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Abstract— The Geostationary Environment Monitoring Spec-
trometer (GEMS), launched in February 2020, performs hourly
measurements of earthshine radiances to retrieve column
amounts of air pollutants over Asia. However, the charge-coupled
device detector of GEMS has bad pixels that exhibit abnormal
radiometric responses, which translates to a decrease in the
quality of radiance measurements. Permanent bad pixels result
in an information gap in the aerosol product at ∼14.4◦N–16.1◦N
latitudes (e.g., in Manila, the Philippines, and Mainland Southeast
Asia), which cannot be filled even with long-term observations
owing to the structure of the east–west scanning mechanism of
GEMS. Here, we propose a robust method to reconstruct radi-
ances measured inaccurately by the bad pixels, based on spectral
correlation induced mainly by the Fraunhofer line structures. The
reconstruction aims at the bad pixels in the wavelength range of
∼485–491 nm, which affects aerosol retrieval. We estimate that
uncertainties in the reconstructed optical depths are ∼2 orders of
magnitude smaller than typical aerosol optical depths. Our results
demonstrate that the reconstructed radiances effectively restore
the physical distributions of visible aerosol indices, improving the
determination of aerosol types. Furthermore, the reconstructed
radiances enhance retrievals of aerosol layer height (ALH),
holding particular significance for the long-term accumulation
of ALH data over Southeast Asia using GEMS.

Index Terms— Aerosol retrieval, bad pixels, charge-coupled
device (CCD) detector, data reconstruction, Geostationary Envi-
ronment Monitoring Spectrometer (GEMS).
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I. INTRODUCTION

THE Geostationary Environment Monitoring Spectrometer
(GEMS) is the world’s first satellite-based hyperspectral

ultraviolet–visible (UV–VIS) sensor operating from a geosta-
tionary orbit (GEO) [1], [2]. GEMS was launched in February
2020 onboard the Geostationary Korea Multi-Purpose Satellite
2B (GEO-KOMPSAT-2B, GK-2B), aiming to monitor air
quality over Asia (5◦S–45◦N, 75◦E–145◦E) on an hourly basis.
GEMS Level-2 baseline products provide physical quantities
essential to assess air quality, including aerosol optical proper-
ties (AOPs), ultraviolet index (UVI), and column amounts of
trace gases, such as ozone (O3), nitrogen dioxide (NO2), sulfur
dioxide (SO2), formaldehyde (HCHO), glyoxal (CHOCHO),
and others.

These GEMS Level-2 products are derived by applying
the state-of-the-art retrieval algorithms to earthshine radiance
and solar irradiance spectra (i.e., Level-1 data), measured
via a 2-D charge-coupled device (CCD) detector covering a
spectral range of 300–500 nm. The GEMS CCD comprises
1032 (spectral) × 2048 (spatial) photoactive pixels; however,
they contain “bad pixels,” which cannot detect accurate signals
due to sensor defects. Using radiance or irradiance values
measured at these bad pixels hinders acquiring high-quality
Level-2 products.

Bad (or missing) pixels are found not only in GEMS
data but also in other satellite images. The information gaps
induced by those pixels have motivated the development of
methods to reconstruct Level-1 data from various spaceborne
instruments, including the Moderate Resolution Imaging Spec-
troradiometer (MODIS) [3], [4], [5], [6], [7], [8], Landsat [4],
[5], [6], [7], [8], [9], [10], [11], and Gaofen-1 [12].

Permanent bad pixels on the GEMS CCD have particularly
significant impacts in terms of information gaps. This is
because the instrument consistently uses the same detector
pixels to view a specific location on the Earth’s surface while
scanning its domain in Asia from east to west every daylight
hour. The zonal information gaps resulting from the bad pixels
at specific latitude bands span the entire field of regard and
cannot be filled even through long-term observations.

To fill these gaps, the operational GEMS Level-1 algorithm
reconstructs the data by performing a 1-D linear interpolation
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in the spatial (north–south) dimension of the CCD using the
piecewise cubic Hermite interpolating polynomial (PCHIP)
[13]. This approach is suitable for solar irradiance spectra,
which are supposed to be spatially homogeneous for a fixed
wavelength. However, the approach has a limitation when
applied to earthshine radiances, whose values significantly
vary in the spatial dimension depending on the optical proper-
ties of the atmosphere and the Earth’s surface along the light
paths.

For two reasons, it is rational to devise a novel approach
for replacing radiances from the bad pixels on the GEMS
CCD. First, the operational Level-1 algorithm already pro-
vides interpolated, not measured, radiances with significant
errors. Second, replaced pixels can be flagged in data
files so that users can choose whether to use them
or not.

There are three prominent defect areas on the GEMS
CCD [14], and this study focuses specifically on the one
that affects radiance measurements in the spectral range of
∼485–491 nm at ∼14.4–16.1◦N latitudes. Since this spectral
range is used for retrieving AOPs from GEMS [15], [16],
aerosol information is rendered permanently inaccurate in
this latitude band, which covers a part of Metro Manila, the
Philippines, suffering from severe black carbon pollution [17],
[18], [19], and Mainland Southeast Asia, where significant
aerosol emissions frequently occur from biomass burning
during dry seasons [20], [21], [22].

