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Abstract— We propose an algorithm based on information
theory to detect changes in ultra-wideband (UWB) very-high
frequency (VHF) synthetic aperture radar (SAR) images with
high performance and low complexity. Our algorithm models the
clutter-plus-noise using six different distributions and computes
a scalar statistic for each pixel based on a multitemporal stack of
images. With this statistic, it is then possible to apply hypothesis
testing and classification methods to infer the occurrence of a
change. In this context, we derive expressions necessary for the
entropy-based statistics, including the entropy variance for the
Weibull and Rice distributions. We also evaluate the computa-
tional time complexity of the algorithm for each distribution
studied. Furthermore, a masking strategy is used to reduce
false alarms significantly. We show that the mask mapping
assumptions are mild in scenarios with stacks of images, allowing
its use in many scenarios. Our algorithm achieves a false alarm
rate (FAR) of 0.08 and a probability of detection (PD) of 100%,
outperforming existing methods on the CARABAS II dataset.

Index Terms— Change detection, entropy, information theory,
stochastic distances, synthetic aperture radar (SAR).

I. INTRODUCTION

CHANGE detection is a remote sensing task that involves
detecting changes in an area of interest using two or more

multitemporal images. This allows the detection of appearance
changes, object disappearance or appearance, or even changes
in the scene’s background [1]. Change detection has many
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applications, such as monitoring land use, urban growth,
deforestation, disaster recovery, and military surveillance [2].
This article addresses the problem of detecting hidden targets
in forested areas using ultra-wideband (UWB) very-high fre-
quency (VHF) wavelength-resolution synthetic aperture radar
(SAR) images. UWB VHF sensors have the advantage of pen-
etrating dense foliage and capturing large and stable scatterers.
We propose a change detection method that compares images
taken at different times and identifies changes related to new
targets concealed under the vegetation. Our method ignores
other changes that are irrelevant or caused by acquisition or
environmental factors.

Images obtained by SAR tend to be favored over optical
images for foliage penetrating (FOPEN) applications because
of good resolution for human-made objects, lower suscepti-
bility to weather conditions, and the mitigation of undesirable
vegetation aspects [3], [4], favoring the detection of changes
otherwise invisible.

There has been wide use of SAR images in applications
such as marine analysis, agriculture, and forestry. In [5],
high-spatial-resolution flow measurements are derived for the
Kuroshio Current in the East China Sea from SAR data using a
theoretical model of shifts in Doppler frequency. In [6], a time
series of vertical–horizontal polarized Sentinel-1A SAR scenes
is processed. A decision tree algorithm is used to analyze
topographical features from the SAR images in conjunction
with rice phenological parameters, such as the transplanting
date, mature grain date, length of growing season, and the
green-up speed, in order to map patches of rice crops. In [7],
a multilevel model for forest height inversion is introduced
and investigated using X-band single-pass interferometric SAR
coherence data.

The problem with these applications, though, is that the
more standard microwave frequencies used in SAR imagery
result in many false alarms when aimed at large targets [8].
Specifically in the forestry domain, such frequency ranges
seem to produce poor results for biomass estimation, because
reflectance in these frequencies only partially correlates to
woody mass [9]. In [9], it is stated that at higher frequencies,
such as at the X- and C-bands, the high attenuation of the
canopy leads to scattering being largely composed of the
effects of small structures in the crown of the trees. This
makes the saturation levels of the backscatter be attained at
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very low levels of biomass. Lower frequencies, such as the
L- and P-bands, show improved sensitivity, since the larger
wavelengths contribute to the scattering from trunks and large
branches, which contain most of the effective woody biomass.
However, even at these bands, the saturation effect happens for
relatively low quantities of biomass [10]. Findings like these
suggest that lower frequencies are desirable for the penetra-
tion of dense canopies. Results from two aerial VHF-band
SAR measurement campaigns, known as the CARABAS I
and II [11], indicate that the VHF-band backscatter is more
sensitive to biomass detection than the P-band as a result of
its higher saturation threshold to biomass [12], [13].

As hinted above, UWB VHF SAR systems, e.g., the
CARABAS II system [11], can be used to mitigate the issues
of higher frequency ranges [8]. They have a large fractional
bandwidth and a wide antenna bandwidth, yielding system
resolutions in the order of the radar signal wavelengths [11],
hence the denomination “wavelength resolution.” In addition,
as it was observed for the small structures in the crowns of
trees, these systems are not very sensitive to small scatterers
in the ground scene, i.e., to objects with dimensions smaller
than the signal wavelength [9], [14]. A consequence is that
images suffer little from speckle noise, since there might be
only a single scatterer in the resolution cell [15]. Moreover,
large scatterers tend to be static objects that are not very
sensitive to weather conditions. This allows acquiring similar
images for a determined ground area via multiple image
passes [15]. This agrees with the observations made in [9]
and points to VHF wavelength-resolution SAR images being
adequate for FOPEN applications [16], specifically for the
detection of stable and relatively large concealed targets in
forested areas using change detection methods [17], [18],
[19], [20], [21], [22], [23].

A common approach in change detection methods for
VHF wavelength-resolution SAR images is the pairwise
approach, where statistical models are employed to represent
the clutter-plus-noise distribution in surveillance and
reference images. These models are usually coupled with the
Neyman–Pearson (NP) criterion in the creation of decision
functions [24]. This is the approach of [17], which simplifies
hypothesis tests to space–time equations. Similarly, [25]
uses statistical hypothesis tests based on Izawa’s bivariate
gamma distribution. Change detection can also be performed
using difference images. In [26], these images are processed
with adaptive noise cancelers. Bayes’ theorem can also
be used to estimate the probability of change based on
target or clutter-plus-noise probability distributions using
histograms for the conditional reference and surveillance
clutter-plus-noise probabilities [20], [22], [23].

Statistical analysis of wavelength-resolution SAR image
stacks can reduce the number of false alarms concerning the
traditional pairwise approach [19]. In [21], the NP criterion
is used on statistical models for the background clutter and
the targets in an image stack. A stack-based method based
on robust principal component analysis has been shown to
produce detection with low false alarm rates (FARs) [27].
In addition, the use of convolutional neural networks on image
stacks achieves considerable reductions in the number of false

alarms [28], [29], [30]. While these methods have successfully
reduced false alarms, our article seeks to improve performance
by investigating a novel change detection methodology.

Thus, the main objective of this article is to use a
change detection methodology not yet explored for stacks of
wavelength-resolution SAR images and employ it to reduce
the FARs presented in articles such as [17], [19], [20],
[21], and [25]. In particular, we use an algorithm based on
the information-theoretic quantity known as the differential
Shannon entropy. This quantity is a special case of the
(h, φ)-entropy, defined in [31]. In [32], under the assump-
tion of MLE of distribution parameters, entropy becomes a
random variable (RV) where its probability density function
(pdf) asymptotically converges to a Gaussian distribution.
This allows the use of hypothesis tests over entropy-based
statistics. This approach has been used for change detection
in [33], where hypothesis testing is conducted on polarimetric
SAR (POLSAR) data. In [33], the test statistics are squared
differences of entropy measurements for Wishart-modeled
POLSAR data.

In this article, we propose a novel change detection
methodology for wavelength-resolution SAR images based
on information-theoretic measures. Our methodology consists
of four steps: 1) computing a stack entropy statistic for
each pixel using different distributions that can model the
clutter-plus-noise; 2) applying a median-based hypothesis test
to detect changes; 3) performing morphological operations
to refine the change map; and 4) evaluating the performance
using false alarm probability pFA and detection probability pD.
We also derive expressions for the computational complexity
of our algorithm.

