1⊤[lt ]b/Nl ,
but the parameter cb, which is determined based on
1⊤[lt ]b/Nl and the noise intensity. The parameter βb

controls the strength of this constraint. Hereafter, the
constraint is referred to as the brightness constraint.

4) The third constraint serves as data-fidelity based on the
observation model in (13). The parameter εh depends on
the Gaussian noise intensity on the HR image, that is, σh .

5) The fourth and fifth constraints are to ensure that the
solutions follow the observation model in (14). The
parameter εl depends on the Gaussian noise intensity
on the LR images, that is, σl .

6) The last three constraints characterize the sparse noise
using the ℓ1 norms. The parameters ηh and ηl depend
on the sparse noise intensity on the HR and the LR
images, respectively, that is, rh and rl .
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Algorithm 1 P-PDS-Based Solver for (16)
Require: λ, p, α, β ′b, c′b, εh, εl , ηh, ηl

Ensure: h̃(n)
r , h̃(n)

t , s̃(n)
hr , s̃(n)

lr , s̃(n)
lt

1: Initialize h̃(0)
r , h̃(0)

t , s̃(0)
hr , s̃(0)

lr , s̃(0)
lt , z(0)

j ( j = 1, . . . , 6);
2: Set γ1,i (i = 1, . . . , 3), γ2, j ( j = 1, . . . , 6), as in (20);
3: while until a stopping criterion is not satisfied do
4: ur ← D⊤z(n)

1 + D⊤z(n)
3 + z(n)

4 + B⊤S⊤z(n)
5 ;

5: ut ← D⊤z(n)
2 − D⊤z(n)

3 + B⊤S⊤z(n)
6 ;

6: h̃(n+1)
r ← h̃(n)

r − γ1,1ur ;
7: h̃(n+1)

t ← h̃(n)
t − γ1,2ut ;

8: for b = 1, . . . , B do
9: [h̃(n+1)

t ]b ← proxι
S

c′b
β′b

([h̃(n+1)
t ]b);

10: end for
11: s̃(n+1)

hr ← proxγ1,3ιB0
1,ηh

(̃s(n)
hr − γ1,3z4);

12: s̃(n+1)
lr ← proxγ1,4ιB0

1,ηl

(̃s(n)
lr − γ1,4z5);

13: s̃(n+1)
lt ← proxγ1,5ιB0

1,ηl

(̃s(n)
lt − γ1,5z6);

14: vr ← 2h̃(n+1)
r − h̃(n)

r ;
15: vt ← 2h̃(n+1)

t − h̃(n)
t ;

16: whr ← 2̃s(n+1)
hr − s̃(n)

hr ;
17: wlr ← 2̃s(n+1)

lr − s̃(n)
lr ;

18: wlt ← 2̃s(n+1)
lt − s̃(n)

lt ;
19: z(n)

1 ← z(n)
1 + γ2,1Dvr ;

20: z(n)
2 ← z(n)

2 + γ2,2Dvt ;
21: z(n)

3 ← z(n)
3 + γ2,3(Dvr − Dvt );

22: z(n)
4 ← z(n)

4 + γ2,4(vr + whr );
23: z(n)

5 ← z(n)
5 + γ2,5(SBvr + wlr );

24: z(n)
6 ← z(n)

6 + γ2,6(SBvt + wlt );
25: z(n+1)

1 ← z(n)
1 − γ2,1prox 1

γ2,1
∥·∥1,2

( 1
γ2,1

z(n)
1 );

26: z(n+1)
2 ← z(n)

2 − γ2,2prox λ
γ2,2
∥·∥1,2

( 1
γ2,2

z(n)
2 );

27: z(n+1)
3 ← z(n)

3 − γ2,3proxιB0
p,α

( 1
γ2,3

z(n)
3 );

28: z(n+1)
4 ← z(n)

4 − γ2,4proxι
Bhr

2,εh

( 1
γ2,4

z(n)
4 );

29: z(n+1)
5 ← z(n)

5 − γ2,5proxι
Blr

2,εl

( 1
γ2,5

z(n)
5 );

30: z(n+1)
6 ← z(n)

6 − γ2,6proxι
Blt

2,εl

( 1
γ2,6

z(n)
6 );

31: n← n + 1;
32: end while

Using constraints instead of adding terms to the objective
function in this way simplifies the parameter setting [37],
[38], [39], [40], [41], [42]: we can determine the appropriate
parameters for each constraint independently because they
are decoupled. The detailed setting of these parameters is
discussed in Section IV-C.