GEMS AOP data comprise key parameters, including
aerosol optical depth (AOD), single scattering albedo (SSA),
and aerosol layer height (ALH). These data are spatially
and temporally co-located with GEMS trace gas products,
offering valuable insights for a comprehensive understanding
of the interaction between aerosols and their precursors in
Asia. In addition, GEMS AOP data play a critical role from
a technical perspective, serving as essential inputs for other
GEMS Level-2 algorithms [23], [24], [25].

The GEMS aerosol retrieval algorithm employs six chan-
nels, with the inclusion of a 490-nm channel primarily due
to its high sensitivity to aerosol particle size. The 490-nm
channel has also been chosen for intercomparison and syn-
ergetic applications with aerosol retrievals from the Second
Geostationary Ocean Color Imager (GOCI-II) [26], [27]. The
GOCI-II instrument is onboard the same satellite as GEMS
and has a 490-nm channel, conducting hourly measurements
in between GEMS scan hours for a 2500 km × 2500 km
domain centered at 36◦N and 130◦E.

The current GEMS aerosol retrieval algorithm employs
preconstructed lookup tables to achieve near-real-time (NRT)
operation efficiency [15], [16], requiring a separate step to han-
dle the bad pixels. The main objective of this study is to ensure
that the NRT GEMS AOP retrievals at ∼14.4–16.1◦N latitudes
offer consistent data quality with other areas in the GEMS
domain by reconstructing radiances measured by the bad CCD
pixels. As the GEMS aerosol algorithm has been optimized
for the use of the 490-nm channel, the radiance reconstruc-
tion can benefit the spatially consistent aerosol retrievals
over the entire GEMS domain with minimal algorithmic
changes.

Recently, machine-learning methods were suggested for
spectral replacement as an alternative to the operational
PCHIP interpolation of GEMS radiances [14]. While the
machine-learning approach demonstrated high performance,
consideration of additional computational costs for the NRT
operation, resulting from the training process and the depen-
dency on the input radiances, is yet to be addressed.

In this study, we propose a computationally efficient
and robust method to fill the bad-pixel-driven gaps in
GEMS radiance data. This method reconstructs the radiances
using spectral correlation between measurements recorded
by “good” CCD pixels at different wavelengths. The use
of spectral information is the primary differentiator of our
method compared to the currently operational algorithm that
only applies the PCHIP in the spatial dimension. The spectral
correlation is derived by simple linear regression, facilitating
the NRT application. The proposed method is designed to use
only two input files: irradiance and radiance from GEMS for
a given day and hour.

The remainder of this article is organized as follows.
Section II describes the proposed reconstruction method and
the GEMS aerosol retrieval algorithm. Evaluations of the
reconstructed GEMS radiances and the corresponding Level-2
data are presented in Section III. Finally, Section IV summa-
rizes this study and delivers conclusions.

II. METHODOLOGY

A. GEMS Level-1 Data

GEMS conducts one solar irradiance and 6–10 earthshine
radiance measurements daily for the 300–500-nm spectral
range with ∼0.6-nm resolution and ∼0.2-nm sampling. Each
solar irradiance data comprises a single image, while each
earthshine radiance data typically comprises either 695, 313,
or 347 images. Each image has 1033 (spectral) × 2048
(spatial) pixels, with one imaginary spectral grid added to
the actual photoactive CCD pixel number (1032) for smooth
interpolation between spectra from two separate CCD quad-
rants. During earthshine radiance measurements, a scanline
is projected on the Earth’s surface, aligning the 2048 spatial
CCD pixels in the north–south direction. As GEMS conducts
its step-and-stare scans from east to west, an image of 1033 ×

2048 pixels is acquired from each scanline. Consequently,
a hyperspectral radiance cube is generated by GEMS every
hour, consisting of 1033 (spectral) × 2048 (spatial) × n
(image) pixels, where n represents the number of east–west
scanning steps (scanlines). The number of images in the
radiance data (i.e., n) varies depending on the month and
hour, which can be determined by uplink commands from the
ground station (the maximum scanning step number is 695 for
the current settings considering exposure time). The nominal
spatial resolution is 3.5 km × 7.7 km over Seoul, South Korea.

In the operational GEMS image processing, bad pixels
on the GEMS CCD are initially characterized as having
radiometric responses significantly deviating from the average.
Locations of these bad pixels were mapped prior to the launch.
In addition, the operational GEMS Level-1 algorithm detects
saturated pixels in real time and reports them as bad pixels.
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Fig. 1. Fundamental principle of bad pixel reconstruction. (a) Map of the bad pixel cluster (BPC) of interest. P5 represents the pixel to be reconstructed, while
other marked pixels represent good pixels used in the bad-pixel radiance reconstruction. (b) Linear relationships between radiances from pairs of good spectral
indices around the BPC. A spatial index of 1103 is selected. Each spectral index is denoted by a specific color, along with its corresponding wavelength.
The number of data points on each scatter plot corresponds to the number of scanlines (695 in all these examples). A linear regression equation and its
corresponding correlation coefficient are indicated for each scatter plot. The radiances in (b) were measured by GEMS at 03:45–04:15 UTC on April 1, 2021.

