
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 4702315

A Review of Building Extraction From Remote
Sensing Imagery: Geometrical Structures and

Semantic Attributes
Qingyu Li, Student Member, IEEE, Lichao Mou, Yao Sun , Yuansheng Hua , Student Member, IEEE,

Yilei Shi, Member, IEEE, and Xiao Xiang Zhu , Fellow, IEEE

Abstract— In the remote sensing community, extracting build-
ings from remote sensing imagery has triggered great interest.
While many studies have been conducted, a comprehensive review
of these approaches that are applied to optical and synthetic aper-
ture radar (SAR) imagery is still lacking. Therefore, we provide
an in-depth review of both early efforts and recent advances,
which are aimed at extracting geometrical structures or semantic
attributes of buildings, including building footprint generation,
building facade segmentation, roof segment and superstructure
segmentation, building height retrieval, building-type classifica-
tion, building change detection, and annotation data correction.
Furthermore, a list of corresponding benchmark datasets is given.
Finally, challenges and outlooks of existing approaches as well as
promising applications are discussed to enhance comprehension
within this realm of research.

Index Terms— Building extraction, deep learning, optical
imagery, review, synthetic aperture radar (SAR).

I. INTRODUCTION

ALTHOUGH cities occupy 3% of the Earth’s land surface,
they are responsible for 60%–80% of energy usage and

70% of greenhouse gas emissions [1]. The frequent city
renewal and rapid urban growth lead to substantial changes
within cities [2]. These alterations can have adverse repercus-
sions on the environment and ecology, e.g., urban heat island,
the greenhouse effect, and resource depletion [3], [4]. Urban
structures are characterized by buildings in both planar and

Manuscript received 29 September 2023; revised 3 January 2024;
accepted 24 January 2024. Date of publication 1 March 2024; date of
current version 6 March 2024. This work was supported in part by the
Excellence Strategy of the Federal Government and the Länder through
Technical University of Munich (TUM) Innovation Network EarthCare; in
part by the German Federal Ministry of Education and Research (BMBF)
in the framework of the International Future Artificial Intelligence (AI)
Laboratory “AI4EO—Artificial Intelligence for Earth Observation: Reasoning,
Uncertainties, Ethics and Beyond” under Grant 01DD20001; in part by the
German Federal Ministry for Economic Affairs and Climate Action in the
framework of the “National Center of Excellence ML4Earth” under Grant
50EE2201C; and in part by the Munich Center for Machine Learning.
(Corresponding author: Xiao Xiang Zhu.)

Qingyu Li, Lichao Mou, and Yao Sun are with Data Science in Earth Obser-
vation, Technische Universität München (TUM), 80333 Munich, Germany
(e-mail: qingyu.li@tum.de; lichao.mou@tum.de; yao.sun@tum.de).

Yuansheng Hua is with the School of Civil and Traffic Engineer-
ing, Shenzhen University, 518061 Shenzhen, China (e-mail: yuansheng.
hua@szu.edu.cn).

Yilei Shi is with the School of Engineering and Design, Technische Univer-
sität München (TUM), 80333 Munich, Germany (e-mail: yilei.shi@tum.de).

Xiao Xiang Zhu is with Data Science in Earth Observation, Technische
Universität München (TUM), 80333 Munich, Germany, and also with the
Munich Center for Machine Learning, 80538 Munich, Germany (e-mail:
xiaoxiang.zhu@tum.de).

Digital Object Identifier 10.1109/TGRS.2024.3369723

vertical dimensions, offering insights into urban development.
For example, the area and volume of buildings correlate
with population distribution [5], [6], greenhouse gas emis-
sion [7], [8], and energy consumption [9], [10]. Consequently,
up-to-date information about buildings is the key element to
environmentally sustainable urbanization. Moreover, geomet-
rical structures and semantic attributes of buildings can be
exploited in various domains, including: 1) undocumented
building detection; 2) emergency responses and rescue oper-
ations; 3) autonomous vehicle navigation; and 4) facility
management.

The most reliable geometrical structures and semantic
attributes of buildings can be achieved by field surveying
and mapping [11]; however, these methods are labor-intensive
due to substantial workloads. In contrast, remote sensing
techniques capable of extracting buildings in a cost-effective
manner have become a mainstream strategy. Remote sensing
imagery usually consists of two types: 1) optical imagery and
2) synthetic aperture radar (SAR) imagery. A wide variety of
optical sensors with different spatial resolutions are available
for building extraction. The benefit of SAR imagery lies in
its ability to penetrate through clouds, thus alleviating the
limitation of sun illumination and weather.

