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Abstract— Lagrangian persistence method in nowcasting is
a highly effective method for short-term weather forecasting.
However, its performance is not as robust in long-term forecasting
or situations of rapid weather changes due to the difficulty in
analyzing the intensity variation of meteorological physical quan-
tities. To address this shortcoming, in this study, we incorporated
dynamic mode decomposition (DMD) into the Lagrangian persis-
tence method. Specifically, we proposed a coordinate-transformed
DMD (CT-DMD) model by integrating an optical flow model with
a DMD model, providing an effective method for analyzing the
intensity variation of meteorological physical quantities in the
Lagrangian persistence method. The integration of the optical
flow model and the DMD model involves the transformation
of data between Eulerian and Lagrangian coordinate systems.
The CT-DMD model was evaluated using radar-observed rainfall
data from the Kanto region of Japan, with the Rainymotion
model used as a benchmark. When the lead time was 5 min,
22.22% of the subsets in the experimental dataset showed that
the CT-DMD model had a higher forecast accuracy compared
to the Rainymotion model. When the lead time was 25 min,
88.89% of the subsets in the experimental dataset showed that
the CT-DMD model had a higher forecast accuracy compared to
the Rainymotion model. The accuracy advantage of the CT-DMD
model became apparent after a lead time of 15 min and became
increasingly significant as the lead time increased. The results
demonstrated the validity of the CT-DMD model.

Index Terms— Data-driven model, dynamic mode decompo-
sition (DMD), nowcasting, optical flow, radar-observed data,
short-term rainfall forecasting.

I. INTRODUCTION

IN THE field of meteorological forecasting, forecasting
models can be classified into two categories, numerical

weather prediction (NWP) and extrapolation-based nowcasting
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(hereafter referred to as nowcasting), depending on the length
of lead time [1].

When the lead time is longer than 2 h, the NWP model
is an appropriate choice for forecasting because it can suf-
ficiently simulate the coupled physical equations of weather
to forecast weather conditions. However, when the lead
time is shorter than 2 h, the forecasting accuracy of the
NWP model is compromised because of both insufficient
spin-up time and difficulties in applying non-Gaussian data
assimilation [2], [3], [4].

When the lead time is shorter than 2 h, the nowcasting
model is more effective than the NWP model. Since the
1960s, with the improvement in the quality of radar and
satellite observational data, particularly regarding precipitation
or proxies, the predictive method of very short-range, local
forecasting by extrapolation has gradually shown promising
prospects [2]. Browning [5] clarified the relative advantages
of nowcasting model and NWP model, highlighting that the
former exhibits higher accuracy within short-term forecasting.
In the initial stage, the nowcasting model typically focuses
on analyzing and extrapolating the trends of individual vari-
ables, such as rainfall distribution [6]. However, with the
development of technology and algorithms, numerous now-
casting models are employing a range of radar products,
algorithms, and blending techniques with the aim of providing
forecasts up to 1–3 h [7], for example, ANC [8], MAPLE
[9], RADVOR [10], STEPS [11], STEPS-BE [12], and
SWIRLS [13], [14].

When data are limited to radar images alone, in situations
where there is insufficient weather condition information,
a commonly used forecasting method in nowcasting models is
to extrapolate the field of meteorological physical quantities
based on the assumed constant intensity of these quantities.
This method is known as the Lagrangian persistence [9], for
example, Rainymotion model [7]. It can be observed that
the Lagrangian persistence method is suitable for relatively
stable weather conditions in the short term. However, for
long-term forecasting or situations with rapid changes in
weather conditions in the short term, the forecasting accuracy
of the Lagrangian persistence method is severely reduced
because of the difficulty in analyzing the intensity variation
of meteorological physical quantities. To overcome this diffi-
culty, one scheme is to introduce a source-sink term to the
Lagrangian persistence method, which enables the analysis
and forecasting of the intensity variations of meteorological
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physical quantities [9]. In this article, we utilize the dynamic
mode decomposition (DMD) model to implement the function
of the source-sink term in the Lagrangian persistence method,
providing a novel and effective model for rainfall forecasting
using only radar images.

Recently, with the increase in computing power and the
rapid development of big data, scientists have begun to
introduce novel data-driven models to overcome the inherent
limitations of traditional weather forecasting models.

As an important category of data-driven models, deep-
learning models have made significant contributions to
meteorological forecasting in recent years [15], [16], [17],
[18], [19]. Byun et al. [20] introduced a new research direc-
tion that utilizes cloud image data as input, employing a
deep-learning model for analysis and prediction of rainfall
amount. Wang et al. [21] proposed a deep-learning model
for heavy rainfall nowcasting based on task-segmented archi-
tecture. Unlike traditional forecasting methods, deep-learning
models can automatically adjust the parameters within a model
using a loss function to calculate the gap between the forecast
output and target data. This imparts the ability to explore the
hidden nonlinear connections between the input and target
data. However, despite their high performance in exploring
connections between the input and target data, in the field of
meteorological forecasting, the deep-learning models still have
limitations such as the problem of spatial smoothing [22].

However, another category of data-driven models makes
predictions by discovering hidden patterns of develop-
ment in the data. Relying on sparsity-promoting techniques,
Brunton et al. [23] and Rudy et al. [24] proposed a new sparse
regression method to discover the governing partial differential
equations underlying dynamical systems through data mea-
surements. Raissi et al. [25], [26] proposed a method based
on Gaussian processes to infer the parameters of governing
equations expressed by parametric linear operators from scarce
and possibly noisy observations.

Considering this background, in this study, we aim to
address the difficulty of analyzing the intensity variation of
meteorological physical quantities in the Lagrangian persis-
tence method by incorporating a data-driven model, DMD
model, into the Lagrangian persistence method. Based on the
principles of the rainfall process, we propose a data-driven
model for forecasting future rainfall by analyzing patterns
within the rainfall process. The proposed model was validated
using radar-observed rainfall data from the Kanto region of
Japan.

II. PROPOSED METHOD: COORDINATE-TRANSFORMED
DYNAMIC MODE DECOMPOSITION

A. Overview of the Proposed Method

The governing equations that describe the processes of
rainfall phenomena can be divided into two categories:
those related to rainfall intensity variation, which involves
cloud microphysics [27], [28], and those related to atmo-
spheric motion, which involves hydrodynamics [29]. Based
on this characteristic, for forecasting rainfall, we propose a
data-driven model that combines the DMD and optical flow
models. The DMD model was employed to analyze rainfall

intensity variations, and the optical flow model was employed
to analyze atmospheric motion. This hybrid model effectively
combines the strengths of the DMD model in analyzing the
intensity changes in physical quantities with the strengths
of the optical flow model in capturing the velocity field in
physical quantities. In the construction of the proposed model,
the combination of the optical flow model and the DMD model
involves the transformation of data between the Eulerian and
Lagrangian coordinate systems. Fig. 1 shows a conceptual
diagram of the proposed model.