For the asymptotic case in which the number of samples
tends to infinity, we obtain the variance of the entropy
for distributions that had not been previously considered
in the Literature of entropy-based change detection, namely
the Weibull and Rice distributions. Inspired by [18]—in which
the stackwise median operation is used to generate estimations
of the ground scene of UWB VHF SAR images—we also use
the median statistic as a tool to reduce FAR. In particular, the
median of the entropies of the images contained in a stack is
used as a ground scene mask, which efficiently masks out false
alarms. Our experimental results demonstrate that the proposed
algorithm outperforms existing methods in terms of FAR,
making it a valuable addition to the change detection literature.

In what follows, we list our main contributions.
1) A novel change detection algorithm (CDA) is presented

for UWB VHF images, which uses MLE to fit the
data to particular pdfs and the subsequent use of the
fit distributions in the calculation of entropy measures.
These measures are turned into statistics for the changes
in scenes. A comprehensive comparison shows that the
proposed algorithm compares well with state-of-the-art
methods [18], [19], [20], [21], performing better or at
least equivalently to all of them.

2) A time-complexity analysis of the proposed algorithm
demonstrates its efficiency and scalability with regard to
the number of images, stacks, and pixels within a sliding
window. The analysis shows that certain distributions,
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such as the Gaussian and Rayleigh, are the most com-
putationally efficient.

3) A masking scheme based on the median with regard
to the stack dimension is used to reduce false alarms,
increasing the recall of the original method.

The remainder of this article is divided as follows.
In Section III, the use of entropy for hypothesis testing is
discussed. In Section IV, pdfs that can model the statistics of
the clutter and noise are discussed, and entropy variances are
obtained for them. In Section V, we discuss our entropy-based
CDA, splitting it into three parts: entropy-based statistic com-
putation, median-based hypothesis testing, and morphological
operations. In Section VI, simulations for stacks defined by
flight pass numbers (stacks of size M = 4) and stacks defined
by flight geometry angle (stacks of size M = 8) are analyzed,
and results are discussed. Section VII concludes this article by
discussing the key findings and their implications.

Notation: Lower and upper boldcase symbols represent
vectors and matrices, respectively.

II. OVERVIEW OF THE CARABAS II DATASET

The CARABAS II is a UWB VHF SAR system for foliage
penetration and target detection [34]. It transmits HH-polarized
radio waves in 20–90 MHz, with wavelengths from 3.3 to
15 m. The resolution cell in the slant range is 2.5 × 2.5 m,
suitable for target recognition. Most radar backscatter at the
low VHF band comes from large scatterers, such as tree trunks,
boulders, houses, and vehicles [34]. These objects have stable
radar signatures between different image acquisitions.

As described in [34], CARABAS II is composed of 24 inco-
herent, calibrated images in the slant geometry. Each image
contains 25 military vehicles camouflaged by vegetation. The
images are subdivided into four distinct target deployments
called missions, as indicated in Fig. 1. Each deployment
was collected from six different passes, i.e., airborne SAR
acquisitions, with three distinct flight geometry angles. Given
that the northward direction is defined as angle 0◦ and angles
increase counterclockwise, the flight geometry angles are 135◦,
225◦, and 230◦ [34]. There are two passes for each of the three
flight geometry angles, resulting in six passes for each mission.
This variety of flight passes and geometry angles allows a
thorough evaluation of the algorithm’s performance under
different conditions. Its four missions are labeled with indices
in the set {2, 3, 4, 5}. For consistency with the CARABAS II
literature, we will adhere to this convention.

III. ENTROPY AS A STOCHASTIC MEASURE OF DISTANCE

In this section, we discuss the use of entropy in detecting
changes among SAR magnitude images. We focus on describ-
ing a statistic obtained from entropy, with which it is possible
to conduct hypothesis testing.

Let X be an RV with a probability distribution given by
fX (x ∈ X ; θ), where θ ∈ 2 is the length-p vector of
deterministic distribution parameters, 2 ⊆ Rp is the space of
all possible length-p parameter vectors, and X is the support
of X . Let either φ : [0, ∞) → R be a concave function and
h : R → R be an ascending function or φ : (−∞, 0] → R be

a convex function and h : R → R be a descending function.
In [32], Salicrú et al. developed a general framework for
entropy with (h, φ)-entropy classes. Under this framework,
a general definition of differential entropy is given by

H h
φ (θ) = h

(∫
X

φ( fX (x; θ)dx)

)
. (1)

In particular, the Shannon differential entropy of X is given
by (1) when h(z) = z, φ(z) = −z ln(z) and X is the set of
real numbers, resulting in

H(θ) = −

∫
∞

−∞

fX (x; θ) ln( fX (x; θ))dx . (2)

Let θ̂ be the MLE estimate of θ , that is

θ̂ = arg max
θ

ln( fX (x; θ)).

From [32], the difference in entropy H(θ̂)−H(θ) converges
in distribution to a Gaussian distribution. Specifically

1
√

N

(
H
(
θ̂
)
−H(θ)

) D
−→ N

(
0, σ 2

H

)
(3)

where σ 2
H = δTI(θ)−1δ is the variance of the entropy. The

vector δ = ∂ H(θ)/∂θ is the gradient of the entropy with
respect to vector parameter θ and I(θ) is the Fisher information
matrix, defined as

I(θ) = −EX

[
∂2 ln fX (x; θ)

∂θ2

]
.

Let there be n different images with corresponding entropy
measurements. For simplicity, in what follows, we will omit
the dependence of H on θ . In addition, the entropy of each
of the n images will be denoted by its respective integer. The
null and alternative hypotheses are

H0 : H1 = H2 = · · · = Hn (4)
H1 : Hi ̸= H j for some i ̸= j, i, j ∈ {1, . . . , n}. (5)

From (3), assuming H0 and defining H1 = H2 = · · · =

Hn = H , [32] concludes that

n∑
i=1

Ni

(
Hi
(
θ̂ i
)
− H

σHi

)2
D
−→ χ2

n (6)

where the convergence in (6) is in distribution and Ni is the
number of samples for the i th image,1 where i ∈ {1, 2, . . . , n}.

However, the value of H cannot be observed, as it is a
population rather than a sample statistic. Hence, it must be
estimated. In [32], the sample mean

H =
1
n

n∑
i=1

Hi
(
θ̂ i
)

(7)

is used as the estimator of H .

1The computation of entropy and, potentially, of masking, thresholding,
and morphological operations transforms the pixels in the original images into
scalar statistic elements in 2-D grids. Even though it is not accurate to refer
to the results of our computations as pixels and images, we will occasionally
use this terminology, particularly when discussing morphological operations,
because of the close relation our grid elements bear to pixels and for the sake
of clarity and conciseness.
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Fig. 1. Sample of the CARABAS II dataset. The four images here are from the same flight direction. They show the 25 target vehicles (in red) in the four
possible deployments.

The use of H in place of H changes the probability
distribution to which the LHS of (6) converges. According
to [31]

n∑
i=1

Ni

(
Hi
(
θ̂ i
)
− H

)2

σ 2
Hi

D
−→ χ2

n−1. (8)

For reference in the algorithmic description of change detec-
tion in Section V, we define the statistic e as

e ≜
n∑

i=1

Ni

(
Hi
(
θ̂ i
)
− H

)2

σ 2
Hi

. (9)

Note: Since entropy calculations require only the spatial
dimensions and are performed on individual images, the prob-
ability distributions analyzed in Section IV for the description
of clutter and noise correspond only to single images. This
contrasts with typical stack analysis in the Literature (see [19]
and [21, Chapters 4 and 5]), which considers statistical infer-
ence not only on the spatial (azimuth and range) axes of the
image but also on the temporal axis.