C. Optimization

For solving (16) by an algorithm based on P-PDS with
OVDP, we need to transform (16) into (10). First, using the
hyperslab, the ℓp-norm ball, and the indicator function (see (1),
(2), and (3) for the definition, respectively), we reformulate our

problem in (16) as follows:

min
h̃r ,̃ht ,

s̃hr ,̃slr ,̃slt

∥∥∥Dh̃r

∥∥∥
1,2
+ λ

∥∥∥Dh̃t

∥∥∥
1,2
+ ιB0

p,α

(
Dh̃r − Dh̃t

)

+

B∑
b=1

ι
S

c′b
β′b

([
h̃t

]
b

)
+ ιBhr

2,εh

(
h̃r + s̃hr

)
+ ιB lr

2,εl

(
SBh̃r + s̃lr

)
+ ιB lt

2,εl

(
SBh̃t + s̃lt

)
+ ιB0

1,ηh

(̃
shr
)
+ ιB0

1,ηl

(̃
slr
)
+ ιB0

1,ηl

(̃
slt
)

(17)

where β ′b = βb Nh and c′b = cb Nh for b = 1, . . . , B.
Introducing auxiliary variables z1, z2, z3, z4, z5, and z6, we can
transform (17) into the following equivalent problem:

min
h̃r ,̃ht ,

s̃hr ,̃slr ,̃slt

∥z1∥1,2 + λ∥z2∥1,2 + ιB0
p,α

(z3)+

B∑
b=1

ι
S

c′b
β′b

([
h̃t

]
b

)
+ ιBhr

2,εh
(z4)+ ιB lr

2,εl
(z5)+ ιB lt

2,εl
(z6)

+ ιB0
1,ηh

(̃
shr
)
+ ιB0

1,ηl

(̃
slr
)
+ ιB0

1,ηl

(̃
slt
)

s.t.



z1 = Dh̃r ,

z2 = Dh̃t ,

z3 = Dh̃r − Dh̃t ,

z4 = h̃r + s̃hr ,

z5 = SBh̃r + s̃lr ,

z6 = SBh̃t + s̃lt .

(18)

Then, by defining

g1

(
h̃r

)
= 0, g2

(
h̃t

)
=

B∑
b=1

ι
S

c′b
β′b

([
h̃t

]
b

)
,

g3
(̃
shr
)
= ιB0

1,ηh

(̃
shr
)
, g4
(̃
slr
)
= ιB0

1,ηl

(̃
slr
)
,

g5
(̃
slt
)
= ιB0

1,ηl

(̃
slt
)
, h1(z1) = ∥z1∥1,2,

h2(z2) = λ∥z2∥1,2, h3(z3) = ιB0
p,α

(z3),

h4(z4) = ιBhr
2,εh

(z4), h5(z5) = ιB lr
2,εl

(z5),

h6(z6) = ιB lt
2,εl

(z6) (19)

we reduce (10) to (18), that is, (16).
The algorithm for solving (16) is summarized in

Algorithm 1. The stepsizes are determined based on
OVDP [36] as follows:

γ1,1 =
1

2∥D∥2
op + ∥I∥

2
op + ∥SB∥2

op
=

1
18

,

γ1,2 =
1

2∥D∥2
op + ∥SB∥2

op
=

1
17

,

γ1,3 = γ1,4 = γ1,5 =
1
∥I∥2

op
= 1,

γ2,i =
1
5
, for i = 1, . . . , 6. (20)

D. Detailed Computations and Their Complexity

Table I shows the computational complexity (in O-notation)
of each operation used in Algorithm 1, where the operated
vector is x = ([x]⊤1 , . . . , [x]⊤B )⊤ ∈ RN B . According to Table I,
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TABLE I
COMPUTATIONAL COMPLEXITY OF EACH OPERATION

the computational complexity of each step in one iteration of
Algorithm 1 is as follows.