B. Optical Flow

Horn and Schunck [30] introduced the term optical flow,
which is defined as the distribution of apparent velocities of the
movement of brightness patterns in an image. When there is
relative motion between the observer and the object, an optical
flow is generated [31], [32]. Thus, by analyzing the optical
flow, spatial information about an object can be obtained [33].

Today, with the development of computer technology, opti-
cal flow can be used as an algorithm to analyze velocity fields
from radar-observed data. Optical flow has been extensively
used in the field of rainfall nowcasting [14], [34], [35].
Ayzel et al. [7] compared optical-flow-based precipitation fore-
casting models with the state-of-the-art operational software
RADVOR (radar real-time forecasting) model, demonstrating
that the former has comparable or higher forecasting accuracy
than the latter. Moreover, they organized these optical-flow-
based precipitation forecasting models into a Python library
called “Rainymotion.”

Therefore, in this study, we use the “Dense model” from
the “Rainymotion” Python library as a benchmark for eval-
uating our proposed model [coordinate-transformed DMD
(CT-DMD)]. Hereafter, we refer to the “Dense model” as
“Rainymotion.”

The Rainymotion model can be summarized in the following
three steps.

1) First, the DIS optical flow model [36] is used to calculate
the velocity field Vm−1 based on data at time tm−1 and tm .

2) To extrapolate the data at time point tm , a backward
constant-vector scheme is used [34].

3) The extrapolated data are interpolated using the inverse
distance weighting method.

In rainfall forecasting, the objective of the Rainymotion
model is to calculate the velocity of each rainfall cell based
on the recent state of rainfall and then extrapolate the rainfall
cells along the time axis. Therefore, this forecasting does not
allow the analysis of the changes in the intensity of each cell.
These characteristics are evident in the forecast results of the
Rainymotion model in Fig. 15.

C. Dynamic Mode Decomposition

Schmid [37] proposed an algorithm called the DMD
to identify spatiotemporally coherent structures from high-
dimensional data [38]. This algorithm can analyze a series of
modes from time-series data, with each mode corresponding
to a coefficient that encapsulates the information of the oscil-
lation frequency and growth/decline amplitude of the mode.
From these modes and coefficients, the characteristics of the
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Fig. 1. Conceptual diagram of the proposed model.

time-series data can be determined, enabling the forecasting of
time-series data. In the field of data analysis, DMD is widely
used [39], [40]; moreover, DMD can potentially be applied to
the study of coordinated control systems [41].

The DMD algorithm is briefly described as follows.
There are various algorithms for DMD. In this study, we use

the DMD algorithm developed by Tu et al. [42]. We utilized
the “PyDMD” library [43] to implement the DMD algorithm.

First, we denote a set of time-series data as {x(t0), x(t1),
x(t2), . . . , x(tm), x(tm+1)}, where each x is a column vector.
Next, we construct two matrices with the time-series data

X =

 | | | | |

x(t0) x(t1) x(t2) · · · x(tm)

| | | | |


Y =

 | | | | |

x(t1) x(t2) x(t3) · · · x(tm+1)

| | | | |

.

We observe that Y is the lagged sequence of X. The
objective of the DMD algorithm is to determine the dominant
spectral decomposition of optimal linear operator A that best
fits the given datasets X and Y [38]

Y ≈ AX
A = arg min

A
∥Y − AX∥F = YX†

A = 838†

where variables are defined as follows.
1) ∥ · ∥F : Frobenius norm.
2) †: Pseudoinverse.

3) 8: A matrix consisting of the eigenvectors of A, where
each eigenvector φ is referred to as a DMD mode.

4) 3: A diagonal matrix consisting of the eigenvalues
of A, where each eigenvalue λ is referred to as a DMD
eigenvalue.

When the sizes of X and Y are small, DMD eigenvalues 3

and DMD modes 8 of A can be calculated by performing the
spectral decomposition of A.

However, when the sizes of the X and Y matrices are large,
it is unwieldy to perform the direct spectral decomposition of
matrix A, in which case the exact DMD algorithm can help
us extract only the important eigenvalues 3 and eigenvectors
8 in A.

Then, future time-series data can be forecast using 8 and 3

x(tk) = 83k8†x(t0) =

M∑
i=1

φiλ
k
i φ

†
i x(t0).

However, the DMD algorithm has limitations because it
does not correctly decompose the patterns of convective
phenomena, which hinders its application in rainfall fore-
casting [44]. These characteristics are evident in the forecast
results of the DMD algorithm shown in Fig. 15. Although the
DMD algorithm correctly forecasts the declining rainfall trend,
it does not accurately forecast atmospheric motion.

D. CT-DMD: Concept of Model Construction

As discussed above, it can be observed that both the Rainy-
motion model and the DMD model have inherent limitations.
The Rainymotion model can analyze and forecast atmospheric
motion but is unable to effectively analyze and forecast
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rainfall intensity variation. Conversely, the DMD model can
analyze and forecast rainfall intensity variation but is unable
to effectively analyze and forecast atmospheric motion.

In this study, we aim to construct an integrated model
using the optical flow and DMD models for analyzing and
forecasting rainfall intensity variation and atmospheric motion
simultaneously.

The main idea of this integration involves the transforma-
tion of data between the Eulerian and Lagrangian coordinate
systems; therefore, we named this integrated CT-DMD model.

For analyzing rainfall processes, the Eulerian and
Lagrangian coordinate systems have their own advantages.

The Eulerian coordinate system is a system of fixed coor-
dinate axes that, in the field of fluid dynamics, presents the
spatial distribution of fluid at each moment in time [45].
Through the Eulerian coordinate system, we are able to
observe the relationship between the position of fluid
over time.

On the other hand, the Lagrangian coordinate system is a
coordinate system that emphasizes the fluid quantities’ own
intrinsic changes. Unlike the Eulerian coordinate system, the
Lagrangian coordinate system is not fixed at a particular
location in space but is attached to the fluid quantities and
changes continuously with the movement of the fluid quanti-
ties. In the Lagrangian coordinate system, we can define the
flow quantities as functions of time and a chosen element of
fluid matter [45]. Through this function, we are able to observe
the dynamics of the selected fluid element itself over time.

For the rainfall process, it can be divided into two com-
ponents: rainfall intensity variation and atmospheric motion.
Rainfall intensity variation, related to cloud microphysics,
is suitable for analysis under the Lagrangian coordinate
system, which emphasizes the observation of the intrinsic
changes in fluid quantities. Atmospheric motion, related to
fluid dynamics, is suitable for analysis under the Eulerian
coordinate system, which emphasizes the observation of the
spatial distribution of fluid.