Accordingly, the final bad pixel mask (BPM) arrays of the
GEMS Level-1 data have the same dimensions as the mea-
surement arrays (i.e., 1033 × 2048 for irradiance and 1033 ×

2048 × n for radiance), having only two types of binarized
elements: 1 for bad and 0 for good pixels. Often, a single-
scanline radiance image has more bad pixels than irradiance,
mainly due to saturation in cloudy scenes. Saturated pixels
in irradiance data are unlikely because the instrument uses
different exposure settings for solar measurements, involving
a diffuser with transmittances <30% at a 30◦ incident angle.
This study aims to reconstruct radiance spectra measured by
bad but not saturated pixels. Therefore, this study uses the
BPM arrays from the solar irradiance dataset to identify the
locations of bad pixels on a daily basis.

The GEMS CCD exhibits three prominent defect areas
characterized by bad pixels [14]. The first defect area spans
a broad spectral range of ∼400–500 nm but occupies only
three pixels in the spatial dimension, projecting onto a lat-
itude band of ∼0.3–0.4◦N in radiance data. Another defect
area affects radiance qualities within the wavelength range
of ∼300–400 nm for ∼11.9–12.9◦N latitudes. This study
focuses specifically on the bad pixels within the third defect
area, which corresponds to spatial indices of 1104–1134 and
spectral indices of 946–974 (all indices in this study are
0-based). A graphical representation of this circle-shaped “bad
pixel cluster (BPC)” on the CCD is presented in Fig. 1(a).

As previously mentioned, the wavelength and latitude ranges
associated with this BPC are approximately 485–491 nm and
14.4–16.1◦N, respectively. More detailed descriptions of the
first two defect areas can be found in [14].

B. Spectral Correlation in Radiances

An earthshine radiance I measured by the sensor at wave-
length λ represents sunlight backscattered from the Earth’s
atmosphere and surface. Based on the Beer–Lambert law, I (λ )

can be theoretically expressed as

I
(
λ

)
=

(
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(
λ

)
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which characterizes: 1) the attenuation of sunlight by the atmo-
sphere and surface; 2) the distortion of spectral lines due to the
finite bandpass of the spectrometer; and 3) radiometric errors.
The parameters Ĩ0 and τ̃ represent the solar irradiance and
atmospheric/surface attenuation optical depth, respectively,
at infinitely high spectral resolution. The symbol ⊗ represents
the convolution operator, with 0(λ ′, λ ) describing the spectral
response function that characterizes the instrument’s response
at wavelength λ to signals from wavelength λ ′. The term
C(λ ) accounts for radiometric errors resulting from imperfect
instrumental calibration and characterization. For practical
purposes, the convolution can be applied separately to the solar
irradiance term and the optical depth term by accounting for
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the solar I0 effect [28]

I
(
λ

)
= I0

(
λ

)
exp

[
−τ

(
λ

)]
(2)

where I0 and τ represent the convolved solar irradiance and
optical depth, respectively. Here, τ illustrates the combined
effects of every factor contributing to the difference between
I0(λ ) and I (λ ), including geophysical processes in the Earth’s
atmosphere and at the surface, instrumental effects [i.e., C(λ )],
and the solar I0 effect.

Therefore, the spectral structures of I originate from those
of I0 and τ . The spectral structures identified in I0 are
referred to as the Fraunhofer lines [29]. These lines result
from the absorption of light by chemical elements present in
the solar atmosphere and thus are consistently found in every
solar spectrum. In fact, a spectral calibration algorithm for
GEMS leverages these persistent Fraunhofer lines to detect
wavelength shifts in measured solar irradiance data through
cross-correlation with a high-resolution solar reference spec-
trum [30].

For two arbitrary wavelengths λ1 and λ2 within the GEMS
spectral coverage, a ratio (a) between convolved irradiance
values I0(λ1) and I0(λ2) can be calculated from a single
spectrum, representing the linear relationship driven by the
Fraunhofer lines

I0
(
λ2

)
= aI0

(
λ1

)
. (3)

Combining (2) and (3) leads to the following equation:
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(4)

which finally represents the linear relationship between the
radiances at wavelengths λ1 and λ2. This equation indicates
that the relationship is determined by two factors: 1) the ratio
a from the solar Fraunhofer lines and 2) the optical depth
difference between the two wavelengths [i.e., τ(λ1) − τ(λ2)].

The spectral structures in τ result from various factors,
including trace gas absorption, Raman scattering, aerosol scat-
tering/absorption, Rayleigh scattering, wavelength-dependent
surface albedos, and unresolved instrument calibration. In
UV–VIS trace gas retrieval algorithms, the spectral structures
of these factors except the trace gas absorption and Raman
scattering are often approximated by polynomials, taking
advantage of their smoothly varying features [31], [32]. Given
the narrow wavelength range marked by the bad CCD pixels
of interest in this study (∼485–491 nm), the optical depth
variations by wavelength are expected to be small for those
factors having smooth spectral features. Besides, within this
wavelength range, it is common for the optical depths of trace
gases to exhibit spectral variations typically on the order of
10−3 [33]. (The dominant contributors to trace gas optical
depths in this range are O3 and the oxygen collision-induced
absorption, i.e., O2–O2.) Considering that |τ(λ1) − τ(λ2)| is
expected to be significantly smaller than 1, it is reasonable
to approximate the optical-depth-related term in (4) using the
first-order Taylor series expansion as follows:

I
(
λ2

)
≈ aI

(
λ1

)[
1 + τ

(
λ1

)
− τ

(
λ2

)]
= aI

(
λ1

)
+ b (5)

where b is an additive term to represent aI (λ1)[τ(λ1)−τ(λ2)].