1) Steps 4, 5, 23, and 24: O(k Nh B).
2) Steps 6, 7, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, and

28: O(Nh B) when p = 2.
3) Step 9: O(Nh).
4) Steps 17, 18, 29, and 30: O(Nl B).
5) Steps 11 and 27: O(Nh B log(Nh B)) when p = 1.
6) Steps 12 and 13: O(Nl B log(Nl B)).

After all, one iteration of the algorithm has an overall com-
putational complexity of O(Nh B log(Nh B)).

IV. EXPERIMENTS

We demonstrate the effectiveness of our ST fusion method,
ROSTF, through comprehensive experiments using simulated
and real data for two sites. Our experiments aim to verify the
following three items.

1) ROSTF is as effective as state-of-the-art ST fusion
methods in noiseless cases and outperforms them in
noisy cases. We conducted comparative experiments on
four cases of noise contamination. The experimental
results for simulated data and real data are presented
in Sections IV-D and IV-E, respectively.

2) Key components of ROSTF, such as the
assumption-based constraints and the denoising
mechanism, operate as expected. To measure their
influence, ROSTF without each key component is
compared with the original ROSTF in terms of fusion
accuracy and convergence speed in Section IV-F.

3) ROSTF is practical in terms of computational time. For
a fair comparison, only nondeep-learning-based methods
are compared to ROSTF in Section IV-G.

Note that there are two options for ROSTF: p = 1 or
2, where p corresponds to the choice of the norm in the
first constraint in (16), that is, the edge constraint. Hereafter,
ROSTF with p = 1 and ROSTF with p = 2 are referred to
as ROSTF-1 and ROSTF-2, respectively.

A. Data Description

We tested our methods both on real data and simulated data.
In the case of satellite observations, radiometric and geometric
inconsistencies exist between two different image sensors. This

TABLE II
EXISTING METHODS

TABLE III
PARAMETER SETTING

means that the fusion capability of each method cannot be
accurately evaluated in experiments using real data because
these inconsistencies affect performance, as also addressed
in [32]. Therefore, we generated simulated data based on
the observation models and verified the performance of each
method using this data in addition to the real data. Specifi-
cally, in experiments using simulated data, the simulated LR
images were generated from the corresponding real HR images
according to (14) with m = 0 while the real HR images were
used as HR images.

We used MODIS and Landsat time-series images for the
following two sites in our experiments.
Site1: The first site is situated in the Daxing district in

the south of Beijing city (39.0009◦ N, 115.0986◦ E)
[16]. For Site1, we employed MODIS and Landsat
time-series images acquired on May 29, 2019 (a
reference date) and June 14, 2019 (a target date).

Site2: The second site is located in southern New South
Wales, Australia (34.0034◦ S, 145.0675◦ E) [51].
For Site2, MODIS and Landsat time-series images
acquired on January 4, 2002 (a reference date) and
February 12, 2002 (a target date) were used.

B. Compared Methods

Our method was compared with STARFM [9], VIP-
STF [33], RSFN [28], RobOt [23], and SwinSTFM [31].
Table II shows the characteristics of these methods and
ROSTF. Note that, unlike the other methods, RSFN requires
input images obtained on two reference dates. Since our exper-
iments assume a scenario with only one reference date, the
same HR-LR image pair was input as two different reference
image pairs for RSFN.
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TABLE IV
RMSE, SAM, MSSIM, AND CC RESULTS IN THE EXPERIMENTS WITH SIMULATED DATA

As the parameters of these existing methods, we used the
values recommended in each reference. It should be noted that
RSFN and SwinSTFM require significantly more data than
our and other existing methods due to training and validation
processes. For our experiments, we trained and validated
RSFN and SwinSTFM using a different set of images from
those used for the tests described in Section IV-A. Specifically,
24 groups from Site1 and two groups from Site2 were used
for training, and one group from Site1 and two groups from
Site2 were used for validation.