By dividing the rainfall process into two components, rain-
fall intensity variation and atmospheric motion, and analyzing
them separately in the Lagrangian and Eulerian coordinate
systems, we believe that this method of constructing the
model is more mathematically sound and capable of accurately
analyzing rainfall.

E. CT-DMD: Algorithmic Principle

The algorithmic principle of the CT-DMD model is as
follows.

Initially, define a set of 2-D time-series data {xE (t0), xE (t1),
xE (t2), . . . , xE (tm)} in the Eulerian coordinate system. In this
study, each xE represents a 2-D rainfall distribution with fixed
latitude and longitude.

1) First, the optical flow model is used to calculate
the velocity field Vk between each pair of adjacent
time-series data {xE (tk), xE (tk+1)}

Vk = Optical Flow(xE (tk), xE (tk+1))

× (k = 0, . . . , m − 1).

Fig. 2. Step 1 of illustrative example, define a set of 2-D time-series data
and use the optical flow model to calculate velocity fields.

2) By using velocity fields {V0, V1, V2, . . . , Vm−1},
time-series data in the Eulerian coordinate system
{xE (t0), xE (t1), xE (t2), . . . , xE (tm)} can be converted
to those in the Lagrangian coordinate system
{xL(t0), xL(t1), xL(t2), . . . , xL(tm)}

xL(tk) = ConvertE L(xE (tk), {Vk, Vk+1, . . . , Vm−1})

× (k = 0, . . . , m − 1)

where ConvertE L is a method for converting time-series
data from the Eulerian to Lagrangian coordinate system
and m is the reference time point for converting the
data from the Eulerian xE to Lagrangian coordinate
system xL . Also, xE (tm) is equal to xL(tm), and no
conversion is needed.

3) Time-series data in the Lagrangian coordinate system
{xL(t0), xL(t1), xL(t2), . . . , xL(tm)} are analyzed using
the DMD model. Next, the analyzed DMD modes 8

and DMD eigenvalues 3 are used to forecast time-series
data {xL(tm+1), xL(tm+2), xL(tm+3), . . . , xL(tm+n)}

xL(tk) = 83k8†xL(t0) =

M∑
i=1

φiλ
k
i φ

†
i xL(t0)

× (k = m + 1, . . . , m + n).

4) The velocity field after reference time point m
is assumed to remain consistent with Vm−1, and
by using velocity field {Vm−1} for extrapolation,
time-series data in the Lagrangian coordinate sys-
tem {xL(tm+1), xL(tm+2), xL(tm+3), . . . , xL(tm+n)} can
be converted back to those in the Eulerian coordinate
system {xE (tm+1), xE (tm+2), xE (tm+3), . . . , xE (tm+n)}

xE (tk) = ConvertL E (xL(tk), {Vm−1, . . . , Vm−1})

× (k = m + 1, . . . , m + n).

where the ConvertL E function is a method for converting
time-series data from the Lagrangian to Eulerian coordi-
nate system, and the number of extrapolations that need
to be made with Vm−1 is k − m.

To aid in understanding, an illustrative example is presented
in Figs. 2–5 to demonstrate the principles of the CT-DMD
model.

1) Initially, define a set of 2-D time-series data
{xE (t0), xE (t1), xE (t2)} in the Eulerian coordinate
system. Use the optical flow model to calculate
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Fig. 3. Step 2 of illustrative example, time-series data in the Eulerian
coordinate system are converted to the Lagrangian coordinate system by
extrapolation using velocity fields.

Fig. 4. Step 3 of illustrative example, by analyzing the time-series data in
the Lagrangian coordinate system using the DMD model, forecasting can be
made.

Fig. 5. Step 4 of illustrative example, time-series data forecast in the
Lagrangian coordinate system are converted to the Eulerian coordinate.

velocity fields {V0, V1} between {xE (t0), xE (t1)} and
{xE (t1), xE (t2)}, as shown in Fig. 2.

2) Time-series data {xE (t0), xE (t1), xE (t2)} in the Eule-
rian coordinate system are converted to {xL(t0),
xL(t1), xL(t2)} in the Lagrangian coordinate system by
extrapolation using velocity fields {V0, V1}. Here, the
reference time point is t2, as shown in Fig. 3.

3) By analyzing {xL(t0), xL(t1), xL(t2)} using the DMD
model, forecasting can be made for {xL(t3), xL(t4)},
as shown in Fig. 4.

4) Time-series data {xL(t3), xL(t4)} in the Lagrangian coor-
dinate system are converted to {xE (t3), xE (t4)} in the
Eulerian coordinate by extrapolation using velocity
field V1, as shown in Fig. 5.

III. MODEL VALIDATION

In this study, we evaluate the validity of the CT-DMD model
for rainfall forecasting using the Rainymotion model as a
benchmark.

A. Data

The rainfall data used in this study were collected from the
Kanto region of Japan in August 2015 and August 2017 at
a temporal resolution of 1 min using X-band MP radar
data [46]. The original data have a grid size of [800, 800],
where each grid cell measures 250 × 250 m. To enhance
computational efficiency, we applied downsampling by using
the mean function on local blocks. The downscaled data have
a grid size of [200, 200], corresponding to an actual size of
200 × 200 km, with each grid cell measuring 1 × 1 km.

Based on the findings presented in [47], which revealed
the presence of seemingly random sampling containing hidden
biases and errors, in this study, we employed the method of
downsampling using the mean function on local blocks. This
downsampling method comprises three steps. In the first step,
2-D data are segmented into smaller, nonoverlapping blocks of
the same size; in the second step, the mean value of each block
is calculated; and in the third step, this mean value is used
to represent the entire block. In essence, this downsampling
method is analogous to the commonly used technique in
machine learning known as average pooling. This method aims
to achieve a better balance between enhancing computational
efficiency and lowering spatial resolution of data. In this
study, to enhance computational efficiency, we applied this
downsampling method to reduce the spatial resolution of
rainfall data. However, for forecasting purposes, a resolution
of 1 × 1 km still falls within an acceptable range.

The shape of the collected dataset was [h, min, size_y,
size_x]. To ensure that there was sufficient rainfall for model
evaluation, the data from the 29th min of each hour were
examined. If the area of rainfall in this 29th min of data was
greater than one-third of the data size, the 60 min of data from
that particular hour was filtered and included as a subset in
the experimental dataset.

After filtering, the final experimental dataset had the shape
of [h, min, size_y, size_x] = [45, 60, 200, 200], that is, 45 h
of data was filtered. The “hours” component has a size of 45,
ranging from 0 to 44. The “minutes” component has a size
of 60, ranging from 0 to 59. Both the “size” components
have a size of 200, ranging from 0 to 199. Fig. 6 shows the
sample data.