Nevertheless, several challenges are associated with building
extraction from optical imagery and SAR imagery. An essen-
tial issue is the intraclass variance and interclass similarity
of buildings on remote sensing imagery [12], [13], [14].
Intraclass variance denotes buildings that are diverse in scale,
appearance, and structure on remote sensing imagery, which
is due to differences in architectural designs (e.g., size, height,
and color), materials (e.g., metal, clay, concrete, and stone),
and land use functions (e.g., commercial, industrial, and res-
idential). Interclass similarity refers to buildings and other
classes having similar features on remote sensing imagery.
For instance, on optical imagery, some buildings share akin
colors with paved roads, whereas on SAR imagery, large
storage tanks can have radar-reflective properties similar to
some buildings. Furthermore, the precision of building extrac-
tion from remote sensing images is hindered by complex
background interference and the absence of relevant sensor
information (such as illumination conditions, shadows, and
shooting angle).

In the past decades, numerous approaches have been
proposed to extract buildings from remote sensing images.
Early efforts have relied on heuristic feature design
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procedures, which combine different spatial, spectral, or ancil-
lary information for the construction of building hypotheses.
Nevertheless, feature engineering makes it difficult to achieve
scalable robust and generic solutions. Recently, the field
of remote sensing image interpretation has seen significant
advancements, thanks to deep learning techniques. These
methods leverage convolutional neural networks (CNNs),
known for their superior feature learning capability from raw
data [15], recently becoming a popular strategy.

To the best of authors’ knowledge, there are two review arti-
cles about building extraction from optical imagery [16], [17]
in the existing literature. However, they ignore SAR imagery,
which can also contribute to this task. SAR imagery can offer
data irrespective of time or weather conditions. This capability
makes SAR data particularly valuable for application after
natural disasters (e.g., earthquake [18] and tsunami [19]) and
war conflict [20] and for investigations in areas frequently
obscured by clouds [21]. Moreover, these two studies mainly
concentrate on building footprint generation. Accompanied by
progress in remote sensing technology and data processing
strategies, a series of new research tasks has also emerged,
e.g., building-type classification and roof superstructure seg-
mentation. These tasks aim at extracting geometric structures
and semantic attributes of buildings, whereas they have rarely
been summarized and discussed. Therefore, a timely overview
is essential to summarize works related to these new tasks.
In all, a comprehensive and systematic review concerning
the building extraction from both optical imagery and SAR
imagery has not yet been conducted in the existing literature.

This study mainly focuses on geometric structures and
semantic attributes of buildings that can be extracted from
remote sensing imagery. Note that the aspects (e.g., building
topology) related to building information modeling (BIM)
[22] are out of scope in this study. Our research aims to
comprehensively review the major tasks within the remote
sensing field that exhibit correlations with building extraction,
i.e., building footprint generation, building facade segmenta-
tion, roof segment and superstructure segmentation, building
height retrieval, building-type classification, building change
detection, and annotation data correction. We conducted a
literature search on peer-reviewed scholarly publications that
primarily originate from mainstream journals or conferences
within the field of remote sensing. Through an in-depth analy-
sis, we identified the related publications and categorized them
with respect to corresponding tasks. The primary scientific
progress highlighted in the literature is first summarized. Then,
some benchmark remote sensing imagery datasets for these
tasks are introduced. Furthermore, challenges and outlooks
toward future research are presented. Finally, the main appli-
cations of geometrical structures and semantic attributes of
buildings are discussed.

II. REVIEW OF THE MAJOR TASKS INVOLVED IN
BUILDING EXTRACTION

A. Building Footprint Generation
To initiate our exploration into building extraction from

remote sensing imagery, we commence with the fundamental
task of building footprint generation. This foundational step

Fig. 1. (a) Mask. (b) Boundary. (c) Corner points of the corresponding
building footprint.

Fig. 2. (a) Optical imagery. (b) SAR imagery. (c) Corresponding building
footprints (mask) [59].

lays the groundwork for subsequent analyses by establishing
the spatial extent of structures. The building footprint is a
2-D visual representation of a building, describing its exact
location, size, and shape in the ground [23], [24], [25].
As illustrated in Fig. 1, three representation types (i.e., mask,
boundary, and corner) are usually utilized to represent the
building footprint. Fig. 2 shows the building footprint map
(mask) corresponding to optical and SAR imagery in the same
region.