IV. PDF ANALYSIS

In this section, pdfs that can describe the statistical prop-
erties of the radar intensity profiles of UWB VHF SAR
images are briefly explained. Based on considerations such as
the physics of UWB VHF SAR image generation, statistical
hypothesis testing, and computational tractability, a series of
pdfs are tested for the entropy description of the clutter-plus-
noise.

Flexible distributions with more than two parameters, such
as the generalized Gamma distribution (G0D) [35] and the
GAO [36], are efficient in describing SAR images in the
L, S, C, and X bands. In [35], the G0D distribution is
used to create a constant false alarm rate (CFAR) detection
algorithm for high-resolution SAR images. Its efficiency is
verified on SAR images in the X-band obtained from the
TerraSAR-X satellite. In [36], the GAO distribution addresses a
situation not well described by the G0D distribution, namely,

when the third-order sample log-cumulant of SAR data is
close to zero. This makes the GAO distribution a good fit
for extremely heterogeneous land clutter, such as the one
observed in urban regions. Experiments of the GAO distribution
on C-band RADARSAT-2 and L-band ALOS-PALSAR SAR
data demonstrate that this distribution is effective for these
bands [36].

However, distributions suitable for describing SAR images
in super-UHF frequency ranges are not known to describe
the statistical behavior of UWB VHF SAR images in the
bidimensional range × azimuth domain. For that reason,
instead of choosing distributions such as the G0D or the GAO ,
we have used the distributions that have been shown to be good
statistical fits in UWB VHF SAR image analysis.

According to [15], the clutter-plus-noise in images obtained
from the difference between two wavelength-resolution ampli-
tude SAR images with similar flight angles can be modeled by
a Gaussian distribution. Since the Gaussian distribution is also
tractable regarding the derivation of information-theoretical
quantities, it is a reasonable choice for the pdf of the clutter-
plus-noise and the implementation of entropy-based change
detection.

The work in [37] shows via Anderson Darling goodness-
of-fit tests that the Gamma distribution is a good can-
didate distribution for the modeling of clutter-plus-noise
in wavelength-resolution intensity SAR difference images.
In [25], it is shown that the bivariate Gamma distribution
is a good model for the magnitudes of high-resolution,
wavelength-resolution SAR images. In addition, [38] investi-
gates the stability of change detection results obtained with
statistical hypothesis tests for wavelength-resolution SAR
change detection using the bivariate Rayleigh distribution.
The bivariate Rayleigh distribution is also analyzed in [39],
where it is compared to the bivariate K distribution. The
work in [40] presents an iterative change detection method
based on Bayes’ theorem for UWB VHF SAR images con-
sidering commonly used clutter-plus-noise statistical models.
The bivariate Rayleigh and bivariate Gaussian distributions
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are investigated as candidates to model the clutter-plus-noise.
Different aspects related to the distributions are discussed, and
the impact of the distribution chosen for the proposed iterative
change detection method is analyzed. Given the extensive
amount of research on the Gaussian, Rayleigh, and Gamma
distributions regarding the statistics of wavelength-resolution
SAR images, we have opted to study these distributions in this
article. The close connections between the log-normal and the
Gaussian distributions, the Rice and the Rayleigh distributions,
and the Weibull and the Rayleigh and exponential distributions
inspired us also to choose to explore these distributions.

Another analysis on which we took inspiration was the work
in [21], which uses the Anderson–Darling test to determine
the goodness-of-fit of three distributions to the CARABAS II
dataset images, namely, the Rayleigh, log-normal, and Rice
distributions. It was particularly interesting, because of its
broader selection of pdfs. It is important to note that [21]
performs the statistical test on pixels along the stack dimen-
sion. Our focus is on the statistical representation of clutter
along spatial dimensions, as discussed in the note at the end
of Section III.

The Rayleigh distribution is suitable for modeling the
amplitude of scattering regions in which the main contribution
comes from additive noise and in which there is no prominent
scatterer. The log-normal distribution has a nonnegative sup-
port and a heavy right tail. These characteristics make this
distribution a suitable fit for histograms of radar intensity.
The analysis in [21] shows that the log-normal distribution
empirically fits the CARABAS II data well. The Rice distribu-
tion displays some of the same characteristics of the Rayleigh
distribution, with the difference that it can model scattering
regions where there is the contribution of prominent scatterers.
The results in [21] verify that the Rice distribution can be a
very good fit for wavelength-resolution SAR images.

As mentioned previously, the Gamma and Weibull will also
be analyzed in this article. The Gamma distribution is used in
the product model when the RCS is considered a constant [41].
The Gamma distribution can describe the characteristics of the
RCS fluctuations of a heterogeneous terrain in high-resolution
SAR images [42]. It is also used as the mean or modulation
of sea radar echoes [43].

In [25], the use of the bivariate Gamma to model the mag-
nitudes of wavelength-resolution SAR images is confirmed
to be more realistic than the use of the bivariate Rayleigh
distribution. The background clutter from high resolution or
low grazing angle radar emission can be fit by the Weibull dis-
tribution by tuning its shape parameter [44]. This distribution
can be used as an empirical model for the sea ice clutter [45],
[46]. It has also been used to model the ground clutter [47],
[48], including that of cultivated land [49].

Remark 1: The K distribution, which was mentioned in
Section I as having been used in [39] for the study of the
statistics of UWB VHF images, is not analyzed in this article
because of its complex analytical expression. The resulting
expressions for the entropy and the variance of the entropy
are mathematically intractable. In this case, we conclude
that the derivation of the entropy and the variance of the
entropy are best conducted via approximations. In addition,

the ML parameter estimation for this distribution is much
more complex than for the other distributions considered in
this article. Hence, we reach a similar conclusion that the best
alternative is to find function approximators for the parameter
estimators. This is left for future work.

Table I lists the probability distributions for the
CARABAS II dataset and their respective entropy and
entropy variances. To easily follow Table I, some aspects of
the distributions are presented as follows.

1) For the Gaussian distribution, we have

fX (x; µ, σ) =
1

√
2πσ 2

exp

(
−

(x − µ)2

2σ 2

)
(10)

where µ and σ are the mean and standard deviation of
X , respectively, and θT

=
(
µ σ

)
.

2) For the log-normal distribution, we have

f (x; µ, σ) =
1

x
√

2πσ 2
exp

(
−

(ln(x) − µ)2

2σ 2

)
(11)

where µ and σ are the mean and standard deviation of
ln(X), respectively, and θT

=
(
µ σ

)
.

3) For the Rayleigh distribution, we have

fX (x; σ) =
x
σ 2 exp

(
−

x2

2σ 2

)
(12)

where σ is the scale parameter or, alternatively, the
standard deviation of the speckle noise, and θ = σ .

4) For the Gamma distribution, we have

fX (x; k, θ) =
1

θ k0(k)
xk−1 exp

(
−

x
θ

)
(13)

where k and θ are the shape and scale parameters
of the distribution, respectively, and θT

=
(
k θ
)
. The

function 0(z) is the standard Gamma function, 9(z)
is the Digamma function, and 91(z) is the Trigamma
function.
In the formulation of σ 2

H (θ), β ≜ 1 + (1 − k)91(k).
5) For the Weibull distribution, we have

fX (x; λ, k) =
k
λ

( x
λ

)k−1
exp
(

−

( x
λ

)k
)

(14)

where λ and k are the shape and scale parameters,
respectively, and θT

=
(
λ k

)
.