In addition, in this study, all data are in the Eulerian
coordinate system, that is, at a fixed range of latitude and
longitude.

B. CT-DMD Model Implementation Process

We defined each hour of data in the experimental dataset
as a subset, and 0–30 min of each subset was designated as
the input data for the CT-DMD model. Moreover, 30–59 min
of each subset was designated as the target data for assessing
the accuracy of the model.
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Fig. 6. Horizontal coordinates represent the longitude, the vertical coordinates
represent the latitude, and the rainfall rate is visualized using a color bar
ranging from 0 to 50 mm/h.

The CT-DMD model performs the following forecasting
process for each subset.

1) The velocity field between each pair of adjacent
data is calculated using the DIS optical flow model
over the time range of 0–30 min {xE (t0), xE (t1),
xE (t2), . . . , xE (t30)}

Vk = DIS Optical Flow(xE (tk), xE (tk+1))

× (k = 0, . . . , 29).

2) Velocity fields {V0, V1, V2, . . . , V29} are used to convert
the data from 0 to 30 min to those in the Lagrangian
coordinate system {xL(t0), xL(t1), xL(t2), . . . , xL(t30)}

with the reference time point of the 30th min

xL(tk) = ConvertE L(xE (tk), {Vk, Vk+1, . . . , V29})

× (k = 0, . . . , 29).

xE (t30) is equal to xL(t30), and no conversion is
needed. In this study, ConvertE L consists of two oper-
ations: extrapolation of the data using a backward
constant-vector scheme and interpolation of the extrap-
olated data using the nearest method.

3) Because the original data are in the Eulerian coordinate
system, the latitude and longitude range of the data is
fixed. Thus, as time progresses, rainfall outside the data
region may enter the data region. To mitigate the impact
of rainfall outside the designated region on the model
performance, we apply region trimming to the data in
the Lagrangian coordinate system.
We define the maximum displacement of rainfall along
the vertical and horizontal coordinates in the time range
of 0–30 min as DY and DX, respectively. DY and DX
are calculated using the DIS optical flow. Incidentally,
DY and DX of each subset are not consistent.
Next, we trim the region of data from [0 to 200, 0 to 200]
to [DY to 200-DY, DX to 200-DX], as shown in Fig. 7.

Fig. 7. DY is the maximum displacement of rainfall in the vertical coordinate
over the 0–30-min time range and DX is the maximum displacement of rainfall
in the horizontal coordinate over the 0–30-min time range.

4) We divide the trimmed data into two parts: [0, 29] and
[1, 30] min and then combine them along the vertical
axis

XL P =

[
xL(t0) xL(t1) xL(t2) · · · xL(t29)

xL(t1) xL(t2) xL(t3) · · · xL(t30)

]
.

Based on our testing, this is a helpful strategy to
improve the accuracy of forecasts. We define the
data processed in the Lagrange coordinate system as
{xL P(t0), xL P(t1), xL P(t2), . . . , xL P(t29)}.

5) Processed data in the Lagrangian coordinate system
{xL P(t0), xL P(t1), xL P(t2), . . . , xL P(t29)} are analyzed
using the DMD. The analyzed DMD modes 8 and
DMD eigenvalues 3 are then used to forecast data
{xL P(t30), xL P(t31), xL P(t32), . . . , xL P(t59)}

xL P(tk) = 83k8†xL P(t0) =

M∑
i=1

φiλ
k
i φ

†
i xL P(t0)

× (k = 30, . . . , 59)

XL P =

[
xL(t30) xL(t31) xL(t32) · · · xL(t59)

xL(t31) xL(t32) xL(t33) · · · xL(t60)

]
.

6) Due to previous data processing, we only take the upper
half of the forecast data along the vertical axis. Because
the forecast values are complex numbers, we only take
the real part

XL =
[
xL(t30) xL(t31) xL(t32) · · · xL(t59)

]
.

7) Finally, using the V29 velocity field, the data in the
Lagrangian coordinate system are converted back to
those in the Eulerian coordinate system

xE (tk) = ConvertL E (xL(tk), {V29, V29, . . . , V29})

× (k = 30, . . . , 59).

The number of extrapolations that need to be made
with V29 is k − 30. In this study, ConvertL E consists of
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Fig. 8. Simple input data (0–30 min) example of rainfall, tn indicates the
data at time point n, and Rn represents the rainfall points that are present in
the input data starting from time point n.

two operations: extrapolation of the data using a back-
ward constant-vector scheme and interpolation of the
extrapolated data using the inverse distance weighting
method.

In the implementation stage, owing to the characteristics
of the rainfall data, the CT-DMD model has an additional
data-trimming step. Furthermore, to enhance the accuracy,
we include a data combination step.

Solely as a reference, in this study, the CT-DMD model
takes only about 12 s to implement for each subset, and the
computer’s CPU and GPUs used for this research are the
12th Gen Intel1 Core2 i5-12450H CPU, NVIDIA GeForce
RTX 4050 Laptop GPU, and Intel1 UHD Graphics GPU.
For real-time forecasting, we consider this time to be suffi-
ciently fast.

C. Explanation of Data-Trimming Step

Regarding the necessity of the data-trimming step, we can
explain it from two perspectives. The first is to ensure the time
completeness of rainfall points in the Lagrangian coordinate
system. The second is to evaluate the accuracy of each model
more precisely.

1) To Ensure the Time Completeness of Rainfall Points:
For explanatory purposes, we assume a simple input data
(0–30 min) example of rainfall moving from left to right,
as shown in Fig. 8. The data ranging from 0 to 30 min of
each subset was designated as the input data for the CT-DMD
model. tn indicates the data at time point n, and Rn represents
the rainfall points that are present in the input data starting
from time point n. It can be observed that at t0, only R0 is
present within the input data, and at t1, the rainfall moves to
the right, introducing R1 into the input data. Furthermore, with
each subsequent time step tn , a new Rn will be incorporated
into the input data until t30.

As shown in Fig. 9, these rainfall points Rn(0 < n) that
enter the input data after t0 will have a partial absence of
time in the input data. It can be observed that R0 is present
in the input data from t0, so its time presence in the input
data is complete. However, R1 enters the input data from t1,
resulting in its time presence in the input data missing the
portion corresponding to t0; and each Rn(0 < n) entering the
input data after t0 will lack the portion of time from t0 to tn−1.

In the Lagrangian coordinate system, these rainfall points
Rn(0 < n), lacking time completeness, will suddenly appear

1Registered trademark.
2Trademarked.