C. Experimental Setup

Our method, ROSTF, is implemented using MATLAB. The
source code is available on the GitHub1 platform. For these
experiments, the spatial spread transform matrix B in (14) was
implemented as a blurring operator with an averaging filter
of size k. The downsampling matrix S in (14) was designed
to take the top-left pixel value in the k × k window. The
parameter k was set to 20 to account for the difference in
spatial resolution between the Landsat and MODIS images.
The balancing parameter λ in (16) was set to 1 since h̃r and
h̃t have the same number of elements and are expected to

1https://github.com/MDI-TokyoTech/ROSTF

be piecewise smooth to the same degree. The parameters in
the constraints in (16) were set as shown in Table III. We set
the maximum number of iterations for Algorithm 1 to 50 000
and the stopping criterion of Algorithm 1 was set to ∥h̃(n)

r −

h̃(n−1)
r ∥2/∥h̃(n−1)

r ∥2 < 10−5,∥h̃(n)
t − h̃(n−1)

t ∥2/∥h̃(n−1)
t ∥2 < 10−5,

∥lr − SBh̃(n)
r ∥2 ≤ εl , and ∥lt − SBh̃(n)

t ∥2 ≤ εl .
To verify both the pure fusion capability and the robustness

against the noise of the existing methods and ours, we con-
ducted the following four combinations of Gaussian noise with
different standard deviations and sparse noise (salt-and-pepper
noise) with different rates.

Case1: The observed HR and LR images are noiseless, that
is, σh = σl = rh = rl = 0 in (13).

Case2: The observed HR images are contaminated with Gaus-
sian noise with a standard deviation σh = 0.05 while
the observed LR images are noiseless, that is, σh =

0.05, σl = rh = rl = 0 in (13).
Case3: The observed HR images are contaminated with

sparse noise with a superimposition rate rh = 0.05,
while the observed LR images are noiseless, that is,
rh = 0.05, σh = σl = rl = 0 in (13).

Case4: The observed HR images are contaminated with Gaus-
sian noise with a standard deviation σh = 0.05 and
sparse noise with a superimposition rate rh = 0.05,
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Fig. 2. ST fusion results for the Site1 simulated data in Case1.

while the observed LR images are noiseless, that is,
σh = rh = 0.05, σl = rl = 0 in (13).

For the quantitative evaluation, we used the following four
metrics: the root mean square error (RMSE):

RMSE =

√
1

Nh B

∥∥∥h̃t − ĥt

∥∥∥2

2
(21)

where h̃t and ĥt denote an estimated HR image and a
ground-truth HR image, respectively, on the target date; the
spectral angle mapper (SAM) [52]

SAM =
1

Nh

Nh∑
n=1

arccos

(
< ẽn, ên >

∥ẽn∥2 ·
∥∥ên
∥∥

2

)
(22)

where ẽn ∈ RB and ên ∈ RB represent the spectral vectors of
the nth pixel of h̃t and ĥt , respectively; the mean structural
similarity overall bands (MSSIM) [53]

MSSIM =
1
B

B∑
b=1

SSIM
([

h̃t

]
b
,
[
ĥt

]
b

)
(23)

and the correlation coefficient (CC)

CC =
s̃ht ĥt

s̃ht
ŝht

(24)

where s̃ht ĥt
denotes the covariance of h̃t and ĥt , and s̃ht

and
ŝht

denote the standard deviations of h̃t and ĥt , respectively.
RMSE was calculated to measure the difference between
the estimated image and the ground-truth at the pixel level.
SAM was used to measure spectral fidelity. Lower RMSE and
SAM values indicate better estimation performance. We used
MSSIM to evaluate the similarity of the overall structure.
CC shows the strength of the linear relationship between the
estimated image and the ground truth. Higher MSSIM and CC
values indicate better estimation performance.

Fig. 3. ST fusion results for the Site2 simulated data in Case1.