Early efforts to generate building footprints from remote
sensing images have three main types: 1) geometrical
primitive-based; 2) over-segmentation-based; and 3) classifier-
based methods. In the first type, geometric primitives (e.g.,
building corners [24] and edges [26], [27], [28], [29]) are first
extracted and subsequently assembled into enclosed polygons
corresponding to individual buildings. In the second type,
different segments—so-called super-pixels—are obtained from
the partition of an image to delineate building regions. For
instance, some commonly used over-segmentation techniques
are clustering [30], [31], graph model [32], [33], active contour
model (ACM) [34], [35], and watershed segmentation [36],
[37]. The third type mainly consists of two stages: hand-
crafted feature extraction and classification. Features from
each pixel are extracted and subsequently fed into classifiers
that can determine its label. Classifier-based methods utilize
machine learning models (e.g., support vector machine [38]) to
distinguish buildings from nonbuilding objects [39], [40], [41],
[42]. Note that optical imagery encompasses another method:
the index-based method. This method devises an index by
taking into account the contrast and brightness of buildings
and then utilizes an empirical threshold to extract buildings.
Specifically, morphological building index (MBI) [43] and its
improved versions [44] are commonly used indices.

In the past decades, a significant number of deep learning-
based approaches have been proposed, and they have signif-
icantly outperformed traditional methods in both efficiency
and accuracy. Based on the visual cues they utilize, these
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methods can be categorized into three groups: 1) corner-based;
2) boundary-based; and 3) mask-based methods. On opti-
cal imagery, buildings usually show distinct traits such as
straight lines and sharp corners, inspiring some scholars to
leverage these traits as prominent and differentiable features
with which to extract buildings based on the former two
methods. The advancement of keypoint detection networks
has further propelled corner-based methods. PolygonRNN [45]
is an advantageous approach that comprises a CNN and a
recurrent neural network (RNN). The CNN is responsible for
extracting corner points, and then, the RNN connects these
points to create closed polygonal representations. PolyMap-
per [46] incorporates the feature pyramid network (FPN)
[47] into PolygonRNN [45], eliminating the necessity for
bounding box annotations. Considering the difficulty in the
CNN–RNN training, graph convolutional network (GCN)
combined with CNN recently become a more popular strategy
in this field [48], [49]. To reduce vertex redundancy in the
CNN–GCN paradigm, a transformer-based approach [50],
PolyBuilding [51], is proposed to learn building corner points
from remote sensing images. To generate building footprints,
boundary-based methods directly learn building boundaries in
an end-to-end manner. Some works [52], [53] use semantic
segmentation networks to learn building boundaries. To refine
the boundaries of individual buildings, other works exploit
instance segmentation networks (e.g., Mask R-CNN [54])
for building boundary learning [55], [56]. To obtain sharp
building boundaries, some studies exploit the ACM where
parameterizations are learned by an end-to-end network [57],
[58]. However, ACM-based methods are tailored for extracting
a single building instance from a cropped input image. Thus,
their initialization depends on external methods not integrated
into an end-to-end learning process.

Most methods for this task learn masks of buildings
from optical and SAR images. Their primary objective is
to address pixel-level labeling challenges. More specifically,
these approaches employ semantic segmentation networks to
assign each pixel within the image its relevant label, namely,
either “building” or “nonbuilding”. In the following, we intro-
duce these methods according to their addressed issues.

Buildings exhibit considerable variability within the same
class, such as differences in size, which poses challenges for
this task. This limitation stems from the fact that the efficacy of
semantic segmentation networks is constrained when dealing
with extremely small or large buildings. Due to the restricted
receptive field, large buildings often show fragmented and
incomplete shapes, whereas many small buildings might be
overlooked. Many approaches have been introduced to extract
buildings at multiple scales from both optical and SAR images.
The majority of research concentrates on aggregating multi-
scale information [60], [61], [62]. Some studies concentrate
on multiscale feature extraction [13], [63], [64], while others
devise dedicated architectures, e.g., Siamese network [65],
[66] and multitask learning network [67], [68].

On optical imagery, buildings commonly exhibit straight
lines and sharp corners. However, the inherent translational
and spatial invariance properties of CNNs can result in the

loss of intricate information necessary for precise localiza-
tion. This often leads to inaccurate and irregular building
boundaries. A range of methods have been introduced to
maintain the geometrical details of buildings. Improved output
representation-based methods devise various output represen-
tations capable of encoding geometrical details concerning
buildings, e.g., signed distance transform (SDT) [69], [70],
frame field [71], and attraction field representation [72],
[73]. Compared to other output representations, attraction
field representation can preserve more detailed structures for
complicated buildings [72]. Geometric priors of buildings are
not evident on optical imagery with a relatively low spatial
resolution. Thus, adversarial training-based approaches and
graph model-based methods can be adopted for these optical
images. Adversarial training-based approaches harness gen-
erative adversarial networks (GANs), comprising a generator
and a discriminator [74], [75]. Graph models, which facilitate
the representation of pixel interactions, can also be employed.
Graph model-based methods have integrated graph models in
end-to-end network learning frameworks [76], [77].

