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Abstract— This study presents a novel approach to the radio-
metric intercalibration between two sensors onboard the same
satellite based on pseudo-invariant pixels (PIPs) using iteratively
reweighted multivariate alteration detection (IR-MAD) method.
The IR-MAD algorithm can statistically select PIPs from the
multispectral image pair to assess the radiometric differences
between them. Analysis of multiple image pairs from different
acquisition times can provide long-term intercalibration results
for the two sensors. The procedure is applied to Fengyun(FY)-
3A&3B visible infrared radiometer (VIRR), with the medium
resolution spectral imager (MERSI) onboard the same platform
as the reference. Consistency of the spatial distribution of the
PIPs selected by IR-MAD with pseudo-invariant calibration sites
(PICSs) given by other scientists demonstrates the effectiveness
of our method. The long-term time series trending of top-of-
atmosphere (TOA) VIRR reflectance over LIBYA1 and LIBYA4
after intercalibration correction shows that the intercalibrated
VIRR has good agreement with MERSI, with a mean bias of
less than 1% and an uncertainty of less than 2% for most
channels. The approach requires no prior knowledge of the
intercalibration targets and extends PICS to the pixel-level
targets, which results in more diverse samples, broader dynamic
ranges, and lower uncertainty, yielding consistent and reliable
long-term intercalibration results.

Index Terms— Intercalibration, iteratively reweighted mul-
tivariate alteration detection (IR-MAD), medium resolution
spectral imager (MERSI), pseudo-invariant pixels (PIPs), visible
infrared radiometer (VIRR).

I. INTRODUCTION

QUANTITATIVE remote sensing depends on the Earth-
observing (EO) sensors to provide reliable, accurate,

and consistent measurements over time, especially for the
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long-term trend monitoring of the Earth system. In order to
benefit fully from the ever-increasing number of EO satellite
systems, intercalibration between the sensors is critical to bring
the measurements from various imaging sensor systems to
a common radiometric scale and hence sensor radiometric
calibration is of critical importance [1].

The intercalibration is a technique to use a well-calibrated
sensor as a reference to intercalibrate other sensors with
near-simultaneous observations of the common targets on the
surface of the Earth, Moon, or mutual reference to pseudo-
invariant features [2]. Consistency biases between different
sensors can be introduced from temporal, geometric, and spa-
tial variation in sampling, as well as relative spectral response
(RSR) differences and sensor degradation after launch. Regular
intercalibration is necessary for data continuity and consis-
tency from different imaging sensors, particularly for those
without onboard calibrators or where vicarious calibrations are
limited. A number of studies have shown that intercalibration
is one of the potential techniques for long-term radiometric
trending and quantifying radiometric bias for relative and
absolute calibration [3], [4], [5], [6], [7], [8].

Numerous approaches to intercalibration between the sen-
sors have been developed and implemented to better quantify
the radiometric biases, and new methodologies continue
to evolve. They mainly differ in degrees of simultaneity
between sensors and the associated ancillary data. The vicar-
ious ground-based calibration method, such as radiance- or
reflectance-based methods, rely on simultaneous surface mea-
surements and radiative transfer code computations [1], [9],
[10], [11], [12], [13], [14]. However, these methods typ-
ically involve field campaigns, which are cost and labor
intensive, hence the number of such calibrations is limited.
In an attempt to have more frequent calibration or validation
opportunities, certain targets have been used to calibrate or
intercalibrate satellite sensors, including pseudo-invariant cal-
ibration sites (PICSs) [15], [16], [17], deep convective cloud
(DCC) [17], [18], sunglint [19], [20], and the Moon [21],
[22]. The simultaneous nadir overpass (SNO) method [3],
[7], [23], [24] was proposed to assess the radiometric con-
sistency between two satellites at the orbital intersections to
further reduce uncertainties due to such effects as bidirectional
reflectance distribution factor (BRDF). The SNO method was
later extended to low latitude (SNO-x) [8], which makes
comparisons over deserts and green vegetation possible. These
methods generally depend on a series of elaborate thresholds
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of simultaneity applied to collocate the data of sensors to
minimize the consistency biases that may be attributed to
BRDF effects or different contributions of the target spectral
signature and atmosphere composition to the spectral response
functions (SRFs), and therefore still constrain the opportunities
for high quality and frequent sensor calibration and evaluation.

The motivation behind this study is the potential opportunity
for an accurate and highly frequent long-term intercalibration
for satellite sensors. An iteratively reweighted multivariate
alteration detection (IR-MAD) based method is proposed to
automatically select pseudo-invariant pixels (PIPs) in the scene
for intercalibration. The PIPs selected by our method are pixel-
level, which do not depend on large spatially homogeneous
areas, such as PICS. Moreover, the IR-MAD-based method
can select a greater number of samples with a wider variety
of surface types than those selected by the SNO or SNO-
x method, resulting in a wider dynamic range of reflectance
for intercalibration. The approach requires no prior knowledge
of the intercalibration targets and provides intercalibration
results with high frequency. We describe the method and
its implementation on the interclibration of the visible near-
infrared (VNIR) bands of visible infrared radiometer (VIRR)
onboard Fengyun(FY)-3A&B satellites with medium resolu-
tion spectral imager (MERSI) onboard the same platform. Note
that this method is also applicable to other situations where
the sensors for intercalibration are onboard different platforms,
such as SNO or SNO-x events. Results of intercalibration
between VIRR and MERSI on the same platform demonstrate
the efficacy of our method.

II. SENSOR OVERVIEW AND DATA

A. Sensor Description

1) FY-3/VIRR: A VIRR is a multiband imager which inher-
ited from FY-1C and FY-1D and continued to be carried
onboard FY-3 series sun-synchronous satellites. The involved
satellites in this study, i.e., FY-3A and FY-3B, are a morning
satellite with equator crossing time (ECT) at 10:00 and an
afternoon satellite with ECT at 13:30, respectively. VIRR has
ten channels, of which seven VNIR channels and three thermal
infrared (TIR) channels, with a spatial resolution of 1.1 km
at nadir for all bands. More details and channel specifications
are illustrated in [25]. VIRR is not equipped with an onboard
calibration system for reflective solar bands (RSBs). The
in-orbit test and postlaunch vicarious calibration found that the
prelaunch calibration coefficients for the VIRR solar bands are
not applicable [26]. The operational calibration depends on the
annual site calibration campaign in Dunhuang. However, the
operational calibration coefficients are not updated annually,
thus the accurate and frequent calibration for the VIRR RSBs
is necessary.