The idea for the radiance reconstruction in this study is to
derive the parameters a and b in (5) using only good CCD
pixels and apply them to determine radiances for the bad
pixels. The basic premise of this approach is that a consistent
spectral relationship can be found in radiances measured from
different locations on the Earth’s surface within a narrow
wavelength range of around 485–491 nm. In practice, however,
the spectral relationships observed from different locations
are hardly identical. Of the two factors that determine the
relationship mentioned above, the Fraunhofer structures are
globally consistent for a given day. In contrast, the spectral
patterns of optical depths exhibit location-dependent variations
attributed to dissimilar atmospheric and surface properties.
These variations are the major error sources of the recon-
struction method in this study. However, as our goal is to
facilitate the GEMS AOP retrieval, pursuing the reconstruction
is worthwhile as long as the errors remain small enough to
retrieve AODs with reliable qualities. The errors in recon-
structed radiances are estimated in Section III-A, following
the detailed descriptions of the reconstruction method and
the aerosol retrieval algorithm in Sections II-C and II-D,
respectively.

Fig. 1(b) demonstrates the spectral correlations between
radiances measured at different wavelengths around the BPC
at 03:45–04:15 UTC on April 1, 2021. All 695 scanlines in
the east–west dimension are used to analyze the correlations.
The x-axis of Fig. 1(b) shows the radiance measurements
from spectral index 960 (arbitrarily chosen within the BPC
spectral range) and spatial index 1103, corresponding to CCD
pixel P2 in Fig. 1(a). The y-axis indicates the radiances from
CCD pixels P1 and P3 in Fig. 1(a) and four others in spatial
column 1103 (spectral indices of 951, 957, 963, and 969,
arbitrarily chosen). Each scatter plot depicts an apparent linear
relationship between two different wavelengths. The regression
equations presented are derived following (5). Overall, the
relationship is highly consistent despite the spatial variations in
optical depths, indicating the dominant influence of the Fraun-
hofer ratio (a) over the optical depth contribution. Indeed,
the Fraunhofer ratios calculated using GEMS-measured solar
irradiances for the same condition given in Fig. 1(b) are 1.06,
0.84, 0.93, 1.04, 1.04, and 1.05 in ascending order of their
spectral indices, almost identical to the slopes of regression
lines for radiances. According to (5), the y-intercepts of the
regressions in Fig. 1(b) represent aI (λ1)[τ(λ1)−τ(λ2)]. Given
that the aI (λ1) values typically on the order of 102 [see
Fig. 1(b)], the y-intercepts suggest that the optical depths differ
at the 10−2 scale between two wavelengths around 485–491
nm (i.e., |τ(λ1) − τ(λ2)| ∼ 10−2). As described earlier, the
location-dependent variations in [τ(λ1)− τ(λ2)] lead to errors
in the reconstructed radiances in this study, which is discussed
in detail in Section III-A.

C. Reconstruction Method

The radiance reconstruction is performed on an hourly basis
for each Earth scan. After identifying the BPC using the daily
solar irradiance file, good-pixel radiance measurements are
extracted around the BPC to derive the spectral relationships.
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To minimize the spectral variations in optical depths,
we restrict the wavelength range involved in the reconstruction
by using only the good CCD pixels closest to the bad pixels
in the spectral dimension [see Fig. 1(a)]. All wavelengths
involved in the reconstruction are within a ∼6-nm spectral
window [see Fig. 1(b)].

The method we propose in this study involves eight good
pixels to restore radiance at one bad pixel. For example, let
pixel P5 in Fig. 1(a) be the target for radiance reconstruction.
We first find two good pixels that are closest to the outermost
boundary of the BPC and have the same spatial index as P5,
i.e., P4 (spectral index 975) and P6 (spectral index 945). Then,
pixels P2 and P8 are selected via the same approach, but with
the spatial and spectral axes exchanged. Finally, we choose
pixels P1, P3, P7, and P9, whose locations are determined
through cross-combinations of the spatial and spectral indices
of P2, P4, P6, and P8.

The objective of gathering these eight good pixels is to build
the linear relationships in radiances between the target spectral
index and the two reference indices, i.e., 975 and 945. Here,
the spectral indices 975 and 945 represent the wavelengths of
490.7 and 484.8 nm, respectively, with the target spectral index
falling in between. In the linear formula defined in (5), the
two wavelength variables can be substituted with two spectral
indices, one being the target and the other a reference.