When preparing the training data, manually annotating
buildings requires more effort compared to annotating wood-
lands, water bodies, and roads [78]. Thus, different strategies
have been designed to diminish the requirement for extensive
pixel-level annotations and compensate for the limited super-
visory information. Weakly-supervised methods construct
models through learning with weak supervision. In addi-
tion to pixel-level labels, weakly-supervised approaches still
need weaker labels, including point labels [79], bounding
boxes [80], [81], and image-level labels [82], [83]. How-
ever, weakly-supervised methods neglect the opportunity to
leverage extensive unlabeled data. Xia et al. [78] explore
pseudo-labeling, where a model is initially trained using a
small set of labeled data to create pseudo-segmentation maps
for unlabeled samples. Consistency training-based approaches
enforce prediction consistency by assigning diverse pertur-
bations to the input [84], [85], which are more efficient
to implement than the other methods. Domain adapta-
tion is aimed at transferring knowledge from a source
domain to a target domain, mitigating domain shift. In this
context, the source-domain dataset consists of ample anno-
tated samples, whereas the target-domain dataset has no
labeled instances. Domain adaptation-based approaches aim to
enhance CNNs’ performance on the target domain by lever-
aging the source-domain dataset and aligning data distribution
between the two domains. This helps to mitigate the scarcity
of supervisory information in the target domain. Domain shift
can be addressed at different levels. For instance, Li et al. [86]
seek to address the domain-shift problem by only aligning
the image distribution, whereas Shi et al. [87] tackle domain
adaptation at both the image and feature levels.

Rapid and accurate generation of building footprint
maps holds critical significance for disaster emergency
response, military reconnaissance, and loss assessment. Some
lightweight networks have been developed to realize a balance
between computational costs and accuracy by designing spe-
cific network architectures. Liu et al. [88] devise a compressing
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Fig. 3. Off-nadir optical imagery with building facades extracted by the
method described in [92].

module to reduce feature channels, Chen et al. [89] reduce
the count of convolution kernels in its network, and
Wang et al. [90] incorporate atrous convolutions [91], thereby
diminishing the training parameters.

B. Building Facade Segmentation
With the building footprints delineated, our focus shifts to

a more detailed examination of structures through building
facade segmentation. This task delves into the exterior face of
buildings, contributing essential information for a more com-
prehensive understanding of their architectural characteristics.
For SAR imagery, there are no studies focusing on extracting
building facades. This is due to the side-looking geometry
of SAR: building areas refer to roofs and facades, making it
difficult to extract sole facade information [93]. For optical
imagery, the building facade is usually invisible at the nadir
angle. Thus, off-nadir imagery is the primary type of data
source to provide beneficial information for building facade
segmentation (see Fig. 3).

Early studies in segmenting building facades from off-nadir
optical imagery have two main types: 1) geometrical
primitive-based and 2) index-based approaches. The first
type extracts geometric primitives (e.g., building corners and
edges), which are grouped to form a building facade by
applying spatial constraints [92], [94]. In the second type,
the index is devised by considering the spatial features of the
facade, and then, an empirical threshold is applied to extract
facade regions [95].

Recently, a deep learning network [96] has been proposed to
learn building facades directly from off-nadir imagery, and this
information is combined with other elements (e.g., footprint)
for 3-D building reconstruction.

C. Roof Segment and Superstructure Segmentation
Now, we proceed to roof segment and superstructure seg-

mentation, advancing our analysis to the uppermost regions of
buildings. This phase enriches our understanding by capturing
the roof structures. Each planar roof segment [see Fig. 4(b)] of
the building usually has a specific orientation. Moreover, roofs
usually contain some structures [see Fig. 5(b)], e.g., chimneys
and windows, which are generally named roof superstruc-
tures. Very-high-resolution optical images provide a valuable

Fig. 4. (a) Optical imagery. (b) Roof segment map. (c) Roof segment classes
(legend).

Fig. 5. (a) Optical imagery. (b) Roof superstructure map. (c) Roof super-
structure classes (legend).

resource for roof segment and superstructure segmentation,
as the details of roof segments and superstructures are visible.

Roof segment segmentation aims to extract individual roof
planar segments. One early work [97] relies on a line detection
algorithm to detect roof ridges and gutters, and then, roof
planar segments (which face in various orientations) of the
building can be deduced. Recently, semantic segmentation net-
works have been implemented to directly learn roof segments
from aerial imagery [98], [99].

Roof superstructure segmentation focuses on segmenting
different superstructures on the roof. To extract roof super-
structure, early efforts [97], [100] utilize either contour
detection [101] or watershed segmentation [102], while recent
studies [99], [103] use semantic segmentation networks.

D. Building Height Retrieval

Ascending to the 3-D realm, our attention turns toward
building height retrieval. This critical task augments our
knowledge by providing insights into the vertical dimension
of structures. Building height retrieval involves addressing two
problems: 1) delineating building footprints and 2) estimating
building heights. Fig. 6 shows the building height maps
(pixelwise) retrieved from optical imagery, and Fig. 7 illus-
trates the building height maps (instancewise) obtained from
SAR imagery.