D. Experimental Results With Simulated Data

Table IV shows the RMSE, SAM, MSSIM, and CC results
in experiments with the simulated data. In Case1, STARFM,
VIPSTF, RobOt, SwinSTFM, ROSTF-1, and ROSTF-2 per-
form equally well. In contrast, the results of RSFN are not
good for both the Site1 and Site2 data. This may be because
the size of the training data described above was insufficient
to effectively train RSFN. Thus, if more training data were
used, RSFN might have produced better results. However,
collecting noise-free training data is challenging in real-world
applications, and this is the scenario considered in these exper-
iments. Next, we focus on the results in Case2, Case3, and
Case4, where the observed reference images are contaminated
with noise. While STARFM, VIPSTF, RobOt, SwinSTFM,
and RSFN demonstrate significantly worse performance due
to the influence of noise, ROSTF-1 and ROSTF-2 show no
significant performance degradation in Case2, Case3, and
Case4. This is because ROSTF estimates the target HR image
while simultaneously denoising the reference HR image.

Figs. 2 and 3 show the estimated results in Case1 for the
Site1 and Site2 simulated data, respectively. In the zoomed-
in areas, there are significant temporal changes in brightness
between the reference HR image hr and the target HR image,
ground truth. For the Site1 data, it is visually apparent that
ROSTF-1 and ROSTF-2 capture these changes most accurately
and estimate the brightness closest to that of the ground
truth compared with the other methods. This is thanks to the
brightness constraint and the fifth constraint in (16), which
promote the brightness of the estimated image to be close
to that of the observed LR image lt on the target date,
based on Assumption 2) and the observation model in (14).
Following ROSTF, RobOt also captures the temporal changes
effectively. STARFM and VIPSTF are significantly influenced
by the reference HR image hr , resulting in estimates that are
closer in brightness to that of hr rather than to that of the
ground truth. The result of RSFN is not good due to a lack of
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Fig. 4. ST fusion results for the noisy Site2 simulated data. (Top, Middle, and Bottom) Results in Case2, Case3, and Case4, respectively.

Fig. 5. Scatter plots of the ground truth and the estimated values for the Site2 simulated data.

Fig. 6. Spectral profiles of a specific pixel in the results of each method for
the Site2 data in (a) Case1 and (b) Cas 4.

training data. The SwinSTFM result appears to show spectral
distortion. For the Site2 data, Fig. 3 illustrates that ROSTF-1
most accurately captures the changes in brightness within the

zoomed-in area. ROSTF-2 and RobOt have good estimates,
followed by ROSTF-1. STARFM and SwinSTFM do not
capture the large temporal changes. The result of VIPSTF has
different tints throughout. RSFN estimates brightness closer to
that of hr than to that of the ground truth.

Next, we focus on the results in noisy cases. Fig. 4 shows
the estimated results for the Site2 data in noisy cases, that is,
Case2, Case3, and Case4. The results of STARFM, VIPSTF,
and RobOt are contaminated with a noise similar to that of
hr because they estimate the target image pixel-wise based
solely on the noisy reference image hr . The results of RSFN
are corrupted for the unexpected inputs because RSFN was
not trained on noisy data. Furthermore, using noisy data to
train RSFN may not have produced good results. This is
because RSFN is robust to noise only in situations where
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TABLE V
RMSE, SAM, MSSIM, AND CC RESULTS IN THE EXPERIMENTS WITH REAL DATA

Fig. 7. ST fusion results for the Site1 real data in Case1.

noisy pixels in the two reference HR images do not appear
at the same location. SwinSTFM generates unstable noisy
results due to noisy unexpected inputs. On the other hand,

Fig. 8. ST fusion results for the Site2 real data in Case1.

ROSTF-1 and ROSTF-2 provide good estimates even when
the observed reference images are noisy, without much loss
of accuracy compared to the noiseless case. This is thanks
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Fig. 9. ST fusion results for the noisy Site1 simulated data. (Top, Middle, and Bottom) Results in Case2, Case3, and Case4, respectively.

to the framework that simultaneously performs noise removal
and ST fusion.