2) FY-3/MERSI: MERSI is the keystone payload, which is
a completely new generation imager of FY-3 series satellites.
MERSI has 20 spectral bands, of which 19 are RSBs and one
is a TIR band, covering the visible, near-infrared, and TIR
spectra. MERSI scans the Earth through a 45◦ scan mirror
in concordance with one K -mirror (derotation), resulting in
a swath of 2900 km cross-track by 10 km along the track

(at nadir) for each scan [27]. The spatial resolution at the
nadir of bands 1–5 is 250 m, whereas 1000 m for the
remaining 15 bands. See [25] for more details and channel
specification of MERSI. The MERSI is equipped with a
visible onboard calibrator (VOC), which is a 6-cm-diameter
integrating minisphere designed to monitor the system radio-
metric response changes that arise either from the MERSI
degradation or a change in the output of VOC. However, due
to the significant degradation of VOC itself, it is not used
for updating calibration coefficients on orbit [27]. In practice,
the operational calibration coefficients of MERSI are updated
based on the vicarious calibration using the global multisites
method and field measurement campaigns conducted in China
radiometric calibration sites, i.e., Dunhuang. Many vicarious
calibration methods have been conducted to MERSI and the
overall uncertainty in the MERSI top-of-atmosphere (TOA)
radiance or reflectance is less than 5% [27]. In this study, the
long-term degradation of MERSI is monitored and corrected
using the method in [28], and the results align consistently
with other vicarious calibration methods.

B. Study Area and Data

The region of interest (ROI) for this study is located in North
Africa, as shown in Fig. 1. The reasons for selecting this region
as ROI are as follows: 1) this region is mainly made up of
desert with almost no vegetation because a high reflectance can
reduce uncertainties from the atmospheric path radiance due to
higher signal-to-noise ratio; 2) this region is arid to minimize
the influence of atmospheric water vapor and has minimal
cloud cover and precipitation; 3) this region is relatively
spatial uniform to minimize the effects of misregistration in
intercalibration; 4) the surface of this region is relatively
spectrally uniform, which is particularly important for the
matching spectral bands that have different spectral response
profiles in intercalibration; and 5) several reference PICSs in
this region, such as LIBYA1 and LIBYA4, can be used to
evaluate the intercalibration accuracy.

In this study, the L1B level data of MERSI and VIRR
are used for intercalibration. Experiments were carried out on
FY-3A and FY-3B, respectively, to demonstrate the efficacy
and generality of the proposed method. The range of the data
covers almost the entire life cycle of the satellite, as illustrated
in Table I.

III. METHODOLOGY

A. Intercalibration Formulation

Although the aperture spectral radiance is actually measured
by the sensor, three advantages of converting the at-sensor
spectral radiance to TOA reflectance were reported in [29].
Using TOA reflectances instead of radiance can reduce image-
to-image variability and is a fundamental step in bringing
image data from multiple sensors and platforms to a common
scale. For a Lambertian surface in spectral band i , the TOA
reflectance can be computed as follows:

ρi =
πd2L i

E0i cos θ
=

π

E0i

d2

cos θ
(DNi − C0i )Si (1)
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Fig. 1. ROI in this study. The six reference PICS defined by CEOS are marked as stars, of which LIBYA1 and LIBYA4 are located within the ROI.

TABLE I
TIME RANGE OF FY-3A AND FY-3B DATA USED IN THIS STUDY

where L i is the spectral radiance at the sensor’s aperture
[in W/(m2 sr µm)], E0i is the mean exo-atmospheric solar
irradiance [in W/(m2 µm)] that can be obtained by convolving
the solar spectra [30] with the SRF of a given instrument. d
is the Earth–Sun distance in astronomical units (AUs), and θ

is the solar zenith angle. DNi represents a raw digital number
(in counts) recorded at the satellite, C0i is the zero-radiance
response (in counts), and Si is the sensor sensitivity coefficient
in units of percent reflectance per unit count.

In this study, MERSI is used as the reference sensor
to intercalibrate VIRR onboard the same platform. Suppose
MERSI is well-calibrated, the consistency bias between the
two sensors comes from their SRF differences, calibration
differences, and the VIRR degradation after launch. In this
context, the (1) can be expressed separately for image data
from the MERSI (“M”) and for image data from the VIRR
(“V”) as follows:

ρMi =
πd2L Mi

E0Mi cos θ
=

π

E0Mi

d2

cos θ
(DNMi − C0Mi )SMi (2)

ρV i =
πd2LV i

E0V i cos θ
=

π

E0V i

d2

cos θ
(DNV i − C0V i )SV i (3)

where i is the spectrally matching band of MERSI and
VIRR. In practice, a fixed sensitivity coefficient from the early
operational stage is adopted to calculate the nominal TOA
reflectance. Accordingly, (2) and (3) can be rewritten as

ρ∗

Mi =
π

EM0

d2

cos θ
(DNMi − C0Mi )SMi0

=
π

EM0

d2

cos θ
(DNMi · αMi + βMi ) (4)

ρ∗

V i =
π

EV 0

d2

cos θ
(DNV i − C0V i )SV i0

=
π

EV 0

d2

cos θ
(DNV i · αV i + βV i ) (5)

where ρ∗
Mi and ρ∗

V i are nominal TOA reflectance calculated by
the fixed sensitivity coefficients SMi0 and SV i0. Since VIRR
has degradation over time, it is useful to further separate the
sensitivity coefficient into a fixed initial component and a
time-varying component as

SV i = SV i0 · SV i (t) (6)

where t represents days since the first day (SV i0). SV i (t) is
the inverse of the relative degradation. Note that the MERSI
is supposed to be well-calibrated, therefore,