The constant γ is the Euler–Mascheroni constant.
The variables aw, bw, and cw, which are used in the
computation of the variance of the entropy σ 2

H (θ) for
the Weibull pdf and which are featured in Table I,
are presented in Appendix A for the sake of better
readability.

6) The Rice distribution is given by

fX (x; ν, σ ) =
x
σ 2 exp

(
−
(
x2

+ ν2
)

2σ 2

)
I0

( xν

σ 2

)
(15)

where ν and σ are the amplitude of the deterministic
signal and the standard deviation of the speckle noise,
respectively, and θT

=
(
ν σ

)
.
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TABLE I
ENTROPY AND THEIR VARIANCES FOR THE ANALYZED DISTRIBUTIONS

Let I0(·) be the modified Bessel function of the first kind
with order 0 and I1(·) be the modified Bessel function
of the first kind with order 1.
Let the expected values featured in Table I be computed
according to the Rice pdf of an RV X , as in (15).
We can observe in Table I the variables aR , bR , and
cR , as well as the partial derivatives ∂ H

∂ν
and ∂ H

∂σ
of the

entropy with respect to the parameters of the Rice pdf ν

and σ , respectively. These variables and partial deriva-
tives, which make up the expression of the variance of
the entropy for the Rice distribution, are properly defined
in Appendix B for the sake of readability.

V. CHANGE DETECTION ALGORITHM

In this section, we provide a description of the CDA we
implemented. The pseudocode for the algorithm is presented
in Algorithm 1.

A. Description

The CDA in Algorithm 1 can be divided into four distinct
parts:

1) stack entropy statistic computation (lines 1–12);
2) median-based hypothesis testing (lines 13–15);
3) morphological operations (line 16);
4) computation of false alarm probability pFA and detection

probability pD (line 17).
The stack entropy statistic is based on computing and

comparing the entropy of all M images in each of the S
stacks, for M, S ∈ N∗. Let n A be the number of elements
in the azimuth direction and nR be the number of elements in
the range direction in a given 2-D grid.

To estimate distribution parameters via MLE, we per-
form a sliding window traversal of the image according to
square-shaped regions of interest (ROI) of side length q
centered around each pixel of the image, where q ∈ N∗. Let
nw ≜ q2 be the number of pixels in each ROI, and let R be
the set of all ROIs for a given image. For pixels on the edges,
the ROI includes nondefined pixel positions. The edge pixels

can either be excluded from the analysis or be addressed using
the same padding, i.e., by imputing the nondefined positions
with the 0 value. With the same padding, we surround the
original images with null values such that |R| = n AnR . For
the sake of simplicity, the remainder of the discussion on the
CDA in Algorithm 1 assumes the same padding. However,
the simulations and results presented in Section VI use valid
padding, i.e., no padding. The only difference in valid padding
is that

pproc ≜ (n A−q + 1)(nR−q + 1)

pixels are processed, leaving

pexc ≜ (q − 1)(n A + nR−q + 1) (16)

edge pixels excluded from the analysis.
In particular, the element belonging to the ROI cen-

tered around the (i, j)th pixel, where i ∈ {1, . . . , n A} and
j ∈ {1, . . . , nR}, in image ℓ ∈ {1, 2, . . . , M} and in stack
k ∈ {1, 2, . . . , S} is represented by xi, j,ℓ,k . In some analyses,
a computation will summarize information along the image
axis, presenting a single statistics 2-D grid for the entire stack.
In that case, individual grid elements have the corresponding
notation xi, j,k . Given that the choice of probability distribution
affects the computation of the entropy (see Table I), we write
in Algorithm 1 expressions based on the generic probability
distribution of the image pixels fX i, j,ℓ,k (xi, j,ℓ,k; θ i, j,ℓ,k), where
θ is the vector of distribution parameters estimated via MLE.

Entropy measurements are computed for each image accord-
ing to the chosen pdf [(10), (11), (12), (13), (14), or (15)], its
parameters θ estimated via MLE, and the Shannon differential
entropy computed via (2). The mean of these entropy measure-
ments is computed as in (7), and it is used in (8) to obtain one
hypothesis test statistic ei, j,k in stack k for each (i, j)th pixel,
where k = 1, 2, . . . , S. Let Ek ≜ (ei, j,k)1≤i≤n A,1≤ j≤nR be the
matrix of all such statistics for stack k.

Entropy statistics from all S stacks are used to compute
the elementwise stack-median entropy statistic matrix Emed,
which is applied to each Ek via the masking operation M,
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Algorithm 1 CDA
{xi, j,ℓ,k : i ∈ {1, 2, . . . , n A}, j ∈ {1, 2, . . . , nR},
ℓ ∈ {1, 2, . . . , M}, k ∈ {1, 2, . . . , S}}

Input:
Output: pFA, pD .

1: for k = 1, 2, . . . , S do
2: for ℓ = 1, 2, . . . , M do
3: for i = 1, 2, . . . , n A do
4: for j = 1, 2, . . . , nR do
5: Estimate θ i, j,ℓ,k via MLE.
6: hi, j,ℓ,k = −

∫
∞

−∞
fX i, j,ℓ,k (xi, j,ℓ,k; θ i, j,ℓ,k)

ln( fX i, j,ℓ,k (xi, j,ℓ,k; θ i, j,ℓ,k)) dxi, j,ℓ,k .
7: µi, j,ℓ,k =

∫
∞

−∞
xi, j,ℓ,k

fX i, j,ℓ,k (xi, j,ℓ,k; θ i, j,ℓ,k) dxi, j,ℓ,k .

8: σ 2
i, j,ℓ,k =

∫
∞

−∞
(xi, j,ℓ,k − µi, j,ℓ,k)

2

fX i, j,ℓ,k (xi, j,ℓ,k; θ i, j,ℓ,k) dxi, j,ℓ,k .

9: Create the entropy matrix
Hℓ,k = (hi, j,ℓ,k)1≤i≤n A,1≤ j≤nR .

10: Create the matrix with the reciprocal of the vari-
ances:
Rℓ,k = (1/σ 2

i, j,ℓ,k)1≤i≤n A,1≤ j≤nR .

11: Create the stack mean-entropy Hk =
1
M

∑M
ℓ=1 Hℓ,k .

12: Ek =
∑M

ℓ=1 Nℓ,k[Rℓ,k ⊙ (Hℓ,k − Hk)
⊙2

],

where Nℓ,k is the size of the windows in image ℓ

and stack k (in our case, Nℓ,k is constant through all
the images of all stacks and equal to nw), W⊙2 is
the elementwise squaring of matrix W, and ⊙ is the
Hadamard matrix multiplication operator.

13: Compute the elementwise median Emed of the vector of
matrices (E1, E2, . . . , ES).

14: Mask the values Ek via the Hadamard product with Emed:
Mk ≜ M(Ek, Emed) = Ek ⊙ Emed, for k = 1, 2, . . . , S.

15: Let µi, j,k be the (i, j)-element of Mk such that
Mk = (µi, j,k)1≤i≤n A,1≤ j≤nR . Compute

Tk ≜ (ti, j,k)1≤i≤n A,1≤ j≤nR

= (1Tk (µi, j,k))1≤i≤n A,1≤ j≤nR ∈ {0, 1}
n A×nR ,

where Tk = {x ∈ R : x > Tk} for an empirically
determined threshold Tk ∈ R and where 1Tk is the
indicator function according to Tk .

16: Perform morphological operations (one erosion and two
dilations) over all n AnR elements ti, j,k of Tk :
Ak = (A(ti, j,k))1≤i≤n A,1≤ j≤nR , where A is the elementwise
morphological map.