First, the relationship between the target and spectral index
975 is derived by[

xT
2

xT
8

]
= a1 ×

[
xT

1

xT
7

]
+ b1 + E1 (6)

where x1, x2, x7, and x8 are the vectors composed of radiances
measured at P1, P2, P7, and P8, respectively. The elements
in each vector are sorted in ascending order of the image
indices (i.e., from east to west), with the total number of
elements corresponding to that of scanlines. The coefficients a1
and b1 are derived through linear regression, representing the
resultant spectral relationship. The residuals of the regression
are described by E1. Here, we assume that two different spatial
CCD indices in (6) exhibit the same spectral and radiometric
characteristics; however, in practice, the instrumental effects
can differ by CCD pixels, and the potential errors caused by
these differences are accounted for by E1.

The second coefficient set of a2 and b2, accounting for
the relationship between the target and spectral index 945,
is calculated using the same equation structure as (6), but
with radiances measured at P3 and P9 (x3 and x9) and the
corresponding residuals E2 on the right-hand side[

xT
2

xT
8

]
= a2 ×

[
xT

3

xT
9

]
+ b2 + E2. (7)

The two sets of linear regression coefficients obtained
from (6) and (7) lead to two different calculations for recon-
structing radiances at P5

x5,1 = a1 × x4 + b1 (8)

and

x5,2 = a2 × x6 + b2 (9)

where x5,1 and x5,2 represent radiances constructed using
measurements from spectral indices 975 and 945, respectively.
By combining the two reconstructions, the final estimates for
radiances at P5 (x5) are derived as follows:

x5 = x5,1 ×
1/r1

(1/r1 + 1/r2)
+ x5,2 ×

1/r2

(1/r1 + 1/r2)
(10)

where r1 and r2 are relative (percentage) root-mean-square
error (RMSE) values from the linear regressions in (6) and (7),
respectively. Using the inverse of RMSE in (10) allows x5 to
be calculated with a larger weighting for a more reliable vector
between x5,1 and x5,2.

The same calculations are repeated with different P5 posi-
tions until the reconstruction is completed for every bad pixel
within the boundary of the BPC [see Fig. 1(a)]. The positions
of P2, P4, P6, and P8 change depending on the position of P5,
while P1, P3, P7, and P9 are fixed.

D. GEMS Aerosol Retrieval Algorithm

The GEMS aerosol product provides hourly retrievals
of AOPs over Asia in NRT. The corresponding data and
image files can be found on the GEMS website operated
by the National Institute of Environmental Research (NIER)
(https://nesc.nier.go.kr/en/html/cntnts/91/static/page.do). Here,
we briefly describe the GEMS aerosol retrieval algorithm
and introduce how the bad pixels can influence the retrieved
quantities. The detailed descriptions of the aerosol retrieval
algorithm can be found elsewhere [15], [16], [34], [35].

The final outputs of the GEMS aerosol retrieval algorithm
are AOD, SSA, and ALH. To derive these quantities, the
algorithm uses radiance and irradiance measurements at six
wavelengths: 354, 388, 412, 443, 477, and 490 nm. These
wavelengths were selected to avoid significant trace gas
absorption, with the exception of 477 nm, which is sensitive
to O2–O2 absorption and thus beneficial for determining ALH
values [34]. To enhance the signals, radiance measurements
within ±2.2 nm from each of the six wavelengths are averaged
before retrieval.

The accuracy of the retrieved quantities depends on the
accuracy of aerosol type determination. The GEMS algorithm
classifies aerosols into: 1) highly absorbing fine (HAF);
2) dust; and 3) nonabsorbing (NA) types. The type determi-
nation is conducted using two intermediate quantities named
ultraviolet aerosol index (UVAI) and visible aerosol index
(VISAI). The UVAI and VISAI are calculated using wave-
length pairs of 354/388 and 477/490 nm, respectively.

After the type determination, AOD and SSA at 443 nm
are retrieved initially using normalized radiances at 354 and
388 nm [36]. These initial values of AOD and SSA are
used for a priori states of an inversion using the optimal
estimation method (OEM) [37], along with a measurement
vector composed of Sun-normalized radiances at 354, 388,
412, 443, 477, and 490 nm. The outputs of the inversion
correspond to AOD and SSA at 443 nm and ALH.

The aerosol retrieval from GEMS using the six selected
channels offers a degree of freedom for signal of <2 for the
three states (AOD, SSA, and ALH) [15], [16]. Therefore, the
OEM-based inversion is designed to constrain AOD and SSA
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Fig. 2. Partial derivatives of normalized radiances with respect to ALH, calculated employing the VLIDORT model. ALH values of 0.5, 1.5, and 3 km are
used for the calculations. Different aerosol types are indicated with different colors. Other input values for VLIDORT are indicated above the panel, including
the SZA, VZA, and relative azimuth angle (RAA). The shades indicate ±2.2-nm wavelength windows where spectral binning is performed to enhance the
signals.

strongly to the a priori states retrieved using 354 and 388 nm
for the successful retrieval of ALH.

Among the six wavelengths employed for aerosol retrieval,
the BPC considered in this study impacts the quality of mea-
surements in the 490-nm channel. The intermediate retrieved
quantities influenced are VISAI and aerosol types. Of the
three ultimate outputs, AOD is minimally affected by the
BPC, primarily when aerosol types are incorrectly determined
due to VISAI errors, owing to the strong constraints in the
OEM inversion. Retrieving SSA, representing the absorptivity
of aerosols, is most sensitive to measurements at UV wave-
lengths [38]. Consequently, ALH is the most sensitive retrieved
state to the quality of radiances at 490 nm.