SMi = SMi0 · SMi (t), SMi (t) = 1 → SMi = SMi0. (7)

The TOA reflectance of MERSI can be compensated with
the spectral band adjustment factor (SBAF) fSBAF and the
relative calibration factor f0, where fSBAF accounts for SRF
differences and f0 explains calibration differences for the fixed
sensitivity coefficients adopted in (4) and (5). Then,

ρV i = f0 · fSBAF · ρMi . (8)

The combination of (2) to (8) yields

ρ∗

V i =
f0 · fSBAF

SV i (t)
ρ∗

Mi . (9)

In practice, the αi and βi can be read directly from the first day
L1B file for MERSI and VIRR. The f0 we want to obtain is
contained in the slope of the linear equation that characterizes
ρ∗

V i as a function of ρ∗
Mi . Once we get the degradation rate
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Fig. 2. Relative SRFs of matching channels between VIRR and MERSI for (a) FY-3A and (b) FY-3B.

function SV i (t) and relative calibration factor f0, the updated
value of VIRR sensitivity coefficients is then given by

SV i =
SV i0 · SV i (t)

f0
=

αV i · SV i (t)
f0

. (10)

With this updated value of SV i , users can obtain TOA
reflectance of VIRR from (3).

B. Spectral Band Matching

Different sensors have varying channels and spectral cover-
age ranges. Even if two sensors have similar spectral ranges
in a given channel, differences in their RSRs may still exist.
Fig. 2 displays the SRFs of matching channels between VIRR
and MERSI. The differences in RSRs can lead to systematic
biases in measurements of the same radiation source. There-
fore, in intercalibration, the differences caused by the RSRs
differences between the two sensors need to be addressed. This
can be compensated for by using the SBAF. The definition and
calculation of SBAF are documented in [31].

In this study, the scanning imaging absorption spectrometer
for atmospheric chartography (SCIAMACHY) hyperspectral
data was used to calculate the SBAF for each matching channel
between VIRR and MERSI. The SRF was convolved with
the hyperspectral data, and the SBAF values were obtained
by performing linear regression on all samples. A total of
44 511 spectral samples were used, representing one full year
of SCIAMACHY data within the ROI and encompassing
the spectra of all surface types within the ROI. For VIRR
channel 8, a binary linear regression was performed since it
matches with two MERSI channels. The SBAF values, center
wavelength (CW), correlation coefficient (r ), and residual
standard deviations for each matching channel between VIRR
and MERSI are presented in Table II. Note that there may

TABLE II
MATCHING CHANNELS BETWEEN VIRR AND MERSI ON FY-3A AND

FY-3B, TOGETHER WITH THE SBAF AND REGRESSION RESULTS
CALCULATED BY USING SCIAMACHY DATA

also be cloudy spectral samples. Examination of the regression
plot reveals that there are no outliers, which can be verified
by the residual standard deviations in Table I. The slightly
higher residual standard deviation of VIRR band 1 is primarily
attributed to the substantial difference in spectral bandwidth
between VIRR band 1 and MERSI band 3 as shown in
Fig. 2. As stated in [31], narrow-band RSRs are more sensitive
to changes in the spectrum, leading to a more pronounced
effect on SBAF compared to the wideband sensor RSR. The
matched bands of VIRR and MERSI, they are all broad bands
with bandwidth greater than 50 nm and have weakly gaseous
absorption, resulting in the SBAF being less sensitive to the
spectral variability of the samples. Hence the impact of cloudy
samples on the SBAF regression is negligible.

C. IR-MAD Method for Intercalibration

The multivariate alteration detection (MAD) technique was
first proposed for change detection by Nielsen et al. [32].
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This technique has been used in the automatic normalization
of remote sensing images [33], and also for the radiometric
calibration of AVHRR reflective bands [34]. An itera-
tively reweighted modification of the MAD transformation
(IR-MAD) has been introduced [35] and was extended to
radiometric normalization with substantial improvement [36].
This method was later applied to the selection of PICSs in
Northwest China [37]. In this study, the IR-MAD technique
is used to statistically select pixel-level targets for intercali-
bration. Next, the basic principles of IR-MAD and how it is
applied to intercalibration are explained.

The MAD method can be used to automatically select
invariant pixels for multispectral satellite imagery. In the
context of radiometric normalization, the invariant pixels for
bitemporal image refer to those that are temporally invariant
across all spectral bands data during the acquisition time
interval. The MAD transformation is linear scale-invariant
under affine transformations of either or both of the orig-
inal multispectral images, which is explicitly demonstrated
in [33]. For intercalibration, as shown in (9), there is a linear
relationship between the nominal TOA reflectance of the two
sensors in matching bands. Given the invariance property of
the MAD transformation, it is reasonable to use the MAD
algorithm to select PIPs that are suitable for intercalibration.
Instead of temporally invariant pixels, the PIPs here refer to
the pixels that have linear scale invariance under two sensors
with different spectral response characteristics in matching
bands. Specifically, the PIPs represent the pixels that conform
to the linear relationship in all matching bands under the
differences caused by a combination of the RSR characteristics
of the two sensors, the spectral signature of the target, and the
atmospheric composition during the overpass. It is intuitively
conceivable that when the SRF difference between the two
sensors is significant, only targets with relatively smooth
spectra profiles will be selected as PIPs. Similarly, when
one sensor contains an atmospheric absorption feature within
the SRF and the other does not, only targets that are not
susceptible to atmospheric influence are selected as PIPs.

Consider two sensors with N matching bands for intercal-
ibration. An image pair of two observations of the common
targets from the two sensors can be represented by a random
vector F = (F1, . . . , FN )T and G = (G1, . . . , G N )T, respec-
tively. Nielsen et al. [32] proposed that the MAD variates can
be determined by a linear transformation of F and G with
coefficients vector a and b, and the maximum variance of the
MAD variates is achieved

U = aTF = a1 F1 + a2 F2 + . . . + aN FN (11)

V = bTG = b1G1 + b2G2 + . . . + bN G N (12)

MADi = Ui − Vi = aT
i F − bT

i G, i= 1, . . . ,N (13)

where the coefficients vector a and b can be resolved by
applying standard canonical correlation analysis (CCA) [38].
There are some underlying properties for MAD variates:
1) from the central limit theorem, the MAD variates, deter-
mined by several additions and subtractions, would ideally
fit a normal distribution; and 2) since MAD variates are
orthogonal (uncorrelated), all the MAD variates should follow

a multivariate normal distribution with diagonal covariance
matrix [36].