17: Compute pFA and pD for every element of Ak according
to Remark 2.

which concretely performs the mapping

M(Ek, Emed) : Ek 7→ Ek ⊙ Emed

that is, the Hadamard product between Ek and Emed. This prod-
uct creates matrix Mk ≜ Ek ⊙ Emed = (µi, j,k)1≤i≤n A,1≤ j≤nR .

The elements µi, j,k undergo a thresholding operation
τ : R → {0, 1} defined as

ti, j,k ≜ τ
(
µi, j,k

)
= 1Tk

(
µi, j,k

)

where Tk = {x ∈ R : x > Tk} and Tk ∈ R is an
empirically determined threshold. The function 1Tk (·) is the
indicator function according to Tk . Let Tk be the matrix
that contains all n AnR ti, j,k values for stack k such that
Tk ≜ (ti, j,k)1≤i≤n A,1≤ j≤nR . In what follows, we will abuse
notation and use the operation τ also for matrices, namely
Tk = τ(Mk).

After masking and thresholding, the processed statistics
undergo a series of elementwise morphological operations,
including an f × f erosion and two g × g dilations,
where f and g are the integer side lengths of the square
kernels utilized in erosion and dilation, respectively. Let the
concatenation of the morphological operations be represented
by A, where A maps elements ti, j,k to αi, j,k : αi, j,k = A(ti, j,k).
Let Ak be the matrix formed by all such αi, j,k such that
Ak = (αi, j,k)1≤i≤n A,1≤ j≤nR . We will again abuse notation and
expand the definition of A to matrices such that Ak = A(Tk).

Let the RV corresponding to the individual elements in E
matrices be denoted by Ei, j,k . This RV is distributed according
to χ2

nw−1. The composition of the morphological operations A
with thresholding τ and the nonlinear mask M maps Ei, j,k to
the RV

Ai, j,ℓ,k = A ◦ τ ◦M
(

Ei, j,k, Ei, j,med
)

whose distribution is f Ai, j,k (αi, j,k). The value αi, j,k divides
the support of Ei, j,k into the partitions P0 and P1. When
αi, j,k = 0, we have the scenario of the null hypothesis
H0 in (4), which corresponds to P0, whereas when αi, j,k = 1,
we have the scenario of the alternative hypothesis H1 in (5),
which corresponds to P1:

P0 =
{

ei, j,k : αi, j,k = A ◦ τ ◦M
(
ei, j,k, ei, j,med

)
= 0
}

P1 =
{

ei, j,k : αi, j,k = A ◦ τ ◦M
(
ei, j,k, ei, j,med

)
= 1
}
.

We theoretically define the probabilities of detection pD and
false alarm pF A for each element αi, j,k as

pD = pD
(
αi, j,k

)
≜
∫
P0

f Ai, j,k

(
αi, j,k

)
dαi, j,k (17)

pF A = pF A
(
αi, j,k

)
≜
∫
P1

f Ai, j,k

(
αi, j,k

)
dαi, j,k . (18)

Remark 2: In practice, pFA and pD are computed differently
from (17) and (18). We binarize the elements of M(Ek) by
thresholding them with an empirically chosen value Tk . The
output of binarization has no analytical probability distribution
formula. It consists on assigning to all elements of M(Ek)

logical true or false values. We overlay the output of this binary
mapping with a map of ground truths and further consider
morphological criteria, such as pixel size and layout of pixel
clusters, to distinguish between detected targets and false
alarms. The count of events matching the ground truths divided
by the total number of events results in the pD , whereas the
count of mismatches divided by the total number of events
results in the pFA.

Variations to Algorithm 1 are due to the absence of
median computation or morphological operations. The version
presented in Algorithm 1 is the most complete. To derive
alternative algorithms, it is possible to leave out lines 9–11
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for an algorithm without median computation or line 13 for
an algorithm without morphological operations.

In Fig. 2(a), we show the flowchart for Algorithm 1 without
the masking operation. This flowchart includes parts 1), 3), and
4), which were discussed at the beginning of this subsection.
Namely, the following operations are depicted: the computa-
tion of the entropy-based statistic, morphological operations,
and the computation of false alarm and detection probabilities.

The operations in Fig. 2(a) are described pixelwise. The
(i, j)th pixel of the M images composing stack k, k ∈

{1, 2, . . . , S}, is used in the CDA, where i ∈ {1, 2, . . . , n A} and
j ∈ {1, 2, . . . , nR}. The entropy Hℓ(θ̂ ℓ), ℓ ∈ {1, 2, . . . , M},
of pixel (i, j) is computed for each image according to (2).
Next, entropies Hℓ(θ̂ ℓ) are used in the computation of the
entropy-based statistic, as given by (9). The entropy-based
statistic e is then thresholded by the threshold operator τ .
The output t is subjected to the morphological operations
of erosion and dilation represented by mapping A, yielding
signal α. This signal then becomes the input to the probability
functionals PD and PFA in (17) and (18), respectively.

In Fig. 2(b), the operations following the computation of
the entropy-based statistics are shown with the inclusion of
the masking mapping of part 2) at the beginning of this
subsection. We show in the flowchart that the input to masking
M consists of the entropy-based statistics (e1, e2, . . . , eS),
which are, respectively, computed with the (i, j)th pixels of
the images making up each one of the S different stacks used
in Algorithm 1. The entropy-based statistics for each of the S
stacks (e1, e2, . . . , eS) are used to compute the median statistic,
with which median masking M is performed. Similar to the
output e in Fig. 2(a), the outcome µ of median masking is then
capped and binarized by a threshold operator τ . The output
t then undergoes the morphological operations of erosion
and dilation represented by mapping A to produce signal α.
Signal α is then used in the computation of the probability of
detection (PD) pD in (17) and of the probability of false alarm
pFA in (18).

For a given stack with M images, change detection occurs
as if the scheme compares one surveillance image with
M − 1 reference images for any given change detection
operation and if M such operations occur per stack. It is
important to note, though, that in practice, all targets from
all missions are detected through a single hypothesis test. It is
as if one single change image were created from the stack,
detecting the changes among all stack images with one set of
statistics.

B. Complexity

For the computation of the entropy and its variance, it can
be seen from Table I that once parameters have been found
through MLE (step 5 of Algorithm 1), the complexity is at
most linear in the number of pixels n AnR of the image, i.e.,
O(n A ×nR). ML estimation and entropy-related computations
scale linearly with the number of images M and also with the
number of stacks N . Hence, the overall complexity, without
taking the MLE into account, is O(N × M × n A × nR).

Since each probability distribution has its own defining pdf,
the numerical complexity of the MLE parameter estimation

can vary for each distribution. Henceforward, we discuss the
differences between the numerical complexity of the MLE for
the distributions mentioned in Table I.

1) Gaussian: To find the parameter estimators µ̂ and σ̂

based on MLE for the Gaussian distribution in (10), we use
log-likelihood function

ℓ(µ, σ ) =

n∑
i=1

[
−

ln(2π)

2
− ln σ −

1
2

(
xi − µ

σ

)2
]
.

To estimate the MLE parameters, we calculate the partial
derivatives of the log-likelihood function with respect to µ

and σ and set them to 0. This yields the estimators

µ̂ =
1

nw

nw∑
i=1

xi (19)

σ̂ 2
=

1
nw

nw∑
i=1

x2
i −

1
n2

w

(
nw∑
i=1

xi

)2

. (20)

The calculations in (19) and (20) require sums over O(1)
operations performed on the nw data points of the sliding
window and an O(1) operation over the sum of these data
points. Hence, the time complexity is O(nw).