The impact of noise on each method is also visually
evident in Figs. 5 and 6. The scatter plots in Fig. 5 reveal
the difference between the ground-truth and the estimated
values of each method for the simulated Site2 data. In Case2,
STARFM, VIPSTF, RSFN, RobOt, and SwinSTFM exhibit
greater variance compared to Case1 due to the influence of
Gaussian noise. In Case3, STARFM, VIPSTF, and RobOt
estimate the wrong values close to 0 or 1 affected by sparse
noise while the RSFN and SwinSTFM results have no such
outliers but show greater variance. Furthermore, in Case4, the
distributions indicate that STARFM, VIPSTF, RSFN, RobOt,
and SwinSTFM are affected by both Gaussian and sparse
noise. In contrast, the results of ROSTF-1 and ROSTF-2 have
minimal variance and no outliers, indicating their robustness
to Gaussian, sparse, and mixed noise. Spectral profiles of a
specific pixel in the results of each method for the Site2 data
in Case1 and Case4 are depicted in Fig. 6. STARFM, VIPSTF,
RobOt, SwinSTFM, and ROSTF estimate similarly accurate
values in Case1, that is, they are comparable in the noiseless
case. In Case4, STARFM, VIPSTF, RobOt, and SwinSTFM
estimate completely wrong values for the third band affected
by sparse noise and perform worse for the other bands due
to the influence of Gaussian noise. In contrast, ROSTF-1 and
ROSTF-2 have accurate estimates for all bands, even in the
noisy case.

E. Experimental Results With Real Data

Table V shows the RMSE, SAM, MSSIM, and CC results
in experiments with the real data. Compared to the results for
the simulated data in Table IV, the performance of ROSTF-
1 and ROSTF-2 degrades due to radiometric and geometric
inconsistencies between the Landsat and MODIS sensors.
Despite the performance degradation, ROSTF-1 and ROSTF-2
perform as well as the existing methods in the noiseless case,
that is, Case1, and outperform them in the noisy cases, that
is, Case2, Case3, and Case4, as in the experiments with the
real data. Thus, it can be concluded that ROSTF is robust to
noise even for the simulated data.

Figs. 7 and 8 show the estimated results in Case1 for the
Site1 and Site2 real data, respectively. Compared to the results
for the simulated data in Figs. 2 and 3, ROSTF-1 and ROSTF-
2 perform worse due to modeling errors between the real
HR images hr , ht and the real LR images lr , lt caused by
radiometric and geometric inconsistencies.

Fig. 9 shows the estimated results for the Site2 data in the
noisy cases, that is, Case2, Case3, and Case4. The results
of the existing methods are not good, especially STARFM,
VIPSTF, and RobOt generate noisy outputs. The estimated
images of ROSTF seem to be blurred in the zoomed area in
Fig. 9. This is due to oversmoothing by the HTV regularization
terms in (16), which might have undesirable effects on some
applications. Nevertheless, according to the difference map in
Fig. 10, the results of ROSTF exhibit the least error, and
the accuracy evaluation in Table V also shows that ROSTF
achieves the best performance in all metrics.

F. Ablation Study

We conducted ablation experiments focusing on the follow-
ing three items.

1) The edge constraint, ∥Dh̃r − Dh̃t∥p ≤ α, to encourage
similarity in the land structure, specifically the edges,
between the reference and target HR images based on
Assumption 1).

2) The brightness constraint, |cb − 1⊤[h̃t ]b/Nh | ≤ βb (b =
1, . . . , B), which is designed based on Assumption 2) to
ensure that the estimated target HR image has a similar
average brightness to the target LR image.

3) The denoising mechanism for the reference HR
image hr , that is, the first regularization term ∥Dh̃r∥1,2
and the third, fourth, sixth, and seventh constraints,
∥hr − (h̃r + s̃hr )∥2 ≤ εh , ∥lr − (SBh̃r + s̃lr )∥2 ≤ εl ,
∥̃shr∥1 ≤ ηh , ∥̃slr∥1 ≤ ηl .

We tested ROSTF with each of the three components
mentioned above removed. In the following, we present the
ablation studies on the two constraints, the edge constraint and
the brightness constraint, followed by the ablation study on the
denoising mechanism. The hyperparameters in each optimiza-
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Fig. 10. Difference map (absolute errors) of the fusion results in the zoomed-in area in the noisy Site1 real data. (Top, Middle, and Bottom) Results in
Case2, Case3, and Case4, respectively.