Let the random variable Z represent the sum of squares of
standardized MAD variates

Z =

N∑
i=1

(
MADi

σi

)2

(14)

where σi is the variance of MADi . Then, Z should follow
a chi-square distribution with N degrees of freedom (χ2

N (z)).
An iteration scheme is adopted by setting the probability of
no change of observations as the weight for the next MAD
transformation. The probability of no change of observations z
can be determined by the chi-square distribution as follows:

Pno_change(z) = 1 − χ2
N (z). (15)

The general idea behind this formulation is that a small z
implies a high probability of no change, resulting in a
large weight in the next iteration. This can be considered
as more emphasis placed on establishing a better back-
ground for detecting change against a background of no
change, therefore resulting in improved sensitivity of the MAD
transformation [36].

The iteration of MAD transformation will continue until
one of the following conditions is met: 1) maximum number
of iterations reached, usually set to 30; and 2) the largest
absolute change in the canonical correlations, i.e., correlations
of U and V , becomes smaller than some preset small value
(e.g., 10−6). Once the iteration ceases, a decision threshold
k can be made to choose the final PIPs for intercalibration.
Typically, the k is set to be the value of z when Pno_change(z) =

0.9, that is, pixels which satisfy Pno_change(z) > 90% are
designated as PIPs.

The PIPs are selected statistically from the image pair
without a priori knowledge of the target pixel. They should
correspond to truly invariant targets for which the overall
differences between the image pair can be attributed to linear
effects as expressed in (9). The location of the PIPs is likely
to change with each image pair, which is reasonable because
whether a target is designated as PIP is affected by the
atmospheric condition as well as the BRDF effect besides its
own spectral signature.

With the selected PIPs, an orthogonal, as opposed to
ordinary, linear regression can be performed on the PIPs as
demonstrated by [33]. The regression slope mi (t) provides a
measurement of ( f0 · fSBAF/SV i (t)) as shown in (9). By per-
forming the IR-MAD procedure on image pairs from different
acquisition times, a large database of mi (t) can be created.
Analysis of these data can provide long-term intercalibration
results of the two sensors, which can be seen in Section V.

In summary, the steps involved in IR-MAD for intercalibra-
tion are as follows.

1) Reproject the near-simultaneous overpass at the ROI
from the two sensors onto a common geographic grid to
get the image pair.

2) Start with the original MAD transformation for the
image pair, i.e., set weights = 1 for all pixels.

3) Iterate the MAD procedure until termination conditions
are met as follows.
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Fig. 3. True color images at the ROI from (a) FY-3B/MERSI and (b) FY-3B/VIRR on 20110123. (c) Mask used for statistical analysis of MAD method.
(d) Spatial distribution of selected PIPs from IR-MAD method, only the pixels with VZA < 15◦ are used for regression. PIPs: pseudo-invariant pixels; VZA:
view zenith angle.

a) Set the probability of no change from the last MAD
procedure as the weight for all pixels.

b) Perform the MAD procedure on the reweighted
image pair.

c) Calculate weights for the next iteration.
4) Select PIPs from the last MAD procedure by the preset

decision threshold k.
5) Perform an orthogonal regression on PIPs to get

regression slope mi , which is a measurement of the
intercalibration result.

IV. IMPLEMENTATION AND ANALYSIS

A. Examples Applied on FY-3 VIRR

The long-term time series datasets of MERSI and VIRR
onboard FY-3A and FY-3B satellites are created by repro-
jecting the L1B data onto a common geographic grid in
1km spatial resolution via the nearest neighbor method. This
is a prerequisite for making pair-wise comparisons for the
IR-MAD procedure. A rough threshold-based cloud detection
algorithm is applied to remove cloud pixels. Nevertheless,
it must be acknowledged that the reduction of variations in
the scene can improve the sensitivity of the MAD procedure,
the IR-MAD method statistically and iteratively selects the
true PIPs hence delicate cloud detection is not necessary.

Our method assumes that the radiometric difference between
the PIPs from an image pair is solely due to the linear effects

as shown in (9), thus other possible causes of change, such
effects as BRDF and misregistration, need to be eliminated
or at least minimized. Since the two sensors are onboard
the same platform, the difference due to the BRDF effect
is negligible. In order to reduce the uncertainty introduced
by misregistration error, only pixels with view zenith angle
(VZA) < 30◦ are used for statistical analysis of IR-MAD and
pixels with VZA < 15◦ are selected as PIPs for orthogonal
regression. This is mainly because a large geolocation error
exists and the spatial size of pixels increases at the edge of the
swath. The impact of different VZAs and scattering regimes
was examined in [34].

Once the image pair data are masked as described above, the
IR-MAD procedure is applied subsequently to determine the
set of PIPs, of which the number can be up to several thousand.
The number of PIPs of each image pair varies with the present
atmospheric and surface conditions. In order to exclude image
pairs strongly affected by the atmosphere, image pairs with
PIPs number less than 1000 or a regression correlation less
than 0.95 will be removed. This means that the differences
between these image pairs no longer conform to the linear
effects due to atmospheric or surface influences and therefore
are not suitable for intercalibration analysis.