The overall complexity for the computation of the statistic
in (6) under the Gaussian distribution is O(N × M × n A ×

nR × nw).
2) Log-Normal: For the log-normal distribution, given by

the pdf in (11), we formulate the log-likelihood function as
follows:

ℓ(µ, σ ) =

n∑
i=1

[
− ln

(
xi

√

2πσ 2
)

−
(ln(xi ) − µ)2

2σ 2

]
.

To determine the MLE parameters, we again compute the
partial derivatives of the log-likelihood function with respect
to µ and σ and equate them to 0. Consequently, the estimators

µ̂ =
1

nw

nw∑
i=1

ln xi (21)

σ̂ 2
=

1
nw

nw∑
i=1

(
ln xi − µ̂

)2
(22)

are obtained.
The evaluations in (21) and (22) involve sums over O(1)

operations conducted on the nw data points of the sliding
window, as well as O(1) operations over the aggregate of
the logarithms of these data points. As a result, the time
complexity is O(nw).

As for the Gaussian distribution, the total complexity for
calculating the statistic under the log-normal distribution is
O(N × M × n A × nR × nw).

3) Rayleigh: For the Rayleigh distribution, given by the pdf
in (12), we write the log-likelihood function as

ℓ(σ ) =

n∑
i=1

[
ln xi − ln σ 2

−
x2

i

2σ 2

]
.
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Fig. 2. Flowcharts for the CDA algorithm with and without masking. (a) Flowchart for the change detection without median masking. (b) Flowchart with
the inclusion of median masking after the entropy-based statistics.

To proceed with the MLE, the derivative of the
log-likelihood function with respect to σ is, as before, cal-
culated and set to 0. This yields the estimator

σ̂ 2
=

1
2nw

nw∑
i=1

x2
i . (23)

The calculations in (23) require sums over O(1) operations
performed on the nw data points of the sliding window. Hence,
the time complexity is O(nw).

The overall complexity for the computation of the statistic
under the Rayleigh distribution is O(N × M ×n A ×nR ×nw).

4) Gamma: For the Gamma distribution, defined by the pdf
in (13), we construct the log-likelihood function as follows:

ℓ(k, θ) =

n∑
i=1

[
−(k − 1) ln xi − ln 0(k) −

xi

θ
−k ln θ

]
.

Again, we compute the partial derivatives of the
log-likelihood function concerning k and θ and set them to 0.
To solve the two resulting equations, it is generally necessary
to employ numerical methods, as closed-form expressions
cannot be obtained. For this reason, the MLE process can
have an arbitrary complexity based on the chosen method
for parameter estimation. Formally, after setting a solving
method, the complexity of the process can be described as
O[ fγ (nw, α)], where α is a vector of the parameters of
the chosen method for parameter estimation, such as the
Newton–Raphson method, and fγ (nw, α) is the function that
maps nw and α to the numerical complexity of the MLE pro-
cess for the Gamma distribution. Thus, the overall complexity

for computing the statistic under the Gamma distribution is
O[N × M × n A × nR × fγ (nw, α)].

5) Weibull: Following the pdf in (14), the log-likelihood
function is as follows:

ℓ(λ, k) =

n∑
i=1

[
ln k − ln λ + (k − 1) ln

( xi

λ

)
−

( xi

λ

)k
]
.

The parameters λ and k can be estimated again by setting
their partial derivatives to zero. As for the Gamma case,
solving the resulting equations typically requires numeri-
cal methods. Thus, again, the MLE process can exhibit an
arbitrary complexity depending on the chosen method for
parameter estimation, and the complexity can be expressed
as O[ fω(nw, α)], where α is a vector of the parameters of the
chosen method for parameter estimation, and fω(nw, α) is the
function that maps nw and α to the numerical complexity of
the MLE process for the Weibull distribution. Consequently,
the overall complexity for computing the statistic under the
Weibull distribution is O[N × M × n A × nR × fω(nw, α)].

6) Rice: For the Rice distribution, with the pdf given
by (15), the log-likelihood function can be expressed as

ℓ(ν, σ ) =

n∑
i=1

[
ln
( xi

σ 2

)
−

x2
i + ν2

2σ 2 + ln I0

( xiν

σ 2

)]
.

Similar to the previous cases, finding the solution for
the resulting equations when the partial derivatives of the
log-likelihood function are set to zero typically requires
numerical methods. As for the two previous distributions, the
MLE process exhibits an arbitrary complexity depending on



5208915 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

TABLE II
TIME COMPLEXITY FOR THE ANALYZED DISTRIBUTIONS AND AVERAGE

ELAPSED TIME FOR THE EXECUTION OF THE PROPOSED ALGORITHM
WITHOUT MEDIAN MASKING

the chosen method for parameter estimation, and, similarly, the
complexity can be expressed as O[ fρ(nw, β)], where β is a
vector of the parameters of the chosen method for parameter
estimation, and fρ(nw, β) is the function that maps nw and
β to the numerical complexity of the MLE process for the
Rice distribution. Consequently, the overall complexity for
computing the statistic under the Rice distribution is O[N ×

M × n A × nR × fρ(nw, β)].
A summary of the time complexity results can be found

in Table II, where we present in the second column the time
complexity expressions for all distributions analyzed. In the
third column, we present the average time complexity in
seconds when running a single-stack detection, i.e., running
Algorithm 1 with S = 1, without median masking. Results
are available for the Gaussian, Log-Normal, Rayleigh, and
Gamma probability distributions, which are those that permit
an analysis within feasible time ranges. These numbers were
obtained by running the process multiple times for each pdf
(in order to average out statistical fluctuations) on a machine
equipped with 16 GB RAM DDR4 memory, powered by an
Apple M2 ARM processor containing eight physical cores,
and running at a standard clock frequency of 3.5 GHz.

In Table II, we can observe that the time complexity for the
Gamma, Weibull, and Rice distributions contain the factors
fγ (nw, α), fω(nw, α), and fρ(nw, β), respectively. By the fact
that these factors are related to iterative methods for the
ML estimation of distribution parameters, which are usually
based on root-finding procedures such as the Newton–Raphson
method, they are almost always greater than nw. In the case of
the Weibull and Rice distributions, their respective factors tend
to be much greater than nw, to the point that our computation
resources were not sufficient for the ML estimation of the
parameters of these distributions in a feasible amount of time.

We also see in Table II that the Gaussian, Log-Normal,
and Rayleigh distributions have running times in the same
order of magnitude. This verifies the claim made in the second

column of Table II that their time complexities are equal up
to multiplicative constants.

In spite of the Gamma distribution’s need for iterative
parameter estimation methods, we were able to produce run-
ning time results for it. These results evidence an elapsed
processing time orders of magnitude longer than that observed
for the Gaussian, Log-Normal, and Rayleigh distributions.
This disparity is again due to the ML estimation process,
which is iterative, thus usually involving many more mathe-
matical operations than those required for estimation methods
for which we have closed analytical expressions, such as is
the case of the Gaussian, Log-Normal, and Rayleigh pdfs.

VI. SIMULATIONS AND RESULTS

We present in this section simulation results considering our
CDA applied to the CARABAS II dataset. The CDA used is
the full version of Algorithm 1.

For all images, n A = 3000 pixels and nR = 2000 pixels.
The length of the side of the square sliding window is q = 11.
This choice of length is empirical and based on the best
compromise found between the goodness-of-fit of distributions
regarding data histograms obtained for each q2-sized window
centered around each valid pixel of the image and computa-
tional cost. Our processing uses valid padding, as described in
Section V. From (16), we exclude pexc = 49, 900 edge pixels
from the analysis, i.e., approximately 0.832% of the pixels are
excluded.