Fig. 2 shows the partial derivatives of normalized radiances
with respect to ALH, calculated using the Vector Linearized
Discrete Ordinate Radiative Transfer (VLIDORT) model [39].
For the selected condition of AOD, observation geometries,
and surface albedo, the partial derivatives exhibit negative
values, indicating that an increase in ALH leads the aerosols to
shield more photons scattered below their layer from reaching
the sensor. In the 477-nm channel, bumps are found in the
partial derivatives as an increase in ALH leads to a decrease
in the extent of O2–O2 absorption below the aerosol layer [40],
[41]. The partial derivatives show persistent values up to
490 nm with only small increases, implying that the quality
deterioration of radiance measurements at 490 nm would affect
the ALH retrieval.

To assess the impact of radiance reconstruction, we establish
three target quantities: VISAI, aerosol types, and ALH. A tar-

get latitude band of the assessment is ∼14.4–16.1◦N, which
corresponds to the projection of the BPC onto the Earth’s
surface. The assessment results are presented in Section III-B.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Radiance Reconstructions

Fig. 3 presents the reconstruction result using radiances
from 03:45 to 04:15 UTC on April 1, 2021. A combination
of spatial index 1119 and image index 500 is selected as an
example. The radiance spectra before and after reconstruction
exhibit significant differences at spectral indices 947–974
(485.2–490.5 nm), which correspond to the bad pixel coverage
at spatial index 1119 [see Fig. 1(a)]. The solar irradiance
spectrum from an adjacent good spatial index (1103) exhibits
a consistent spectral pattern with the reconstructed radiance,
demonstrating the dominant contribution of the Fraunhofer line
structures, as described in Section II-B.

We perform a quantitative evaluation of the accuracy and
precision of the reconstructed radiances by generating imag-
inary bad pixels (IBPs). The IBPs are constructed by simply
replicating the BPC in Fig. 1(a) onto good pixels along
the spatial dimension of the CCD, with its shape and size
preserved [i.e., the BPC is translated along the y-axis in
Fig. 4(a)]. Replicating the BPC means changing the BPM
values for good pixels from 0 to 1 so that the reconstruction
algorithm identifies them as bad pixels. Since these IBPs were
originally good pixels, the pre-reconstruction measurements
of radiances can be used as references for the evaluation.
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Fig. 3. Result of reconstruction using radiances from 03:45 to 04:15 UTC on April 1, 2021. Original and reconstructed radiances are presented for spatial
index 1119 and image index 500. The solar irradiance spectrum for spatial index 1103 from April 1, 2021 is overplotted on a different y-axis range. The
orange shade represents the bad pixel coverage at spatial index 1119 (spectral indices 947–974).

As mentioned earlier, errors in the reconstructions depend on
the spatial variability in spectral patterns of optical depths.
To assess the reconstruction performance for various levels of
spatial variability, we use radiance measurements from 03:45
to 04:15 UTC on April 1, 2021, when cloud cover patterns
were spatially heterogeneous across the field of regard [see
Fig. 4(a)]. We generate the IBPs at two distant positions in
the CCD. Hereafter, the position that measured fewer cloudy
pixels is referred to as “clear” and the other as “cloudy.” The
positions of IBPs (both clear and cloudy) are presented in
Fig. 4, along with those of the BPC.

Fig. 4(b) and (c) shows the evaluation results for the clear
and cloudy conditions, respectively. The x-axis of each panel
represents the references measured originally by the IBPs, and
the y-axis shows the reconstructed radiances. The spatial and
spectral indices of the IBPs are fixed for the entire east–west
scan, making the number of data points on each scatter plot
597 (number of bad CCD pixels) × 695 (number of scanlines).
Values of the mean absolute error (MAE) and RMSE are cal-
culated to represent the accuracy and precision, respectively.
The agreements between measurements and reconstructions
are excellent for both clear and cloudy cases, with high
determination coefficients (R2; both 0.9999) and low values
of RMSE (0.35% and 0.46%) and MAE (0.23% and 0.26%).

To evaluate the robustness of the reconstruction method,
we extend the temporal coverage of the IBP experiment to span
one year (from August 2020 to July 2021) and incorporate data
from three different hours (00:45–01:45, 03:45–04:15, and

06:45–07:15 UTC). Here, we construct IBPs at both spatial
index ranges from Fig. 4(b) and (c) (870–900 and 514–544) for
each scan regardless of cloudiness. Fig. 4(d)–(f) displays the
results, demonstrating the robustness of the method proposed
in this study in reconstructing radiances across various months
and hours (R2

= 0.9999, RMSE = 0.62%–0.80%, and MAE =

0.35%–0.40%).
Based on the definition of optical depth τ = −ln(I/I0), the

uncertainties in reconstructed radiances can be converted to
those in optical depths by the following propagation:

ετ =

∣∣∣εI

I

∣∣∣ (11)

where ετ indicates the optical depth uncertainty and εI repre-
sents the radiance uncertainty. Substituting the relative RMSE
values (0.62%–0.80%) for the right-hand side of (11) leads
to ετ of 6.2–8.0 × 10−3. These uncertainty magnitudes are
comparable to typical optical depths of trace gases but ∼2
orders of magnitude smaller than those of aerosols in the
spectral range of interest [1], [33].