Fig. 9. Blue line represents the time period with Rn(0 ≤ n ≤ 30) present
in the input data.

Fig. 10. Simple data (30–59 min) example of rainfall, tn indicates the data
at time point n, and Rn represents the rainfall points that are present in the
data starting from time point n.

at time tn in the input data, which clearly does not align with
the reality of rainfall event. In order to mitigate the impact
of these rainfall points Rn(0 < n) on the analysis of the
DMD model, we used data trimming to remove this portion
of rainfall points Rn(0 < n).

2) To Evaluate the Accuracy of Each Model More Pre-
cisely: For explanatory purposes, we assume a simple data
(30–59 min) example of rainfall moving from left to right,
as shown in Fig. 10. The data ranging from 30 to 59 min of
each subset was designated as the target data for assessing
the accuracy of each model. tn indicates the data at time
point n, and Rn represents the rainfall points that are present
in the data starting from time point n. It can be seen that as
the time step increases, rainfall points Rn(30 < n) outside
the range of the data will enter into the data. For both the
CT-DMD model and the Rainymotion model, it is difficult to
use rainfall points within the data range to forecast rainfall
points outside the data range. Therefore, in order to mitigate
the impact of rainfall points Rn(30 < n), which are outside
the data range, on the model’s accuracy evaluation, we have
also restricted the evaluation accuracy within the range after
the data-trimming step.

D. Results

Because the values of DY and DX were different for each
subset, the data sizes of the forecast results were also different
for each subset. To unify the size of the forecast results when
evaluating forecasting accuracy, we chose the maximum DY
and DX as the unified trimmed values, where DY and DX are
57 and 32 km, respectively. This suggests that the region for
evaluation accuracy is a rectangle of 86 × 136 km, as shown
in Fig. 11. We consider this size sufficient for the objective
evaluation of accuracy.
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Fig. 11. DY and DX are 57 and 32 km, respectively, and the region for
accuracy evaluation is a rectangle of 86 × 136 km.

We employed the root mean square error (RMSE) and mean
square error (MSE)-based skill scores [48] and Nash–Sutcliffe
model efficiency (NSE) coefficient [49] as the performance
metrics to evaluate the following models.

1) CT-DMD Model: The model proposed in this study.
2) Rainymotion Model: The rainfall forecasting model is

constructed on the basis of the optical flow model.
3) DMD Model: The data-driven model developed recently

is a part of the CT-DMD model. The forecast data
are obtained by using the DMD eigenvalues and DMD
modes of the input data.

4) Persistence Model: The model assumes that rainfall
distribution remains constant. It assumes that all forecast
data remain consistent with the value of xE (t30).

The forecast data range for each subset was 30–59 min.
1) Root Mean Square Error:

RMSE =
1
H

∑
h

√∑
y,x (F(h, m, y, x) − T (h, m, y, x))2

N

(1)

where the variables are defined as follows.
1) F is the forecast data.
2) T is the target data.
3) N is the total number of grids of each forecast data

N = 86 × 136.
4) y and x are the coordinates of each forecast data 57 ≤

y ≤ 142, 32 ≤ x ≤ 167.
5) H is the total number of hours of the experimental

dataset H = 45.
6) h is an hour within H , 0 ≤ h ≤ 44.
7) m is a minute within h, 30 ≤ m ≤ 59.

As shown in (1), we performed RMSE error calculations
between the target and forecast data at each hour and minute
and then averaged them in the “hour” dimension.

The results are presented in Fig. 12. Among all models, the
proposed CT-DMD model exhibited the lowest error after a

Fig. 12. RMSE calculated between the forecast data of each model and
target data.

lead time of 10 min. At the lead time of 0 min, which corre-
sponds to forecast data xE (t30), the errors of the Rainymotion
and persistence models are 0 mm/h, whereas the CT-DMD
and DMD models exhibit nonzero errors. This is because
the Rainymotion and persistence models utilize extrapolation
or consistency with xE (t30) to generate the forecast data,
while the CT-DMD and DMD models employ DMD modes
and DMD eigenvalues to reconstruct the nonlinear data from
xL(t30) to xL(t59), followed by extrapolation. Therefore, the
error of the Rainymotion model was lower than that of the
CT-DMD model when the rainfall had not yet changed signif-
icantly. However, after a lead time of 10 min, the CT-DMD
model, which can analyze changes in the rainfall rate, has
much lower errors than the Rainymotion model.

2) MSE-Based Skill Scores:

Skill ScoreMSE = 1 −
MSE( f, t)
MSE(r, t)

(2)

where the variables are defined as follows.
1) f (forecast) is the forecast data generated by the CT-

DMD model.
2) r(reference) is the forecast data generated by the Rainy-

motion model.
3) t is the target data.
Murphy [48] proposed the skill scores based on MSE. These

scores effectively allow performance comparison between the
two models. Equation (2) shows that when the skill score is
positive, the error of the CT-DMD model is lower than that
of the Rainymotion model. Moreover, when the skill score is
negative, the error of the CT-DMD model is higher than that of
the Rainymotion model. The values for the skill score ranged
from negative to 1.

We used (2) to perform the calculations between
the target data and the forecast data generated by the
CT-DMD/Rainymotion model for each hour and minute and
then averaged them in the “hour” dimension.

The results are presented in Fig. 13. At the lead time
of 0 min, that is, at xE (t30), the forecast generated by the
Rainymotion model is perfect, resulting in a skill score of
negative infinity. At the lead time of 5–10 min, the skill scores
become positive, which indicates that the CT-DMD model
showed lower errors than the Rainymotion model. As the lead
time increases, the CT-DMD model shows an increasingly
clear accuracy advantage over the Rainymotion model.
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Fig. 13. MSE-based skill scores calculated from the forecast results of the
CT-DMD/Rainymotion model and target data.

3) Nash–Sutcliffe Model Efficiency:

NSE(h, m) = 1 −

∑
y,x (T (h, m, y, x) − F(h, m, y, x))2∑

y,x

(
T (h, m, y, x) − T (h)

)2

(3)

NSE(m) =
1
H

∑
h

NSE(h, m) (4)

where the variables are defined as follows.
1) F is the forecast data.
2) T is the target data.
3) y and x are the coordinates of each forecast data 57 ≤

y ≤ 142, 32 ≤ x ≤ 167.
4) H is the total number of hours of the experimental

dataset H = 45.
5) h is an hour within H , 0 ≤ h ≤ 44.
6) m is a minute within h, 30 ≤ m ≤ 59.
NSE is one of the common performance evaluation metrics

for hydrological models, with a value range from negative to 1,
and a greater NSE value indicates better forecast performance
of the model. As shown in (3), it can be observed that the
NSE can be employed to assess the forecast performance of
the model compared to the baseline from the perspective of
the sum of squared errors, where the baseline is commonly
selected as the mean value of the target data. Therefore,
in this article, we select the baseline as the mean value of
the target data in each subset, defined as T (h). When the
NSE > 0, it suggests that the model’s forecast performance is
better than T (h). Conversely, when the NSE < 0, it suggests
that the model’s forecast performance is worse than T (h).
We calculated the NSE between the forecast data of each
model and target data for each hour and minute, as shown
in (3). Then, averaged them along the “hour” dimension,
as shown in (4).