Traditional approaches first extract building footprints and
subsequently model the height. For optical and SAR imagery,
most of these methods utilize geometrical primitives or the
shadow information as primary indicators [106], [107], [108],
[109]. Meta information of the sensor (e.g., the Sun–Earth
relative position) is also needed for height estimation. For
SAR imagery, its side-looking imaging geometry introduces
different types of geometric distortion, which lead to difficul-
ties in image interpretation. In this regard, simulation-based
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Fig. 6. (a) Optical imagery. (b) Building height map obtained by the method
described in [104].

methods are devised to iteratively simulate SAR images by
making a hypothesis of geometric and radiometric proper-
ties [110], [111]. Afterward, the target building height is
gradually obtained by minimizing the disparity between real
and simulated data.

Recent advances in deep learning-based methods have made
it possible to directly learn height maps and semantic masks
from remote sensing imagery via a multitask network. In this
manner, the efficacy of both subtasks can be enhanced through
a concurrent optimization procedure. The integration of the
3-D centripetal shift representation and decoupling module
in [104] yields superior results on near-nadir optical images
when compared to other competitors [112], [113]. Li et al. [96]
devise a specific network for off-nadir optical imagery where
building facades are also partially visible. For SAR imagery,
buildings show special geometric characteristics induced by
the SAR view geometry. Thus, two main types of methods are
utilized to retrieve building heights. The first type considers
the building footprint as preliminary input to estimate the
instancewise building height from a bounding box regression
network [105]. The second type exploits semantic segmenta-
tion networks to learn building regions [93], [114]. This is
because building regions correspond to both roof and layover
areas on SAR imagery, and building heights can be estimated
from their layover lengths.

Fig. 7. (a) SAR imagery. (b) Building height map obtained by the method
described in [105].

E. Building-Type Classification

Extending our analysis beyond geometric attributes,
we delve into building-type classification that interprets the
semantic attributes of individual buildings according to their
geometry or functions. For instance, buildings can be classified
into different roof types, e.g., gable, flat, and hip, or different
function types, e.g., industrial, commercial, and residential.
Very-high-resolution optical imagery provides the potential for
building-type classification, as finer building structures can
be observed. Fig. 8(b) and (d) illustrates the roof geometry
types and building function types of individual buildings,
respectively.

In traditional methods [115], [116], buildings are first
segmented and then their types are distinguished by using
extracted features.

In recent years, deep learning techniques have been
exploited to identify building types directly from optical
imagery. Due to the lack of pixel-level annotation data, early
studies [117] can only assign each image patch with a label of
the corresponding building type. Nowadays, researchers [118],
[119] focus on pixel-level-type classification of individual
buildings.

F. Building Change Detection

Acknowledging the dynamic nature of urban environ-
ments, we introduce building change detection. This task
aims to identify changes in buildings in bitemporal or mul-
titemporal remote sensing imagery that are captured from
identical geographic regions. Fig. 9 shows the corresponding
changed building mask between prechange and postchange
remote sensing imagery in the same region. Specifically, the
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Fig. 8. (a) Optical imagery. (b) Roof geometry-type map. (c) Roof geometry-type classes (legend). (d) Building function-type map. (e) Building function
classes (legend).

Fig. 9. (a) Prechange optical imagery. (b) Postchange optical imagery. (c) Prechange SAR imagery. (d) Postchange SAR imagery. (e) Changed building
masks [120].

change types usually refer to newly constructed or demolished
buildings [121] and building damage [122]. In the existing
literature, there are two main strategies for building change
detection. One solution is based on change detection algo-
rithms, while the other solution is to first extract buildings
in the postchange remote sensing imagery and then identify
changes by comparison with the prechange building maps.
In this article, we introduce the literature related to the first
solution.

Tradition methods usually consist of two steps [123]: fea-
ture extraction and change detection. Multiple features (e.g.,
spectral, textural, and geometrical properties) of buildings need
to be engineered to explore the type of changes. For optical
imagery, MBI [43] is a commonly used feature, and its varia-
tion can be used to carry out building change analysis [124],
[125]. For SAR imagery, the double bounce line [126] or the
properties of backscattering [127] are detected for monitoring
changed buildings. To generate difference images (DIs) for
further change analysis, three types of indicators are usually
utilized: algebra-, transform-, and classifier-based methods.
Change vector analysis (CVA), image ratio, and image differ-
encing are commonly used algebraic-based methods. Principal
component analysis (PCA), which emphasizes change infor-
mation in the transformed feature space, is a widely used
transform-based approach. In classifier-based methods, change
detection can also be realized by exploiting the classifiers that
assign pixel-level labels of “change” or “nonchange.”