To further evaluate the reconstructed bad-pixel Fraunhofer
lines, we compare the spectral structures with those from
radiances measured by the Tropospheric Monitoring Instru-
ment (TROPOMI), a low-Earth-orbit (LEO) hyperspectral
spectrometer that has recorded earthshine spectra daily at
13:30 local time since October 2017 onboard the Sentinel-5
Precursor satellite [42]. Band 4 of the TROPOMI instrument
(S5P_L1B_RA_BD4_HiR product) covers 405–500 nm [43],
which encompasses the spectral range of the GEMS BPC. The
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Fig. 4. Evaluation of the reconstructed radiances. (a) Map of radiances measured at spectral index 960 from 03:45 to 04:15 UTC on April 1, 2021. Spatial
indices of IBPs are presented with magenta boxes and arrows for both clear (870–900) and cloudy (514–544) cases. See text for the definitions of “clear”
and “cloudy.” The spatial indices of the BPC are also indicated as “bad.” The evaluation results for 03:45–04:15 UTC on April 1, 2021, are presented for the
(b) clear and (c) cloudy cases with corresponding values of determination coefficient (R2), RMSE, MAE, and the number of data points (N ). (d)–(f) Evaluation
results for 00:45–01:15, 03:45–04:15, and 06:45–07:15 UTC from August 2020 to July 2021, respectively. The two spatial index ranges in panels (b) and
(c) are combined for the annual evaluations shown in (d)–(f).

spectral resolution and sampling of this TROPOMI band are
0.55 and 0.2 nm, respectively, comparable to those of GEMS.

Intercomparison between radiance measurements from LEO
and GEO instruments needs to be carefully performed over
a stable target, e.g., the deep convective cloud (DCC), with
observation geometries matched [44]. However, it is chal-
lenging to co-locate TROPOMI and GEMS measurements
over the latitudes in ∼14.4–16.1◦N, the region where the
GEMS BPC is spatially projected while focusing only on
stable targets. Therefore, here we assess only the correlation
between the Fraunhofer structures in the TROPOMI and
reconstructed GEMS radiance spectra, rather than comparing
absolute radiance values.

We use four months of TROPOMI and GEMS data from
October 2020, January 2021, April 2021, and July 2021 for the
assessment to cover all four seasons. The spatial resolution of
TROPOMI has changed since August 2019, and it is 5.5 km ×

3.5 km for the period of interest in this intercomparison.

For the co-location of the two data, we first create grid
cells at 0.1◦

× 0.1◦ resolution for 14–16◦N and 97–110◦

E, the area in Mainland Southeast Asia where the GEMS
radiance measurements are conducted mostly via the bad
pixels. Then, we calculate gridded mean values of solar zenith
angles (SZAs), viewing zenith angles (VZAs), and radiances
for every TROPOMI orbit that overpassed this area in the four
selected months. For the adequate averaging and comparison
of radiances, we perform spline interpolation of TROPOMI
spectra onto the nominal GEMS wavelength grids before
averaging. To produce gridded GEMS data, we search for
scans conducted over the same area within 30 min before
and after the TROPOMI measurements and apply the same
averaging approach as TROPOMI to GEMS SZAs, VZAs,
and radiances from spatial indices 1114–1122. This spatial
index range corresponds to the center part of the BPC where
the most significant loss of spectral information occurs [see
Fig. 1(a)]. The GEMS gridded mean values are calculated
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Fig. 5. Comparison between the original and reconstructed radiances for 03:45–04:15 UTC on April 1, 2021. The respective panels present: (a) original
radiances from the operational algorithm; (b) gap-filled radiances (i.e., reconstructed radiances are presented for bad pixels); and (c) differences between
gap-filled and original radiances [i.e., (b)–(a)]. The selected spectral index is indicated.

for both data before and after radiance reconstruction. Finally,
we discard all gridded data of TROPOMI and GEMS, except
for those exhibiting SZA and VZA differences between the
two instruments of less than 1◦. As a result, we obtain a total
of 299 sample pairs to compare.

After the co-location, we produce scaled radiances by divid-
ing each of the TROPOMI and GEMS spectra by the radiance
value from spectral index 895 (474.9 nm). Fig. S1(a) in the
Supplementary Material shows the mean scaled radiances of
TROPOMI and GEMS for both before and after reconstruc-
tion. The Fraunhofer structures in the reconstructed GEMS
radiances are consistent with those in the mean TROPOMI
spectrum, while the mean GEMS spectrum before reconstruc-
tion exhibits a significant discrepancy.

We calculate correlation coefficients (r) between the scaled
GEMS and TROPOMI spectra for each of the 299 samples
within the spectral indices 948–972 (485.4–490.1 nm) [see
Fig. S1(b) in the Supplementary Material]. The reconstructed
GEMS spectra exhibit r values close to unity (0.9926 on
average), indicating the successful reproduction of the Fraun-
hofer lines, while the GEMS spectra before reconstruction
show lower and variable r values with the mean and standard
deviation of 0.56 and 0.34, respectively.