The results are presented in Fig. 14, it can be observed
that because the Rainymotion model and the persistent model
utilize extrapolation or consistency with xE (t30) to generate
the forecast data, the NSE values of these two models are
both equal to 1 at the lead time of 0 min. However, as the
lead time increases, the CT-DMD model, which can analyze
changes in the rainfall rate, gradually demonstrates greater
NSE values than the Rainymotion model. Furthermore, it can
be observed that at the lead time of 20–25 min, the NSE

Fig. 14. NSE calculated between the forecast data of each model and target
data.

value of the Rainymotion model starts to become less than 0,
indicating that the forecast performance of the Rainymotion
model becomes lower than T (h). However, the NSE value
of the CT-DMD model remains greater than 0 throughout,
indicating that the forecast performance of the CT-DMD model
consistently exceeds T (h).

4) Forecasting Results: Fig. 15 shows the forecast results
for each model; the data are the 22nd subset from the
experimental dataset, and the forecast characteristics of each
model can be seen. The Rainymotion model can capture
atmospheric motion but cannot analyze and forecast rainfall
intensity variations. In contrast, the DMD model is capable
of analyzing and forecasting rainfall intensity variations but
cannot capture atmospheric motion. The proposed CT-DMD
model combines the advantages of both models and can
analyze and forecast atmospheric motion and rainfall intensity
variation simultaneously.

IV. DISCUSSION

Fig. 16 presents the MSE-based skill scores [see 2] for each
subset of the experimental dataset. After a lead time of 15 min,
the CT-DMD model was found to be more accurate (with
lower errors) than the Rainymotion model in most subsets.

When the lead time is 5 min, ten subsets of the experimental
dataset have positive skill scores and 35 subsets have negative
skill scores, that is, 22.22% of the subsets in the experimental
dataset show that the CT-DMD model exhibits a higher
forecast accuracy than the Rainymotion model. When the lead
time is 15 min, 31 subsets of the experimental dataset have
positive skill scores and 14 subsets have negative skill scores,
that is, 68.89% of the subsets in the experimental dataset show
that the CT-DMD model exhibits a higher forecast accuracy
than the Rainymotion model. When the lead time is 25 min,
40 subsets of the experimental dataset have positive skill
scores and five subsets have negative skill scores, that is,
88.89% of the subsets in the experimental dataset show that the
CT-DMD model exhibits a higher forecast accuracy than the
Rainymotion model. As the lead time increases, the CT-DMD
model shows an increasingly clear accuracy advantage over
the Rainymotion model.

The abovementioned results are summarized in Table I,
where SS(positive) is the number of subsets with positive skill
scores, SS(negative) is the number of subsets with negative
skill scores, and SS(positive)% is the number of subsets
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Fig. 15. Forecasting results of each model in dataset 22. The rainfall rate is visualized using a color bar ranging from 0 to 10 mm/h.

Fig. 16. MSE-based skill scores for each subset in the experimental dataset.

with positive skill scores as a percentage of the experimental
dataset.

Here, we introduce the relative bias [50] between the
forecast data of the Rainymotion model and the target data

as a new topic for discussion

Relative Bias =

∑
y,x (F(h, m, y, x) − T (h, m, y, x))∑

y,x T (h, m, y, x)
(5)
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TABLE I
STATISTICAL ANALYSIS OF THE MSE-BASED SKILL SCORES

ACROSS ALL SUBSETS

Fig. 17. Relative bias between the forecast data of the Rainymotion model
and target data in all subsets.

where the variables are defined as follows.
1) F is the forecast data.
2) T is the target data.
3) y and x are the coordinates of each forecast data 57 ≤

y ≤ 142, 32 ≤ x ≤ 167.
4) H is the total number of hours of the experimental

dataset H = 45.
5) h is an hour within H , 0 ≤ h ≤ 44.
6) m is a minute within h, 30 ≤ m ≤ 59.
As described in (5), the relative bias calculation demon-

strates the disparity between the forecast and target data.
When the relative bias is positive, it indicates that the forecast
data are greater than the target data, and when the relative
bias is negative, it indicates that the forecast data are less
than the target data; a smaller absolute value of the relative
bias indicates a smaller disparity between the forecast and
target data.

Furthermore, assuming that the Rainymotion model can
perfectly analyze and forecast atmospheric motion and by
utilizing the inherent characteristic of the Rainymotion model
that maintains constant rainfall intensity in the forecast
data [7], we can determine whether rainfall is growing or
declining by examining the relative bias between the forecast
data of the Rainymotion model and target data. A positive and
increasing relative bias indicates a declining rainfall trend in
the target data, whereas a negative and decreasing relative bias
suggests a growing rainfall trend in the target data.

A. Growing/Declining Trend in Target Data

Fig. 17 shows the relative bias between the forecast data
of the Rainymotion model and target data for all subsets.
We divided all the relative bias curves into two groups with
increasing trend (Fig. 18) and decreasing trend (Fig. 19). The
increasing group had 29 subsets, while the decreasing group
had 16 subsets. The relative bias curves with an increasing

Fig. 18. Relative bias curves with an increasing trend.

Fig. 19. Relative bias curves with a decreasing trend.

Fig. 20. Skill scores for the subsets of the relative bias curves with an
increasing trend.

trend represent a declining tendency in the target data, and the
relative bias curves with a decreasing trend represent a grow-
ing tendency in the target data. Fig. 20 shows the skill scores
of the CT-DMD model for subsets of the relative bias curves
with an increasing trend and Fig. 21 shows the skill scores
of the CT-DMD model for subsets of the relative bias curves
with a decreasing trend; the skill scores are calculated, and
the parameters are chosen as in (2).

For the relative bias curves with an increasing trend (the
target data with a declining trend), when the lead time is
5 min, eight subsets of the increasing group have positive
skill scores and 21 subsets have negative skill scores, that is,
27.59% of the subsets in the increasing group show that the
CT-DMD model exhibits a higher forecast accuracy than the
Rainymotion model. When the lead time is 15 min, 27 subsets
of the increasing group have positive skill scores and two
subsets have negative skill scores, that is, 93.1% of the subsets
in the increasing group show that the CT-DMD model exhibits
a higher forecast accuracy than the Rainymotion model. When
the lead time is 25 min, 29 subsets of the increasing group have
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Fig. 21. Skill scores for the subsets of the relative bias curves with a
decreasing trend.