TABLE VI
AVERAGE NUMBER OF ITERATIONS AND THE AVERAGE PERFORMANCE

RESULTS FOR ALL THE SITUATIONS

Fig. 11. Behavior of the original ROSTF-2, ROSTF-2 without the edge
constraint, and ROSTF-2 without the brightness constraint in the experiment
on the Site1 simulated data in Case1. The transition of the RMSE values
(a) until the algorithms stopped and (b) in early iterations.

tion problem and the stopping criterion of each P-PDS-based
algorithm to solve it were set as in the original ROSTF. On the
other hand, the stepsizes in each algorithm were set as the
values computed according to the operator-norm-based design
method of variable-wise diagonal preconditioning in (11).

1) Edge and Brightness Constraints: First, we measure the
effectiveness of the two constraints based on Assumptions 1)

Fig. 12. ST fusion results of (a) ROSTF-2 without edge constraint,
(b) ROSTF-2 without brightness constraint, and (c) original ROSTF-2 for
the Site2 simulated data in Case3. (d) Ground truth.

and 2), that is, the edge constraint and the brightness con-
straint, in terms of convergence speed and fusion performance.

Table VI shows the average number of iterations spent
before each algorithm stopped and the average performance
results for all sites (Site1 or Site2), data types (real or
simulated data), and noise cases (from Case1 to Case4). Note
that each algorithm always stopped at the maximum number of
iterations, 50 000, even if the stopping criterion was not met.
The original ROSTF performs best with the fewest number
of iterations on average, indicating that both of the two
constraints contribute to achieving higher fusion performance
with fewer iterations.

Fig. 11 illustrates the transition of the RMSE values for the
original ROSTF-2, ROSTF-2 without the edge constraint, and
ROSTF-2 without the brightness constraint in the experiment
on the Site1 simulated data in Case1. ROSTF-2 without the
edge constraint does not meet the stopping criterion until
50 000 iterations, possibly because the solution space of the
optimization problem without the edge constraint is too large
to efficiently reach an optimal solution. This suggests that the
edge constraint has the effect of making the solution space
moderately small and speeding up convergence. On the other
hand, ROSTF-2 without the brightness constraint converges
faster than ROSTF-2 without the edge constraint but exhibits
unstable behavior, especially in the early iterations. This may
be because the variable h̃t is no longer directly updated as
a primal variable when the brightness constraint is removed.
The update equation corresponding to the brightness constraint
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TABLE VII
AVERAGE PERFORMANCE RESULTS FOR EACH NOISE CASE IN THE ABLA-

TION STUDY OF THE DENOISING MECHANISM

is implemented as the only update equation for the primal
variable h̃t , as in the lines 8–10 of Algorithm 1, while the
update equations corresponding to the other components for
h̃t update the dual variables z2, z3, and z6. Directly updating
the primal variable leads to faster convergence of the algorithm
and more stable behavior than updating the primal variable via
the update of the dual variables. Introducing the brightness
constraint allows the variable h̃t to be updated directly as
the primal variable, thereby enhancing convergence speed and
stability.

Fig. 12 provides a visual comparison of the original
ROSTF-2 and ROSTF-2 without these constraints. The image
estimated by ROSTF-2 without the edge constraint (a) loses
spatial structure, and ROSTF-2 without the brightness con-
straint and (b) produces an image with incorrect brightness.
On the other hand, the original ROSTF-2 (c) estimates bright-
ness close to that of the ground truth while still preserving
spatial structure, indicating that both constraints work effec-
tively.

2) Denoising Mechanism: Next, we move on to the ablation
study of the denoising mechanism of ROSTF. The optimiza-
tion problem of ROSTF without the denoising mechanism is
formulated as

min
h̃t ,̃slt

∥Dh̃t∥1,2

s.t.


∥Dhr − Dh̃t∥p ≤ α,

|cb − 1⊤
[
h̃t

]
b
/Nh | ≤ βb (b = 1, . . . , B),

∥lt −
(

SBh̃t + s̃lt

)
∥2 ≤ εl ,

∥̃slt∥1 ≤ ηl .

(25)

Since the objective function contains only one regularization
term for h̃t , no balancing parameter is needed. Also, note
that the edge constraint of (25) is different from that of the
original ROSTF in (16) because this optimization problem has
no variable h̃r .