Recently, a number of deep learning-based approaches have
achieved impressive performance. However, the potential of
existing approaches is usually limited by two factors. First,
buildings show various sizes and shapes, which make it
difficult to extract representative features of buildings with
different sizes and shapes. Second, the similarity between
buildings and other objects as well as the complexity of

the background may also lead to mistaken identification.
To address the aforementioned issues, many methods are
proposed to enhance their capability of feature extraction.
Most studies introduce attention mechanisms [128], [129],
[130], [131] that select the most discernible features. Multi-
scale pyramid structures [132], [133] can also be implemented
to extract multiscale features by increasing the reception
field. Some special modules, such as feature space alignment
module [134], feature difference enhancement module [135],
[136], and context extraction module [137] are also proposed
to enlarge the interclass disparity in the feature space.

Deep networks usually require the same number of ground
reference labels for pre- and postchange. However, the annota-
tion of changed/unchanged building labels is time-consuming
and laborious [121]. Two strategies are usually exploited to
compensate for the limited supervisory information. One is
the generative adversarial training, which can synthesize new
labeled samples to expand the training sets [138]. Neverthe-
less, methods based on adversarial training face a considerable
risk of model collapse attributed to the imbalance between
adversarial networks. In this regard, semisupervised learning
is more efficient for implementation and can be exploited to
improve the model performance by leveraging a considerable
number of unlabeled samples [139], [140].

G. Annotation Data Correction
Recognizing the significance of precisely labeled training

data in deep learning or machine learning applications, we now
turn our attention to annotation data correction. In fact, data
annotation is a time-consuming process and requires expertise.
Fortunately, community-based organizations or companies
have provided open cadastral maps (e.g., OpenStreetMap).
However, these datasets also have two limitations [143], [144],
[145]. One limitation is incorrectness (see Fig. 10), where
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Fig. 10. (a) Optical imagery. (b) True labels. (c) Labels from Open-
StreetMap [141].

Fig. 11. Aerial imagery with alignment results obtained by the method
described in [142].

the labels from open cadastral maps differ from the ones in
the real world [141], [146]. For example, due to the time
difference between the two data sources, a newly constructed
building might be missing, while a demolished building exists
in the open cadastral maps. Moreover, the outlines of buildings
on open cadastral maps are sometimes much simplified. The
other limitation is misalignment (see Fig. 11), where annotated
buildings are rotated and translated from their position in the
remote sensing imagery [142], [147]. This is due to the two
factors: 1) errors from the projections of two data sources
and 2) errors from the annotators. If these open data are used
as training samples, the noise in class labels will impair the
model performance.

To deal with both issues, existing studies involve two main
strategies: 1) noise modeling and 2) data cleansing. The
first strategy approximates noise transition matrices [141] or
devises robust loss functions [148]. However, estimating the
noise transition matrices poses a significant challenge, and
loss function-based methods suffer from the accumulation of
errors [149]. Data cleansing methods, in essence, adhere to a
simple yet intuitive concept: the removal of noisy data and
training exclusively with the cleaner subset [150], [151].

Most existing works concentrate on the alignment of optical
imagery and cadastral maps. Cross-correlation-based meth-
ods assume that the estimated alignment location refers to
the maximum value of the cross correlation [69]. However,
conducting the cross correlation is a time-consuming pro-
cess. In energy minimization-based approaches, the alignment
problem is solved by designing and minimizing an energy
function [143], [152]. Nevertheless, the algorithm for energy
minimization encompasses a considerable number of parame-
ters. CNN-based methods propose novel networks to address
the misalignment, i.e., displacement field learning [142], [153],

[154], probability transition modular [155], and robust loss
function [156]. A notable benefit of employing CNN-based
approaches lies in their better generalizability.

III. DATASET

With the available computational resources like graphics
processing units (GPUs), deep learning methods have the
capacity to automatically extract information from a large
volume of remote sensing imagery. In this regard, some
benchmark datasets (see Table I) have been proposed to extract
geometrical structures or semantic attributes of buildings.

For building footprint generation, a considerable number
of benchmark datasets are available. However, for other tasks
(e.g., building facade segmentation), only limited available
benchmark datasets are available. This might be due to the
amount of effort needed to acquire corresponding labels.
Compared to other tasks, annotating building footprints is
now much easier since different label sources have become
available [17], e.g., OpenStreetMap.

In terms of sensor type, optical imagery is dominant in data
sources, and only a few benchmarks provide SAR imagery.
This is due to the two factors. First, for the SAR sensor, its
side-looking geometry leads to difficulties in data interpreta-
tion. Thus, most researchers prefer to use optical imagery that
is easier to interpret. Second, the number of SAR sensors is
much smaller than that of optical sensors, which means that
only a limited number of SAR products are available for the
whole community.