Fig. 3 shows an implementation of the IR-MAD method
applied to FY-3B for intercalibration on January 23, 2011.
Fig. 3(a) and (b) shows the true color images of MERSI and
VIRR, respectively. The image of MERSI looks a little redder
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Fig. 4. Regression results of the PIPs selected by IR-MAD on 20110123. The number of PIPs is 7387. PIPs: pseudo-invariant pixels; r : correlation coefficient;
k: regression slope; and σ : uncertainty (one-sigma error) of k.

than that of VIRR, which is mainly caused by the difference
in SRFs. Fig. 3(c) presents the mask used before the IR-
MAD procedure, and the spatial distribution of selected PIPs
is shown in Fig. 3(d). Interestingly, it can be seen that the
CEOS-defined PICS, LIBYA1, is automatically selected as
PIPs. This suggests that LIBYA1 is indeed a very suitable
PICS for intercalibration, and also proves the efficacy of our
method to accurately select PIPs. A potential advantage of
using IR-MAD to select targets is that besides the traditional
sites used for calibration, which generally have few surface
types and limited reflectance dynamic range, the IR-MAD can
automatically select thousands of PIPs with various spectral
signatures over a wider radiance dynamic range including the
lower reflectance targets (see the spatial distribution of PIPs
and their corresponding surface types in Fig. 3).

PIPs selected by the IR-MAD method can then be used in
linear regression to obtain the slope mi for all bands, which is
a measurement of the calibration difference between MERSI
and VIRR. Fig. 4 shows the regression result of the PIPs
in Fig. 3. Note that the MERSI nominal TOA reflectance
(ρ∗

M ) has been compensated by fSBAF for comparison. The
regression intercept is due to the unaccounted for change
in the zero-radiance response of VIRR after launch, which
makes the prelaunch coefficients unable to accurately measure
its zero-radiance response on orbit. Though the PIPs are
spatially dispersed and consist of a variety of surface targets,
the correlation coefficient (r ) values and the dynamic range
covered in the plot clearly indicate the benefit of using PIPs
for radiometric intercalibration. The r values for all bands are
in excess of 0.99, and the uncertainties (one-sigma error) of
regression slopes are all less than 1%. The regression results
demonstrate that PIPs can be well used for intercalibration and
can accurately measure the calibration difference between the
two sensors.

The ROI in this study has a large spatial range, about
2600 km horizontally and 1600 km vertically. Due to the
constraint of VZA in the IR-MAD procedure, the spatial
distribution of PIPs in a single day is limited and cannot be
spread over the entire ROI. Given the nominal revisit cycle
of FY-3A/B is 5.5 days, assuming that the sensor radiometric
calibration is stable during the period, it is reasonable to aggre-
gate PIPs from five consecutive days to further enhance the
abundance of targets and dynamic range. Fig. 5 presents two
examples of the spatial distribution of aggregated PIPs at the

early and later stages of FY-3B’s lifecycle. Although the orbit
of the satellite has drifted during this period and the sensor
has also experienced relatively large degradation, the spatial
distribution of PIPs is consistent except in some cloud areas.
This means that whether a target is selected as PIPs depends
on the intrinsic properties of the target, which has nothing to
do with the radiometric performance of the sensors.

Fig. 6 shows the regression results of the aggregated PIPs
from five consecutive days. In contrast to single-day PIPs
for regression in Fig. 4, the five-day aggregated PIPs do not
deviate from each other and still converge to the same linear
relationship. What is more, the regression results of aggregated
PIPs have a wider reflectance dynamic range for all bands, and
the uncertainty of the regression slope is no more than 0.4%.
These superiorities indicate that it is reasonable and necessary
to aggregate multiday PIPs for regression analysis, especially
for long-term intercalibration with a time span of several
years.

B. IR-MAD Versus SNO-x

The most related work to our study is the SNO-x method,
which extends the SNO analysis to the low latitude desert and
ocean sites, and sets a number of criteria to choose spatially
uniform ROIs to evaluate the bias between two sensors [8].
In this study, based on the potential linear relationship between
two sensors, the IR-MAD technique was used to statistically
select PIPs to intercalibrate the sensor. Here, we compare the
performance of the IR-MAD-based method and the SNO-x-
based method for intercalibration. There are multiple criteria
established to select the ROIs for SNO-x analysis as outlined
in the original paper [8], including: 1) scan angle differ-
ence, time difference, and closest-matching distance limit for
geospatial matching. These are inherently satisfied as the
two sensors used for intercomparison are onboard the same
satellite; 2) the size of the ROI is 9 × 9 km, the solar zenith
is less than 80◦ and the spatial uniformity should be less
than 2%. These criteria align with those in the original paper;
and 3) the VZA is restricted to within 15◦ to ensure a fair
comparison with the IR-MAD method. We set the moving
stride to 5 (which means there is overlap) to increase the
number of regression samples. The mean reflectance for each
ROI is calculated for regression.

Fig. 7 shows a comparison of the spatial distribution of
matched pixels selected by two methods on January 21, 2011.
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Fig. 5. Aggregated PIPs selected by IR-MAD overlay the concurrent true color images (VZA < 15◦) of FY-3B/MERSI from five consecutive days:
(a) 20110121–20110125 at early stage of FY-3B’s lifecycle and (b) 20180728–20180801 in the later of FY-3B’s lifecycle.

Fig. 6. Regression results of the aggregated PIPs selected by IR-MAD from five days (20110121, 20110122, 20110123, 20110124, and 20110125). Different
colored dots represent PIPs from different days. The total number of PIPs is 29171.

Fig. 7. Comparison of the spatial distribution of pixels selected by the
SNO-x and IR-MAD methods on 20110121. (a) True color image from
FY-3B/MERSI. (b) Mask used before selection. (c) Pixels selected by
IR-MAD method. (d) Pixels selected by SNO-x method. The gray area in
(c) and (d) represents the area where the VZA < 15◦.

The main reason for choosing this case is that it cov-
ers diverse land cover types, rather than a homogeneous
desert area, which better reflects the superiority of our
method. Fig. 7 illustrates that in scenes containing com-
plex samples, the SNO-x method selects fewer spatially
uniform ROIs and the sample type is relatively small,
mainly comprising desert targets. In contrast, the IR-MAD
method can automatically select appropriate PIP-level samples

for regression without requiring spatial uniformity, resulting
in a greater number of samples with a wider range of
types.