TABLE II
RELATIVE BIAS CURVES WITH AN INCREASING TREND

TABLE III
RELATIVE BIAS CURVES WITH A DECREASING TREND

positive skill scores and zero subset has negative skill scores,
that is, 100% of the subsets in the increasing group show
that the CT-DMD model exhibits a higher forecast accuracy
than the Rainymotion model. These results are summarized
in Table II.

For the relative bias curves with a decreasing trend (target
data with a growing trend), when the lead time is 5 min, two
subsets of the decreasing group have positive skill scores and
14 subsets have negative skill scores, that is, 12.5% of the
subsets in the decreasing group show that the CT-DMD model
exhibits a higher forecast accuracy than the Rainymotion
model. When the lead time is 15 min, four subsets of the
decreasing group have positive skill scores and 12 subsets have
negative skill scores, that is, 25% of the subsets in the decreas-
ing group show that the CT-DMD model exhibits a higher
forecast accuracy than the Rainymotion model. When the lead
time is 25 min, 11 subsets of the decreasing group have
positive skill scores and five subsets have negative skill scores,
that is, 68.75% of the subsets in the decreasing group show
that the CT-DMD model exhibits a higher forecast accuracy
than the Rainymotion model. These results are summarized
in Table III.

The CT-DMD model has a significantly superior forecasting
capability to the Rainymotion model for the target data with
a declining rainfall trend. However, for the target data with a
growing trend, only 68.75% of the subsets demonstrated that
the forecasting ability of the CT-DMD model surpassed that
of the Rainymotion model when the lead time was 25 min.

V. CASE STUDY

In Figs. 16–21, we label the curves corresponding to the
22nd and 33rd subsets of the experimental dataset. It can be
observed in Fig. 17 that the relative bias curve of the 22nd
subset is the highest, indicating that the target data of the
22nd subset exhibit the maximum relative decrease trend in
rainfall intensity among all the subsets. Conversely, the relative
bias curve of the 33rd subset is the lowest, indicating that the
target data of the 33rd subset exhibit the maximum relative
increasing trend in rainfall intensity among all subsets. Fig. 16
shows that the skill score curve of the 22nd subset is one of
the highest curves, indicating that the forecasting performance
of the CT-DMD model in the 22nd subset is considerably
higher than that of the Rainymotion model. Conversely, the
skill score curve of the 33rd subset is one of the lowest,
indicating that the forecasting performance of the CT-DMD
model in the 33rd subset is considerably lower than that
of the Rainymotion model. Because of the abovementioned
particularities of the 22nd and 33rd subsets, we analyzed them
in more depth to explore the reasons for the higher or lower
forecasting performance of the CT-DMD model than that of
the Rainymotion model.

Here, we introduce the relative bias of the trimmed
input data and DMD eigenvalues as new topics for
discussion.

By calculating the relative bias between trimmed input data
xL(t0) and {xL(t0), xL(t1), xL(t2), . . . , xL(t30)}, the growing/
declining trend of rainfall in the trimmed input data can be
determined

Relative Bias(trimmed input data) =
sum(xL(t0) − xL(ti ))

sum(xL(ti ))
× (i = 0, . . . , 30).

When the relative bias is positive and increasing, it indicates
a declining trend in the trimmed input data. Conversely, when
the relative bias is negative and decreasing, it indicates an
increasing trend in the trimmed input data. The trimmed input
data were obtained during the third step of the CT-DMD model
implementation process.

The DMD eigenvalue is a complex value that represents
the dynamic behavior of the corresponding DMD mode [38].
When the imaginary part of the DMD eigenvalue is nonzero,
it indicates that the corresponding DMD mode exhibits oscil-
latory behavior. When the magnitude of the DMD eigenvalue
was greater than 1, the corresponding DMD mode increased.
Conversely, when the magnitude of the DMD eigenvalue was
less than 1, the corresponding DMD mode decreased. The
DMD eigenvalue is obtained in the fifth step of the CT-DMD
model implementation process. The DMD eigenvalue allows
the observation of the internal characteristics of the processed
input data.

A. Dataset 22: CT-DMD Model Outperforms Rainymotion
Model

In the 22nd subset of the experimental dataset, the forecast-
ing performance of the CT-DMD model is significantly better
than that of the Rainymotion model. Fig. 22 shows the relative
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Fig. 22. Relative bias curve calculated from the forecast data of the
Rainymotion/CT-DMD model and target data in dataset 22.

Fig. 23. Relative bias curve calculated from the trimmed input data xL (t0)
and {xL (t0), xL (t1), xL (t2), . . . , xL (t30)} in dataset 22.

Fig. 24. DMD eigenvalues of the CT-DMD model in dataset 22. The
horizontal axis is the real number axis, the vertical axis is the imaginary
number axis, the blue dots are the DMD eigenvalues, and the green line is
the unit circle.

bias curves between the forecast data of the Rainymotion/
CT-DMD model and the target data in this subset. The
relative bias curve of the Rainymotion model was positive
and increasing, and the relative bias curve of the CT-DMD
model remained nearly consistent with the 0 line. The pos-
itive and increasing relative bias curves of the Rainymotion
model indicated a declining trend in the target rainfall data.

Fig. 25. Relative bias curve calculated from the forecast data of the
Rainymotion/CT-DMD model and target data in dataset 33.

Fig. 26. Relative bias curve calculated from the trimmed input data xL (t0)
and {xL (t0), xL (t1), xL (t2), . . . , xL (t30)} in dataset 33.

Fig. 27. DMD eigenvalues of the CT-DMD model in dataset 33. The
horizontal axis is the real number axis, the vertical axis is the imaginary
number axis, the blue dots are the DMD eigenvalues, and the green line is
the unit circle.

Moreover, the relative bias curve of the CT-DMD model,
which closely aligns with the 0 line, indicated that the forecast
data of the CT-DMD model exhibit a declining trend similar to
that of the target data. In addition, the relative bias curve of the
CT-DMD model had a smaller absolute value than that of the
Rainymotion model; therefore, the CT-DMD model performed
better than the Rainymotion model for this subset.
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Fig. 28. Forecasting results of each model in dataset 33. The rainfall rate is visualized using a color bar ranging from 0 to 10 mm/h.

A visualization of the forecast data is shown in Fig. 15,
which is consistent with our conclusions.