The spatial resolution of remote sensing images in most
datasets is very high (i.e., ranging from centimeter level
to decimeter level). However, for the SpaceNet 7 dataset,
the spatial resolution is relatively coarse (i.e., 4 m), which
introduces more challenges in building footprint generation,
as it is difficult to identify individual buildings on such spatial
resolution.

The spatial coverage of some benchmark datasets is limited
to one specific city or country. Since deep networks focus
on learning location-specific building patterns, the model’s
ability to generalize is restricted when exploiting such datasets.
Intraclass variation of buildings is evident across different
geolocations. On the one hand, the appearances of urban
settlements (which can be densely or sparsely populated)
vary across different continents. On the other hand, buildings
come in a wide variety of shapes and colors. Therefore, the
benchmark datasets that have wider spatial coverage and a
more diverse building pattern are more popular. This is because
they can help improve the generalizability of deep networks.

For all benchmark datasets, the most commonly used met-
rics to evaluate algorithms are precision, recall, F1 score,
and intersection over union (IoU). In terms of different tasks
or goals, new metrics will be considered to provide a com-
prehensive evaluation. For instance, root-mean-square error
(RMSE) and mean absolute error (MAE) are metrics for
the benchmark datasets related to building height retrieval.
To provide instance-level evaluation, the standard MS COCO
measures [157] including average precision (AP, averaged over
IoU thresholds) or AP at different scales will be exploited.
For the evaluation of the quality of the predicted boundaries,
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TABLE I
REPRESENTATIVE BENCHMARK DATASETS FOR DIFFERENT TASKS

boundary F-score (BoundF) [158] and polygon similarity [159]
will also be taken into account.

Given the rapidly evolving nature of the field, numer-
ous resources, such as the website “Papers with Code”
(https://paperswithcode.com/) and project webpages related to
the benchmark datasets, provide detailed and up-to-date infor-
mation on the quantitative performance of different methods.
For instance, both https://paperswithcode.com/sota/semantic-
segmentation-on-inria-aerial-image/ and https://project.inria.fr/
aerialimagelabeling/leaderboard/ provide the comparison of

the performance of different methods on the Inria aerial image
labeling dataset.

IV. PERSPECTIVES AND INSIGHTS

A. Challenges and Future Directions
In this section, the challenges of building extraction from

remote sensing imagery are summarized. Moreover, possible
future directions are also discussed.

1) Polygonization: Polygonization refers to mapping build-
ing corners. For the tasks of building footprint generation and
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building height retrieval, polygonization should be taken into
account. This is because in geographic information system
(GIS), building footprints are usually stored as vector formats
where building shapes are characterized as building corner
points. Early efforts [160] perform the polygonization on
predicted semantic masks, and they exploit postprocessing
steps (e.g., Douglas–Peucker algorithm [161]) to acquire an
abstract version of the building shape. Recently, some deep
learning-based networks that can directly learn building cor-
ner points from remote sensing imagery have become more
favored. However, there are several challenges arising from
these methods. First, building corners are not distinct on
remote sensing imagery with relatively low resolution (e.g.,
Planet satellite imagery with 3 m/pixel). Thus, when applying
these methods to such imagery, results might not be satisfac-
tory. Second, the current strategies for corner point connection
(e.g., manually defined rules [162] and graph model [49])
cannot deal with complex shapes (e.g., buildings with holes).

2) Multimodal Data Fusion: Multimodal data denote the
data collected by various sensors, and the synergistic uti-
lization of multimodal data empower the network for the
acquisition of more details. For example, optical sensors cap-
ture spectral attributes of objects, SAR remains unaffected by
weather conditions, and LiDAR can acquire precise geomet-
rical information. A common application for building change
detection is to assess information on building damage after an
earthquake, and multimodal data can contribute. For instance,
pre-event optical and postevent SAR imagery is compared
to detect the destroyed buildings [163]. In [164], bitemporal
optical images and postevent LiDAR data are used to extract
building damage. A primary challenge emerges in determining
the “where” and “how” of fusing multimodal data for specific
tasks [165], [166]. “How” denotes fusion strategies to fully
exploit the distinct data, while “where” refers to the level
of fusion, encompassing three categories: data-, feature-, and
decision-level. The other main issue is the registration of
multimodal data, as geometrical registration accuracy will
affect image fusion results. Moreover, different fusion levels
might have different sensitivities to registration errors [167].