Fig. 8 presents the regression results of the selected samples
from one day by the two methods. It can be seen intuitively
that the TOA reflectance of the regression samples selected by
the IR-MAD method has a wider dynamic range, indicating a
greater diversity in the selected samples. Furthermore, while
the SNO-x method selects samples with overlapping, the
number of samples is fewer than with IR-MAD, particularly in
more complex scenes, e.g., those with higher cloud coverage
where it is challenging to obtain large spatially uniform
regions. With regards to regression results, the IR-MAD
method has a very consistent regression slope with the SNO-x
method, and the uncertainty of the regression slope is smaller,
which also confirms the correctness of the samples selected
by the IR-MAD method.

Table III presents the comparison of regression results
obtained by applying the SNO-x method and the IR-MAD
method from five consecutive days. It is evident that the
IR-MAD method has significant advantages over the SNO-
x method in terms of the number of regression samples, the
dynamic range of TOA reflectance for each channel, and the
uncertainty of the regression slope. Moreover, this method
requires no prior knowledge of the surface and is globally
applicable.



WANG et al.: NOVEL INTERCALIBRATION METHOD FOR FENGYUN(FY)-3 VIRR USING MERSI 5614017

Fig. 8. Comparison of the regression results for FY-3B on 20110121, where the samples are selected by the two different methods: (a) SNO-x , with
812 samples; and (b) IR-MAD method, with 3175 samples.

TABLE III
COMPARISON OF REGRESSION RESULTS OBTAINED BY APPLYING THE SNO-x METHOD AND THE IR-MAD METHOD

FOR FY-3B OVER FIVE CONSECUTIVE DAYS

V. RESULTS

A. Long-Term Time Series Results of FY-3A&3B VIRR

By performing the IR-MAD procedure on all image pairs
and subsequently aggregating five-day PIPs for regression,
a large database of mi (t) can be created. Note that the MERSI
nominal TOA reflectance (ρ∗

M ) has been compensated by fSBAF
before, thus the mi (t) here represents the measurement of
( f0/SV i (t)). For FY-3A data with a time span of six years,
there are 439 five-day comparisons, and for FY-3B data with
a time span of eight years, there are a total of 564 five-day
comparisons. Analysis of these data can provide long-term
intercalibration results for the two sensors.

The long-term time series of mi (t) for FY-3A and FY-3B
are shown in Fig. 9. The gaps in the curves are due to
missing data. It can be seen that there is a decreasing trend
in all bands for both sensors. This is because all bands of
VIRR have different degrees of degradation. In addition to

long-term trends, periodic seasonal oscillations exist in some
bands, especially for channels 1 and 2. Examination of the
fitting error and potential overfitting problem shows that a
polynomial of order 4 can best capture the trending pattern.
For the regression intercepts in each comparison, they are
attributed to the unaccounted for change in the zero-radiance
response of VIRR after launch, which should generally remain
stable over time in orbit. However, due to the degradation
of VIRR itself, there would be a trend in the regression
intercepts iover time (not shown). In this study, we employed
a second-order polynomial fitting to capture the trend of the
regression intercept for correction. The coefficients of the fit
polynomials and bias statistics can be seen in Table IV.

As mentioned above, the mi (t) is a measurement of the rela-
tive calibration factor ( f0) and the sensor degradation (1/SV i0).
The VIRR degradation can be obtained independently by the
approach of [28] and [34]. Therefore, we can obtain the
relative calibration factor ( f0) by dividing mi (t) by sensor



5614017 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 9. Long-term time series of regression slope [mi (t)] for FY-3A and FY-3B, which is a measurement of the relative calibration factor between MERSI
and VIRR and the sensor degradation of VIRR itself.

TABLE IV
COEFFICIENTS OF THE FIT POLYNOMIALS FOR LONG-TERM TIME SERIES OF mi (t) AND REGRESSION OFFSET,

ALONG WITH THE FITTING BIAS STATISTICS FOR mi (t)

degradation (1/SV i0). Fig. 10 shows the long-term time series
of f0. Since we used fixed calibration coefficients at the early
operational stage to calculate the nominal TOA reflectance,
f0 represents the relative calibration factor of the two sensors
at that time, which is expected to be a constant. Due to the
limitations of the polynomial functions used to fit the mi (t)
and sensor degradation (1/SV i0) trending, they cannot fully
capture the seasonal variation. Consequently, periodic seasonal
oscillations may manifest in the time series of the f0. We tried
to fit the trending of f0 with polynomials of different orders,
all tend to be a constant (as expected), which demonstrates
the validity of the time series of mi (t) we derived.

Furthermore, we can utilize the estimated f0 value to calcu-
late the VIRR degradation and compare it with our previous

work [28]. Unlike the IR-MAD technique applied in this study
for intercalibration, the IR-MAD technique is proposed to
select temporally invariant pixels from the bitemporal satellite
images by the same sensor to assess the sensor response degra-
dation during the acquisition time interval [28]. By dividing
the polynomials of mi (t) by the estimated f0, we can obtain
the sensor degradation as a function of time. The outcomes
are depicted in Fig. 11, where the solid lines correspond to
the degradation calculated in this study, and the dashed lines
represent the outcomes obtained using the method of [28]. The
highly consistent VIRR degradation curves obtained from the
two methods further confirm the effectiveness of this approach.

Table V presents a quantitative comparison of the degra-
dation results of VIRR obtained in this study with those
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Fig. 10. Long-term time series of relative calibration factor ( f0) for FY-3A and FY-3B, which expects to be a constant. See main text for more explanation
about f0.

from the other two different methods, including a multisite
calibration method [39], [40] and an IR-MAD based method
for sensor degradation tracking [28], and their results have
been unified to the same time range. It can be seen that
the degradation results of VIRR obtained in this study are
very consistent with the other methods. Compared to the
results of the other two methods, the annual degradation
for most channels differs by less than 0.1%. For channels
with significant seasonal fluctuations (such as channel 2),
the difference can reach around 0.3%. As for channel 7,
which is a short-wave channel, it is strongly affected by
atmospheric absorption and scattering, resulting in a differ-
ence of around 0.5%. This verifies the consistency of the
VIRR degradation results obtained by this method with other
methods.