Fig. 23 shows the relative bias curve calculated
from trimmed input data xL(t0) and {xL(t0), xL(t1),
xL(t2), . . . , xL(t30)} in this subset. The relative bias curve was
positive and increasing, indicating a declining trend in the
trimmed input data—this is also consistent with the fact that
the magnitude of the DMD eigenvalues extracted from the
processed input data is all less than 1, as shown in Fig. 24.

Therefore, owing to the similar variation (declining) trend
between the input and target data, the CT-DMD model is
capable of predicting good forecasts for this subset.

B. Dataset 33: CT-DMD Model Underperforms Rainymotion
Model

In the 33rd subset of the experimental dataset, the fore-
casting performance of the CT-DMD model is lower than
that of the Rainymotion model. Fig. 25 shows the relative
bias curves between the forecast data of the Rainymotion/
CT-DMD model and target data in this subset. The relative
bias curves of the Rainymotion and CT-DMD models were
negative and decreasing, but that of the CT-DMD model had
a greater absolute value and greater downward trend. The
negative and decreasing relative bias curve of the Rainymotion

model indicated a growing trend in the target rainfall data.
The relative bias curve of the CT-DMD model had a greater
absolute value, and a greater downward trend indicated that the
forecast data of the CT-DMD model have a declining trend.
This misjudgment of rainfall trends resulted in lower accuracy
of the CT-DMD model than that of the Rainymotion model
for this subset.

A visualization of the forecast data is shown in Fig. 28,
which is consistent with our conclusions.

Fig. 26 shows the relative bias calculated from the trimmed
input data xL(t0) and {xL(t0), xL(t1), xL(t2), . . . , xL(t30)} in
this subset. The relative bias curve remained consistently
positive until the lead time of 20 min. After a lead time of
20 min, the relative bias curve became negative and exhibited a
decreasing trend. According to the DMD principle, the forecast
data generated by the CT-DMD model rely on the initial state
vector xL(t0), as shown in the following equation:

xL(tk) = 83k8†xL(t0) =

M∑
i=1

φiλ
k
i φ

†
i xL(t0). (6)

For xL(t0), the relative bias curve remained consistently
positive before a lead time of 20 min, indicating a declining
and oscillating rainfall trend in the trimmed input data. After a
lead time of 20 min, the relative bias curve started to become
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negative with a decreasing trend, suggesting a growing rainfall
trend in the trimmed input data. It is evident that the positive
portion of the relative bias curve constitutes the majority, that
is, for xL(t0), the declining and oscillating parts of the trimmed
input data dominate, whereas the growing trend occupies only
a small portion. We consider this as the main reason for the
misjudgment of rainfall trends by the CT-DMD model.

Fig. 27 shows the DMD eigenvalues extracted from the
processed input data; it can be observed that the magnitudes
of the DMD eigenvalues are all less than 1, and the DMD
eigenvalues have nonzero imaginary components. This indi-
cates that the CT-DMD model interprets the processed input
data as declining data with an oscillatory behavior. This is
consistent with our analysis.

C. Summary of Case Study

From the analysis of the 33rd and 22nd subsets, the follow-
ing conclusions can be drawn.

1) 22nd Subset: For initial state vector xL(t0), when only
a single trend (growing or declining) is present in the
input data and this trend is consistent with the trend in
the forecast data, the CT-DMD model can forecast the
data accurately.

2) 33rd Subset: For initial state vector xL(t0), when both
growing and declining trends are present in the input
data, it may impact the CT-DMD model’s ability to
accurately judge the rainfall trend in the forecast data.

Therefore, the capability of the CT-DMD model to analyze
data with complex variations in rainfall trends requires further
enhancement.

According to the forecasting principles of the CT-DMD,
we have reason to believe that the CT-DMD model’s supe-
riority in rainfall forecasting is not limited to the rainfall
data presented in this article. As seen in (6), the forecasting
mechanism of the CT-DMD for rainfall intensity variation
involves DMD modes 8, DMD eigenvalues 3, and initial
vector xL(t0). Through analyzing DMD modes 8, DMD
eigenvalues 3, and initial vector xL(t0), we can capture and
forecast variations in rainfall intensity, including growing,
declining, and oscillation, which can fully represent the char-
acteristics of rainfall intensity variation. The CT-DMD model’s
forecasting of atmospheric motion relies on the optical flow
model, which has been extensively utilized in the field of
rainfall nowcasting [14], [34], [35], and its effectiveness has
been validated [7]. Therefore, although the capability of the
CT-DMD model to analyze data with complex variations in
rainfall trends requires further enhancement, given its better
performance on most subset data compared to the Rainymotion
model, we have reason to believe that the CT-DMD model
holds potential for application to rainfall data beyond the scope
of this article.

VI. CONCLUSION

Lagrangian persistence method in nowcasting, employed for
short-term weather forecasting, is a method of forecasting
future weather conditions by extrapolating recent weather
conditions. However, the difficulty in analyzing the intensity

variation of meteorological physical quantities deteriorates its
performance toward long-term forecasting or in situations of
rapid weather changes.

In this study, we integrated the optical flow model with
the DMD model, providing an effective solution for analyz-
ing the intensity variation of meteorological physical quantities
in the Lagrangian persistence method. The proposed CT-DMD
model was evaluated using radar-observed rainfall data from
the Kanto region of Japan, and the Rainymotion model was
used as a benchmark. When the lead time was 5 min, 22.22%
of the subsets in the experimental dataset showed that the
CT-DMD model had a higher forecast accuracy than the
Rainymotion model. When the lead time was 15 min, 68.89%
of the subsets in the experimental dataset showed that the
CT-DMD model had a higher forecast accuracy than the
Rainymotion model. When the lead time was 25 min, 88.89%
of the subsets in the experimental dataset showed that the
CT-DMD model had a higher forecast accuracy than the
Rainymotion model. The accuracy advantage of the CT-DMD
model became apparent after a lead time of 15 min and became
increasingly significant as the lead time increased.

From the understanding of the principles of the model and
the discussion of the case study, it can be observed that the
analysis of rainfall intensity variation by the CT-DMD model
depends on the trend of rainfall intensity variation in the
input data. When only a single trend (growing or declining)
was present in the input data and this trend was consistent
with that in the forecast data, the CT-DMD model could
forecast the data accurately; however, when both growing and
declining trends were present in the input data, the ability of
the CT-DMD model to accurately judge the rainfall trend in
the forecast data was impacted. In future research, we aim to
address this shortcoming by adding additional meteorological
variables and considering their effective combination.

For future research directions, we currently have two spe-
cific areas of focus. The first one involves enhancing the
analysis and predictive capabilities of the CT-DMD model
for input data with complex variations in rainfall trends.
The second one is to expand the dataset, testing the CT-
DMD model’s predictive performance across various types and
scales of rainfall, and comparing it with the corresponding
forecasting models.
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