3) Domain Shift: For all tasks discussed in Section II,
the generalization capability of deep neural networks is of
great concern for large-scale applications. For instance, deep
networks tend to yield unsatisfactory outcomes when directly
applying a model trained on one dataset (source domain) to
another dataset (target domain) [168]. In other words, the
transferring capability of the trained model is restricted due
to the domain shift between the target domain and the source
domain. An example is in large-scale building footprint gener-
ation [169], the model which is trained with samples collected
from European cities performs badly on test instances in the
African cities. Domain gaps arise from several factors. First,
the appearances of urban settlements (which can be densely or
sparsely populated) are varied across different continents [70].
Second, the intraclass variation of buildings is evident, e.g.,
buildings have various shapes and colors. Third, disparities in
the process of data acquisition (such as illumination conditions
and atmospheric effects) might cause various radiometries
of remote sensing images [170]. Domain adaptation and

domain generalization can be helpful in tackling the domain
shift problem. Some strategies aim to learn representations
that are invariant to domains. Specifically, domain alignment
strategies can be designed to minimize the divergence of
distributions between target and source domains [171]. Self-
supervised learning can also be explored to capture generic
representation [172]. Other strategies attempt to improve
the generalizability of models by avoiding overfitting issues.
For instance, to simulate the domain shift, various types of
data augmentation approaches are devised, including image-,
model-, and feature-based augmentations [171].

B. Potential Applications of Geometrical Structures and
Semantic Attributes of Buildings

The geometrical structures and semantic attributes of build-
ings provide valuable insights for many practical applications
at both micro- and macroscales. In this study, several examples
are provided, including: 1) environmental and socioeconomic
analysis; 2) disaster risk management; and 3) high-resolution
population map production.

1) Environmental and Socioeconomic Analysis: Urban-
ization involves the construction of buildings on former
nonurban land. Rapid urbanization can lead to detrimental
consequences, e.g., the spread of epidemics, air and water
pollution, and resource depletion. For instance, morphological
parameters and landscape metrics of buildings are derived
from investigating their correlation with the thermal environ-
ment [173]. Carbon dioxide emission [174] can be allocated
to individual buildings with respect to attributes (e.g., type,
area, and height). The analysis of the relationship between
pedestrian-level wind velocity and building density facilitates
a better understanding of urban ventilation [175]. The urban
living environment, such as the building density in the com-
munity, has also been proven to be associated with the health
of residents [176]. Moreover, the geometrical features of build-
ings contribute to the estimation of energy consumption [177]
and solar energy potential [178].

2) Disaster Risk Management: For disaster risk manage-
ment, the assessment of vulnerability and risk to natural
hazards is an essential process. Hazard refers to environmen-
tal phenomena that potentially cause detrimental effects on
both humans and infrastructure. Different types of hazards—
including landslide, tsunami, drought, earthquake, flood, and
volcanic ash—can lead to building damage [179]. When a
hazard occurs, we can identify the buildings that are situated
within vulnerable regions. Moreover, evaluating the vulner-
ability of buildings also aids practitioners and stakeholders
by helping improve the decision-making process. Specifically,
parameters associated with the properties of buildings (e.g.,
height, shape, orientation, and accessibility) are derived to
quantify the vulnerability of buildings [180].

3) High-Resolution Population Map Production: Popula-
tion maps refer to population distributions and dynamics,
offering insights for diverse applications such as comprehend-
ing interactions between humans and the environment, and
assessing populations at risk. Nonetheless, population data
frequently lag behind or remain absent in certain regions.
Considering that there is a high correlation between population
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and buildings, geometrical structures and semantic attributes
of buildings can be harnessed to generate detailed population
maps [181], [182].

V. CONCLUSION

Buildings are indispensable objects in the urban envi-
ronment and play an essential role in urban planning and
monitoring. Remote sensing imagery provides excellent poten-
tial for the detailed interpretation of buildings. Many methods
have been proposed for extracting geometrical structures and
semantic attributes of buildings from optical and SAR imagery.
Therefore, we present a comprehensive review of both early
efforts and recent advances in relation to building extrac-
tion on optical and SAR imagery. We summarize six main
categories of studies in terms of their extracted building char-
acteristics, including building footprint generation, building
facade segmentation, roof segment and superstructure segmen-
tation, building height retrieval, building-type classification,
and building change detection. Moreover, we also survey the
methods aimed at annotation data correction. Furthermore,
the corresponding benchmark datasets of these six categories
are described. Finally, we discuss the challenges of the cur-
rent approaches and introduce promising applications for the
extracted geometrical structures and semantic attributes of
buildings. Although much information about buildings can be
acquired by the existing methods, new efforts for developing
and improving current approaches should continue to be a
high research priority. With the accumulation of a wide range
of remote sensing data, more diverse types of information
are of interest. How to handle and fully explore these data
is becoming a new challenge for the research community, but
this also opens new opportunities to gain a deep understanding
of buildings.
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