The two metrics used to measure performance are the
PD and the FAR. The PD, defined in (17), is computed as
described in Remark 2. The FAR is related to the pFA defined
in (18), with the caveat that it substitutes the denominator in
Remark 2 by the area of the whole analysis region (in this
case, the entire 6 million square pixels of the image, which
correspond to 6 km2, as each pixel has a size of 1 × 1 m).

Our process employs morphological operations. Following
the naming conventions from Section V-A, we choose an
erosion kernel of size f = 3 and dilation kernels of size g = 3.
The choices of f and g result from an experimental minimax
procedure attempting to minimize the FAR for the maximum
possible PD.

In possession of the PD and the FAR, we compute receiver
operating characteristic (ROC) curves [50], and we compare
our results with results from the state of the art [18], [19], [20],
[21]. The area under curve (AUC) values for such curves are
used as a performance indicator.

The change detection analysis in Algorithm 1 uses either
pass-based (PB) or flight-geometry-based (FGB) stacks.

1) PB: S = 6 stacks composed of M = 4 images selected
from the same pass, i.e., with the same flight angle.

2) FGB: N = 3 stacks composed of M = 8 images selected
from the same flight geometry.

The distributions of Section IV are used to model the
statistics of the clutter-plus-noise. In Fig. 3, we show the
ROC curves for our CDA algorithm for PB stacks without
median masking. In Fig. 4, we show the ROC curves for our
CDA algorithm without median masking but for FGB stacks.
It can be seen that performance for PB and FGB stacks can be
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Fig. 3. Receiver operating characteristic curves obtained from simulations
of the CDA in Algorithm 1 using PB stacks without median masking for the
Gaussian, Rayleigh, Gamma, and log-normal clutter-plus-noise distributions.
(a) Expanded view with all simulated points of operation in terms of PD and
FAR. (b) Zoomed-in view at the elbow of the curves to highlight the transition
into the highest possible PD for each distribution.

ordered from highest to lowest performing clutter-plus-noise
distribution: Gaussian, Rayleigh, Gamma, and log-normal.
Table III displays the AUC values for the ROC curves in
Figs. 3 and 4, i.e., for all PB and FGB stacks, respectively,
without median masking.

In Fig. 5, ROC curves are plotted for the distributions in
Section IV using median masking with both PB and FGB
stacks. Fig. 5(a) focuses on PB stacks, while Fig. 5(b) provides
the corresponding results for FGB stacks. We notice from
these figures that the use of median masking has a noticeable
improvement in terms of the increase in PD and decrease
in FAR on the ROC curves in comparison with the curves
from Figs. 3 and 4. Another feature that stands out is that
the results of PB stacks are almost always better than those
of FGB stacks, as it can be verified by means of Table IV,

TABLE III
AREA UNDER THE SIMULATED ROC CURVES (AUC) FOR EACH SELEC-

TION OF PROBABILITY DISTRIBUTION FITTING USING FGB AND PB
STACKS, WITHOUT MEDIAN MASKING. THE AREA IS CALCU-

LATED FOR THE FAR INTERVAL [0, 0.5]

Fig. 4. Receiver operating characteristic curves obtained from simulations of
the CDA in Algorithm 1 using FGB stacks without median masking for the
Gaussian, Rayleigh, Gamma, and log-normal clutter-plus-noise distributions.
(a) Expanded view with all simulated points of operation in terms of PD and
FAR. (b) Zoomed-in view at the elbow of the curves to highlight the transition
into the highest possible PD for each distribution.

which shows AUC values for PB and FGB stacks under the
effect of median masking.
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Fig. 5. Receiver operating characteristic curves obtained from simulations
of the CDA in Algorithm 1 with median masking for the Gaussian, Rayleigh,
Gamma, and log-normal clutter-plus-noise distributions. (a) Curves created
using PB stacks. (b) Curves created using FGB stacks.

TABLE IV
AREA UNDER THE SIMULATED ROC CURVES (AUC) FOR EACH SELEC-

TION OF PROBABILITY DISTRIBUTION FITTING USING FGB AND PB
STACKS, WITH MEDIAN MASKING. THE AREA IS CALCULATED

FOR THE FAR INTERVAL [0, 0.5]

A. Discussion

In the analyses with and without median masking, the
general trend is for the Gaussian to show the best results
and then the Rayleigh, Gamma, and log-normal, respectively.
The first conjecture is that this is also the order of best
spatial distribution fits. At a deeper level, the difference in

performance among distributions could be due to the variables
on which the entropy and its variance depend. As can be
seen in Table I, the Gaussian entropy depends solely on the
variance σ 2, the Rayleigh on its scale parameter, the Gamma
on the shape parameter k and on the scale parameter θ , and the
log-normal on the mean µ and the standard deviation of the
RV’s natural logarithm σ . Based on that, the second conjecture
is that the entropy function of the image’s sliding windows
has the most mutual information with the variance of the
Gaussian distribution or the scale parameter of the Rayleigh,
as opposed to the parameters of the Gamma and the log-
normal. Since the Gamma and the log-normal have entropy
functions depending on two parameters, another possibility
is that these functions have different dependences on each
parameter and are positively correlated to one and negatively
to the other for certain parameter values in the parameters’
value space. Most importantly, and now looking at the variance
of the entropy in Table I, the variances for the Gaussian
and Rayleigh are constant, while it depends on distribution
parameters for the log-normal and Gamma. Hence, alterations
in parameters from window to window could make the entropy
of the Gamma and log-normal have more variability around the
expected value than their Gaussian and Rayleigh counterparts.
The interplay between distributions and entropy, particularly
their parameters, is a topic to be studied in a future article.

The median masking makes some implicit assumptions.
It assumes that the statistics of images of the same scene for
the same targets but from different flight geometries differ in
terms of the false alarms presented. Given that stacks in this
article are built with regard to pass and flight geometry, the
previous assumption is then extended to the stacks, in partic-
ular to stack entropy-based statistics. The assumption seems
reasonable in light of the different angles used. The median
serves as an anomaly detector, excluding artifacts that appear
in certain angles and not in others and, by extension, in certain
stacks but not in others. In fact, any other robust statistic
could have been used in place of the median. The choice
for the median is grounded on the work of [18] and [27].
It is also based on the work of [21] on the statistics of
VHF-UWB images in the stack dimension. Since the best
fitting distributions in this dimension seem to be those that
have long tails, again, the choice for robust statistics as a
masking device seems justified. The choice of mask made in
this article is highly dependent on the changes in geometry
among stacks, but it seems relatively general from the point
of view of change detection in other scenarios, as the radar
imagery of swaths of terrain is very likely to be acquired at
different geometries among the different acquisition times. All
the hypotheses raised in this paragraph will be researched in
a future article.