Table VII displays the average RMSE, SAM, MSSIM, and
CC results for each noise case. As expected, in the noisy cases,

Fig. 13. ST fusion results of ROSTF-1 without the denoising mechanism
for the Site2 simulated data.

that is, Case2, Case3, and Case4, ROSTF without the denois-
ing mechanism performs significantly worse than the original
ROSTF due to the direct impact of noise. This shows that
the denoising mechanism works effectively to make ROSTF
robust to noise. On the other hand, we newly found that in the
noiseless case, that is, Case1, ROSTF without the denoising
mechanism achieves slightly better fusion results than the
original one. This result indicates that in noiseless cases, the
observed HR image hr can be used as the reference as it is,
and there is no need to estimate h̃r . Furthermore, by removing
the variable h̃r , ROSTF does not need the reference LR image
lr as input in (25). Thus, fortunately, if noiseless images can
be observed, ROSTF can be applied in situations where only
two input images are available, a reference HR image hr and
a target LR image lt .

Fig. 13 illustrates the fusion results of ROSTF-1 without the
denoising mechanism for the Site2 simulated data. It is also
visually apparent that in Case1, ROSTF-1 without the denois-
ing mechanism produces a satisfactory result using only two
input images. On the other hand, in Case2, Case3, and Case4,
the results of ROSTF without the denoising mechanism are
contaminated with noise. This is because the edge constraint
copies not only the true edge or spatial structure, but also
the noise in the reference HR image to the estimated target
HR image. The results of this ablation study confirm that the
denoising mechanism plays an effective role in avoiding such
noise effects.

G. Computational Cost

We measured the actual running times using MATLAB
(R2022b) on a Windows 11 computer equipped with an Intel
Core i9-13900 1.0 GHz processor, 32 GB of RAM, and
NVIDIA GeForce RTX 4090. We used the Site1 and Site2 data
with 400×400 pixels and six bands. The measurement results
show that the average number of iterations for Algorithm 1
was 59.20 per second. Table VIII displays the average run-
ning times of the nondeep-learning-based comparison methods
(STARFM, VIPSTF, and RobOt) and our methods (ROSTF-1
and ROSTF-2). For ROSTF, the average number of iterations
for Algorithm 1 is also given in parentheses. Note that only the
nondeep-learning-based methods were compared with ROSTF
for a fair comparison because deep-learning-based methods
require training processes in addition to ST fusion processes.

ROSTF-1 and ROSTF-2 each took about 4–10 min.
STARFM and VIPSTF took longer than ROSTF because
they estimated the target HR image pixel by pixel. On the
other hand, RobOt ran much faster than ROSTF, possibly
because the Least Absolute Shrinkage and Selection Operator
(LASSO) problem in RobOt has a closed-form solution in our
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TABLE VIII
AVERAGE RUNNING TIME [S]

experiment with only one reference date. This result indicates
that ROSTF is slower than RobOt, but we believe that ROSTF
remains practical in terms of computational cost.

H. Summary

We summarize the insights from the experiments as follows.
1) From the results of the experiments in Case1, we see that

ROSTF is comparable to state-of-the-art ST fusion meth-
ods in noiseless cases. Therefore, the observation model
in (14) and the assumptions introduced in Section III-B
are valid for ST fusion.

2) The results of the experiments in Case2, Case3, and
Case4 confirm that ROSTF has good performance even
when observed HR images are degraded by random
noise, missing values, and outliers.

3) The ablation studies demonstrate that the key com-
ponents, such as the edge constraint, the brightness
constraint, and the denoising mechanism, work effec-
tively as expected.

V. CONCLUSION

We have proposed an optimization-based ST fusion method,
named ROSTF, which is robust to mixed Gaussian and
sparse noise in observed satellite images. We have formulated
the fusion problem as a constrained optimization problem
and have developed the optimization algorithm based on
P-PDS with OVDP. ROSTF was tested through experiments
using both simulated and real data. The experimental results
demonstrate that ROSTF achieves performance comparable
to state-of-the-art ST fusion methods in noiseless cases and
significantly better in noisy cases. ROSTF will have a strong
impact on the field of remote sensing, including the estima-
tion of satellite image series with high spatial and temporal
resolution from observed image series taken in measurement
environments with severe degradation.
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