B. TOA Reflectance Trending Validation Over PICS

As an independent calibration method of on-orbit calibra-
tion, ground sites with suitable characteristics on Earth are
often used to evaluate and validate the postlaunch radiometric
performance of satellite sensors. Monitoring the long-term
time series of TOA reflectance at PICS is an effective approach
to verifying the radiometric calibration consistency between
different sensors. In the ROI of this study, there are two
PICS identified by the CEOS, namely, LIBYA1 and LIBYA4.
They are desert sites consisting of sand dunes and devoid of

vegetation. These sites have been extensively studied and used
as postlaunch calibration sites for satellite optical sensors to
evaluate the long-term stability and intercomparisons. Due to
space limitations, the long-term time series of TOA reflectance
over Libya 4 for FY-3B are presented here. FY-3B was selected
due to its longer time span, and LIBYA4 has been the most
commonly used calibration site in recent years. Similar results
can also be obtained for FY-3A and LIBYA1, which will be
presented in the table.

By selecting clear-sky samples with a sensor zenith angle
less than 20◦ during satellite overpasses, Fig. 12 shows
the long-term time series of the TOA reflectance of FY-
3B/VIRR over LIBAYA4 before and after intercalibration,
with the MERSI used as a reference. To mitigate seasonal
oscillations arising from the BRDF effect or orbital drift,
the TOA reflectance has been characterized by the solar
zenith angle and normalized to the TOA reflectance at a solar
zenith angle of 30◦. From the figure, it can be observed that
before intercalibration, due to the degradation of the VIRR
itself, there is a significant downward trend in each channel,
while MERSI as the reference sensor has a very stable and
flat long-term response. After intercalibration, the trend of
VIRR has been eliminated and it has a consistent radiometric
response with MERSI, indicating that our intercalibration
method is effective. The second column of Fig. 12 shows
the relative deviation of TOA reflectance between MERSI and
intercalibrated VIRR, which exhibits a seasonal oscillations
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Fig. 11. Degradation curves over time of the VIRR on FY3A and FY3B. The solid lines correspond to the degradation obtained in this study and the dashed
lines represent the results using the method of [28].

TABLE V
COMPARISON OF THE TOTAL AND ANNUAL DEGRADATION OF VIRR OBTAINED USING THREE DIFFERENT METHODS. FY3A: FROM

NOVEMBER 16, 2008, TO DECEMBER 1, 2014. FY3B: FROM JANUARY 25, 2011, TO DECEMBER 1, 2017

pattern. The pattern becomes more pronounced in the later
stage of the satellite’s life cycle, which may be related to the
orbital drift of FY-3B in its later phase. Table VI presents the
quantitative results of the relative deviation between MERSI
and intercalibrated VIRR on FY-3A and FY-3B over LIBIYA1
and LIBAYA4. It can be seen that for most channels, the
mean deviation is less than 1%, with a standard deviation
of less than 2%. For some channels with significant seasonal
fluctuations, the deviation may be slightly larger, but the mean
deviation is also less than 2%, with a standard deviation
of less than 2.5%. The mechanism behind the significant
seasonal fluctuations and amplitude of TOA reflectance bias

will be further investigated. The quantitative results of the two
satellites over the two PICS have also verified the accuracy and
effectiveness of our method.

C. Uncertainty Analysis

In this intercalibration, the uncertainty primarily originates
from the radiometric calibration uncertainty of the reference
sensor and the processing procedure of the intercalibration.
Here, we mainly analyze the uncertainty introduced by several
factors in our processing method, including: geometric mis-
registration, spectral band differences, atmospheric conditions,
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Fig. 12. Long-term time series of the TOA reflectance of FY-3B/VIRR over LIBAYA4 before and after intercalibration, with the MERSI used as a reference.
The second column shows the relative deviation of TOA reflectance between MERSI and intercalibrated VIRR.

and viewing geometry (or BRDF) effects during overpass.
In this study, since the two sensors are onboard the same

platform, the differences caused by atmospheric conditions and
BRDF effects are negligible.
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TABLE VI
QUANTITATIVE RESULTS OF THE RELATIVE DEVIATION BETWEEN MERSI

AND INTERCALIBRATED VIRR ON FY-3A AND FY-3B
OVER LIBYA1 AND LIBYA4

MERSI and VIRR have little difference in spatial resolu-
tion, making it challenging to achieve perfect pixel matching
between the two sensors, especially in off-nadir areas. To min-
imize the effects of different spatial resolutions, our method
limits the near-nadir (VZA≤15) pixels for analysis and regres-
sion. Furthermore, the IR-MAD technique statistically selects
PIPs that satisfy the underlying linear relationship [see (9)]
in each channel, hence pixels with larger differences due
to misregistration will not be selected as PIPs. As a result,
in the presence of a misregistration effect, IR-MAD tends
to select PIPs from spatially uniform areas. Similarly, when
atmospheric disturbances and BRDF effects are present, IR-
MAD also tends to select pixels with the smallest possible
impact of these effects. Thus, the uncertainty introduced by
these effects is implicitly reduced during the PIPs selection of
IR-MAD.

One of the primary sources of uncertainty in our method
is the differences in RSRs. Despite compensating with SBAF,
the SBAFs for different land cover types are not the same.
Hence, when the study area is vast and encompasses diverse
land cover types, IR-MAD favors selecting pixels with flat
spectral signatures to minimize such effects.

The uncertainty arising from the above effects is reflected
in the residual standard deviation of the regression results. For
the 439 five-day comparisons of FY-3A and the 565 five-day
comparisons of FY-3B, the mean uncertainty for the matching
bands are listed on the first row of Table VII. For long-term
intercalibration results, additional uncertainties are introduced
by polynomial fitting, mainly due to seasonal oscillations of
the sensor, which are listed on the second row of Table VII.
The overall uncertainties for the matching bands are listed
on the last row of Table VII.

VI. DISCUSSION

Unlike other previous studies that used the IR-MAD method
to select temporally invariant pixels from the bitemporal image
of one sensor, this study employed the IR-MAD method to
select PIPs from multispectral images acquired at the same
time by two different sensors for intercalibration. Starting from
the formula of the intercalibration problem, we demonstrate
the reasonableness of employing the IR-MAD technique to
select PIPs for intercalibration owing to the linear scale invari-
ance property of MAD transformation. The PIPs represent

Fig. 13. Density map of the spatial frequency distribution of PIPs for all
image pairs of FY-3B.

pixels that conform to the potential linear relationship across
all matching bands in intercalibration, under the differences
caused by a combination of RSR characteristics of the two
sensors, the spectral signature of the target, atmospheric con-
ditions, and viewing geometry.