The implementation of median masking significantly lowers
the FAR across all distribution types, as demonstrated in
Figs. 3 and 4. In Fig. 6, the false alarms for the usage
of entropy-based statistic matrices (already subjected to an
empirical threshold) observed in Fig. 6(a) for the Rayleigh
distribution and the FGB stack are suppressed by median
masking in (d). By employing the stack median, the impact
of elongated structures is mitigated, consequently reducing
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Fig. 6. (a)–(c) Pictorial representation of entropy-based statistic matrices obtained by means of Algorithm 1 for the Rayleigh distribution using FGB stacks.
(d) End result after the application of median masking in (d). (a)–(d) Red ellipses refer to ground-truth targets, while blue rectangles refer to artifacts capable
of producing false alarms. (a) Stack 1: Passes 1 and 3. (b) Stack 2: Passes 2 and 4. (c) Stack 3: Passes 5 and 6. (d) Median masking.

the likelihood of false alarms. In Fig. 6, we can observe
that Fig. 6(a)–(c) contain artifacts that may be interpreted
as false alarms. The most prominent of all belongs to Stack
1 in Fig. 6(a), in the bottom left corner of the picture. The
artifacts of Stack 2 in Fig. 6(b) are less detectable in terms of
intensity, but they cover a wider area. The artifacts of Stack
3 are the least detectable and occupy a relatively small area.
Most importantly, though, the different flight geometries of
Stacks 1, 2, and 3 ensure that the artifacts appear in different
positions of the frame. Different flight geometries produce
distinct reflectance characteristics, which in turn usually lead
to alterations in the configuration of the entropy-based statistic
matrices. The matrices change but conserve similarities mainly
in the regions of highest intensity, which, in this case, are the
targets that can, to a larger or lesser degree, be detected from
all flight angles.2 The benefits of the lack of overlap among
artifacts from different flight geometries are that artifacts of
any given stack are dampened by the median entropy-based
statistic computed over all stacks, thus reducing the risk of
false alarms. This phenomenon can be observed in Fig. 6(d),
which shows clear signs of smoothing outside of the target
regions.

In the absence of median masking, a minor performance
improvement can be observed with flight geometry-based
stacking compared to PB stacking. Generally, PB stacks
exhibit similar FARs to flight-geometry-based stacks. This can
be attributed to the fact that the four images comprising the
image stacks in PB selection provide sufficient information to
suppress most potential false alarms. As a result, adding more
images to a stack with analogous characteristics from the same
scene may yield diminishing performance returns.

2Sensors will not always pick up the targets, as, depending on their nature,
they may be difficult to detect. However, we assume that sensor design and
flight geometry selection are optimally tailored for the desired targets. Hence,
we suppose that most, if not all, flight geometries selected by a measurement
campaign will be able to detect a large portion of the targets.

Fig. 7. Comparative performance of the state-of-the-art and proposed
algorithms with and without median masking.

Interestingly, when median masking is applied, PB stacking
displays a marginally higher AUC than FGB stacking. This
could be explained by both cases approaching the maximum
AUC of 0.5, rendering the 0.02 difference in their AUCs poten-
tially statistically insignificant. Additionally, Fig. 7 contrasts
the ROC of FGB and PB stacking with Gaussian fitting, both
with and without median GSP masking, revealing an overall
enhancement over the results presented in [18], [19], and [21].
At a specific operating point, the Gaussian distribution without
ground scene median masking achieves FAR = 0.08/km2 for
PD = 100%. At the same time, none of the compared
algorithms come close to attaining this PD for FAR < 0.5.

Remark 3: Given the computational cost of operations
involving the Weibull and Rice distributions, such as the
modified Bessel function of the first kind, and the good
results obtained with simpler distributions, we opted not to
perform simulations with these distributions in this article.
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The simulation analysis for these distributions depends on
approximations and simplifications that will be addressed in
future research.

VII. CONCLUSION

Following the paradigm in [33], we propose a CDA based
on entropy hypothesis testing for stacks of UWB VHF SAR
images. We derive analytical expressions for the entropy and
the entropy variance for the Weibull and Rice distributions.
To the best of our knowledge, these derivations have not been
presented in the (h, φ)-entropy literature.

Tests have been conducted over the CARABAS II data
for a number of distributions modeling the clutter-plus-noise.
We conclude that the best performance in terms of FAR and
PD for the intensity radar images analyzed is obtained, in order
by the Gaussian, Rayleigh, Gamma, and log-normal models.
In addition, we incorporate the ideas of [18] to create a mask
based on the median over all stacks of our stack entropy-based
statistics. This noticeably reduces the FAR and increases the
PD without using any a priori information. Our best scenario,
consisting of the Gaussian assumption for the clutter-plus-
noise, PB stacks, and median masking, results in less than
0.1 false alarms per square kilometer and perfect detection.
This is the only CDA that reaches this level of performance
for the CARABAS II dataset.

Future research directions include using other types of
stochastic distances for change detection and using asymptotic
series, such as the Edgeworth and Gram–Charlier series,
to describe probability distributions. New stochastic distances
may present computational benefits, while the asymptotic
series should provide a more accurate representation of the
real statistical nature of the images without much added
complexity.

Another avenue of research is to explore the Weibull, Rice,
and K distributions more in-depth, obtaining the necessary
results to use them to derive entropy-based statistics with
feasible time complexity.

APPENDIX

VARIABLES NECESSARY FOR THE COMPUTATION OF THE
VARIANCE OF THE ENTROPY OF SELECTED

DISTRIBUTIONS

A. Weibull

In what follows, we present the variables aw, bw, and cw,
which are used for the computation of the variance of the
entropy σ 2

H (θ) for the Weibull distribution, where θT
= (λ, k)

aw ≜
EX
[
X k ln2(X)

]
λk

−
2 ln(λ)EX

[
X k ln(X)

]
λk

+ ln2(λ) +
1
k2 (24)

bw ≜ −
kEX

[
X k ln(X)

]
λk+1 (25)

cw ≜

(
k
λ

)2

(26)

where the expected value is computed according to the Weibull
pdf of X in (14).

B. Rice

The variables aR , bR , and cR are used in the computation
of the variance of the entropy for the Rice distribution and are
defined as

aR ≜
1
σ 2 −

2σ 2
+ ν2

σ 4 +

EX

[
1
ν

X I1(Xν/σ 2

I0(Xν/σ 2)

]
σ 2

+

EX

[
X2
(

I1(Xν/σ 2)
I0(Xν/σ 2)

)2
]

σ 4

bR ≜
4
σ 2 −

2ν2

σ 4 −
4ν4

σ 6 −

EX

[
2νX I1(Xν/σ 2)

I0(Xν/σ 2)

]
σ 4

+

EX

[
4ν2 X2(

I1(Xν/σ 2

I0(Xν/σ 2)
)2
]

σ 6

cR ≜
2ν

σ 3 +
2ν3

σ 5 −

EX

[
2νX2

(
I1(Xν/σ 2)
I0(Xν/σ 2)

)2
]

σ 5 .

Let θT
= (ν, σ ). The partial derivatives of the entropy with

respect to the distribution parameters ν and σ are also needed
for the computation of the variance of the entropy σ 2

H (θ) and
are given, respectively, by

∂ H
∂ν

=
2ν

σ 2 +
EX [ν ln(X)]

σ 2

−

EX

[
X ln(X)

I1(νX/σ 2

I0(νX/σ 2 )
]

σ 2

+

EX

[
ν ln(I0(νX/σ 2)) − X I1(νX/σ 2

I0(νX/σ 2)

]
σ 2

−

EX

[
X ln(I0(νX/σ 2))

I1(νX/σ 2)
I0(νX/σ 2)

]
σ 2

∂ H
∂σ

=
2
σ

−
2ν2

σ 3 +

(
2
σ

+
ν2

σ 3

)
EX [ln(X)]

+

EX

[
X2 ln(X) + 2νX ln(X)

I1(Xν/σ 2

I 2
0 (Xν/σ 2)

]
σ 3

+ EX
[
ln(I0

(
Xν/σ 2)]( 2

σ
+

ν2

σ 3

)

+

EX

[
X2 ln

(
I0
(

Xν/σ 2
))

+ 2νX I1(Xν/σ 2)
I0(Xν/σ 2)

]
σ 3

+

EX

[
2νX ln

(
I0
(

Xν/σ 2
)) I1(Xν/σ 2)

I0(Xν/σ 2)

]
σ 3 .

The expected values are computed according to the Rice pdf
of an RV X , as in (15).
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