The PIPs are selected statistically from the image pair
without a priori knowledge of the target pixel, which is
determined based on the existence of a certain underlying
linear relationship between the matching bands of the two
images. Therefore, different pixels within an image pair, may
not conform to this linear relationship due to variations in
surface characteristics or differences in atmospheric influence.
As a result, the locations of PIPs may vary with different
image pairs. It should be noted that when the two images in
an image pair are strongly affected by atmospheric conditions
or when there is a lack of a sufficient number of samples for
statistical analysis due to extensive cloud cover, the number of
selected PIPs will decrease, which means it is challenging for
IR-MAD to find the underlying linear relationship between
the two images. Using these PIPs for regression will result
in greater uncertainty. Therefore, such image pairs will be
excluded. To examine which areas and surface types are most
frequently identified as PIPs, a density map showing the spatial
frequency distribution of PIPs of all FY-3B image pairs is
depicted in Fig. 13. Similar results can also be obtained with
FY-3A.

From Fig. 13, it is evident that PIPs are distributed not only
in bright target areas such as deserts but also encompass dark
target types like volcanic surfaces. Therefore, intercalibration
based on PIPs offers a broader dynamic range. The primary
hotspot regions are predominantly located within desert areas,
which aligns with our expectations. Deserts exhibit flatter
spectral profiles, minimizing the impact of SRF differences
between the two sensors. Regarding the spatial distribution
pattern of PIPs, our method does not rely on large, spatially
uniform regions. Instead, it selects samples at the pixel level,
resulting in a higher sample quantity, a richer variety of land
surface types, and a broader dynamic range compared to
the SNOx method. Furthermore, in addition to internationally
recognized PICS such as LIBYA1 and LIBYA4 being found
within the distribution area of PIPs, there are several extensive
PIPs hotspot regions. These areas hold the potential to serve
as valuable calibration sites for future research.
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TABLE VII
UNCERTAINTY OF THE PROPOSED IR-MAD METHOD FOR INTERCALIBRATION

Another advantage of this method is its ability to implicitly
reduce uncertainty. Unlike the SNO-x method, which relies
on the spatial uniformity of the surface to select samples, IR-
MAD selects samples based on the potential linear relationship
between two images. Samples that no longer conform to
this linear relationship due to effects such as misregistration,
atmospheric disturbances, and BRDF are excluded from the
PIPs selection. As a result, the uncertainty introduced by
these effects is implicitly minimized during the PIPs selec-
tion process of IR-MAD. It’s worth noting that this method
employs a single SBAF for all PIPs samples, which is a
major source of uncertainty in this method. However, as shown
in Fig. 13, IR-MAD tends to select targets like deserts that
have relatively flat spectral profiles to reduce errors caused by
the SRF differences. For long-term intercalibration, variations
in atmospheric conditions at different times are the primary
source of uncertainty, as evident in Fig. 9. For channels easily
affected by atmospheric conditions, their regression slopes
exhibit fluctuations and divergence (e.g., channels 1 and 2),
while this phenomenon is less pronounced for channels that are
less susceptible to atmospheric influence (channels 8 and 9).

This method is not limited to a specific geographical region.
We also conducted research in the northwest region of China as
our ROI and obtained similar results. Furthermore, this method
is not restricted to any particular sensor or satellite platform.
It can be applied to SNO and SNO-x events as well. The
entire process is generic. The difference lies in the fact that,
unlike the two sensors on the same platform in this study,
when dealing with sensors on different platforms, additional
considerations are required to account for the impact of BRDF
effects. Therefore, in such cases, additional constraints should
be added to minimize the influence of BRDF. This can be
achieved by imposing constraints on the proximity of the two
satellite orbits or by using samples from nadir observations
for the analysis.

VII. CONCLUDING REMARK

In this study, we propose a novel approach to sensor
radiometric intercalibration based on PIPs using the IR-MAD
method. Due to the property of linear scale invariance, the
IR-MAD method was proposed to statistically select PIPs for
intercalibration. The approach requires no prior knowledge
of the intercalibration targets. The PIPs do not depend on
large spatially homogeneous areas and extend PICS to the
pixel-level targets, resulting in a higher sample quantity,
a richer variety of land surface types, and a broader dynamic
range of reflectance. The PIPs are selected statistically and

can implicitly reduce the uncertainty of intercalibration. This
method is generic, not limited to any particular sensor, satellite
platform, or geographical region, which is particularly suitable
for operational long-term intercalibration.

The implementation of FY-3A&3B VIRR for intercalibra-
tion (with the MERSI onboard the same platform as the
reference) demonstrates the efficacy of our method. The results
show that two widely used PICS for calibration, LIBYA1
and LIBYA4, have been automatically included in the PIPs.
Moreover, despite the degradation of the sensors and drift
of the satellite orbit over time, the spatial distribution of
the PIPs remains consistent. The long-term time series of
TOA reflectance over LIBYA1 and LIBYA4 shows that the
intercalibrated VIRR is in good agreement with MERSI, with
a mean bias of less than 1% and an uncertainty of less than
2% for most channels. For channels with significant seasonal
oscillations, the uncertainty is also less than 2.5%. Further
exploration of the underlying mechanisms for the seasonal
fluctuations in the long-term intercalibration results is still
needed. It should be reiterated that although this study used
two sensors onboard the same platform for intercalibration,
our method is also applicable to other situations where similar
sensors for intercalibration are onboard different platforms,
such as SNO or SNO-x events.

DATA AVAILABILITY

The data used in this study are all publicly available
in the FY-3A&B satellite archive at FENGYUN Satellite
Data Center. These datasets were derived from the pub-
lic domain resources: http://satellite.nsmc.org.cn/portalsite/
default.aspx?currentculture=en-US.
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