Fig. 5 presents a comparison between original and recon-
structed (gap-filled) radiances for 03:45–04:15 UTC on
April 1, 2021. Without reconstruction [see Fig. 5(a)], the

radiance data from the operational algorithm have artifactual
spatial features at latitudes around 14.4–16.1◦N. The radi-
ance values in this latitude band show elongated patterns
in the north–south direction, revealing the limitation of the
operational 1-D linear interpolation (PCHIP). In contrast, the
reconstruction approach proposed in this study can rebuild
the physical distributions of radiances [see Fig. 5(b)]. The
realistic cloud distribution at the latitude band 14.4–16.1◦N
in Fig. 5(b) demonstrates the effectiveness of the proposed
reconstruction. The differences between the reconstructed and
original radiances range from –404.4 to +353.9 W cm−3

[see Fig. 5(c)]. Percentage differences are from –81.9% to
+394.8%, sufficiently large to impact Level-2 retrievals.

B. Effects on the Aerosol Product

Fig. 6(a) and (c) depicts the original VISAI distributions
derived without radiance reconstruction for two different lon-
gitude ranges for a scan at 04:45–05:15 UTC on April 1, 2021.
A zonal band with values noticeably distinct from its sur-
roundings appears at latitudes around 14.4–16.1◦N, indicating
significant anomalies in VISAI due to errors in radiance inter-
polation by the operational PCHIP algorithm. Fig. 6(a) and (c)
illustrates how the BPC hinders the continuous monitoring
of urban-scale air quality across Southeast Asia, including
Myanmar, Thailand, Laos, Vietnam, and the Philippines. For
example, the band-shaped anomaly of VISAI crosses the
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Fig. 6. Comparisons of visible aerosol indices (VISAIs) retrieved from GEMS using original and gap-filled radiances. (a)–(d) 1-h comparison for 04:45–05:15
UTC on April 1, 2021, while (e)–(h) compare monthly mean VISAIs for 04:45–05:15 UTC in April 2021. Two different longitude ranges are presented:
(a), (b), (e), and (f) 90–110◦ E and (c), (d), (g), and (h) 110–130◦ E. The locations of Bangkok, Thailand, and Manila, the Philippines are indicated.

center of Manila, a megacity (capital) of the Philippines [see
Fig. 6(c)]. Fig. 6(e) and (g) shows monthly mean VISAI dis-
tributions for 04:45–05:15 UTC in April 2021. As previously
described, the BPC-driven information gap cannot be filled
even through long-term data accumulation due to the scanning
mechanism of GEMS. In contrast, the band-shaped anomalies
do not appear in the VISAI distributions derived using the
gap-filled radiances [see Fig. 6(b), (d), (f), and (h)], supporting
the effectiveness of the reconstruction algorithm.

Changes in the VISAI values affect aerosol type determina-
tion (see Section II-D). Fig. 7 illustrates the changes in aerosol
types resulting from radiance reconstruction from August
2020 to July 2021 for GEMS pixels with the spatial indices
of the BPC (1104–1134). Since the GEMS aerosol algorithm
employs different lookup tables depending on aerosol types,
alternations in aerosol types ultimately lead to changes in the
final outputs: AOD, SSA, and ALH. After radiance recon-
struction, the type classification results show that 47.2% of
all ground pixels (1 369 665 pixels) are assigned the HAF
type. Notably, 14.4% of these pixels are classified as dust
without radiance reconstruction [see the left bar in Fig. 7]. The

dust type is assigned to a relatively small number of ground
pixels (106 786), yet it exhibits the highest type change rate;
44.9% of the pixels are classified as HAF without radiance
reconstruction (see the middle bar in Fig. 7). The NA type,
found at 49.1% of all ground pixels (1 424 589 pixels), shows
a 15.3% masking rate without radiance reconstruction rather
than being classified as other aerosol types (see the right bar
in Fig. 7). These findings suggest that one significant outcome
of radiance reconstruction in aerosol type determination is the
redistribution between the HAF and dust aerosols. This result
aligns with expectations, as the primary distinction between
HAF and dust aerosols lies in their particle sizes, which are
detectable through VISAI.

Fig. 8(a) shows the impact of the radiance reconstruction
on the ALH retrieval for the spatial indices of the BPC
(1104–1134) for one year of data from August 2020 to July
2021. The absolute changes in ALH values resulting from
radiance construction have a standard deviation of 0.58 km.
We note that 26.9% (15.0%) of data points exhibit changes
exceeding 0.2 km (0.5 km), while 24.1% (12.8%) of data
points show relative changes exceeding 20% (50%).
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Fig. 7. Changes in aerosol type classifications resulting from radiance reconstruction for the spatial indices of the BPC (1104–1134) from August 2020 to July
2021. The total height of each of the three bars represents the number of GEMS ground pixels for each aerosol type determined after radiance reconstruction.
The exact number of pixels is presented above each bar. Fractionally colored bars depict aerosol types determined without radiance reconstruction at the same
GEMS pixels (in fraction). The fractions of pixels masked without radiance reconstruction are also indicated.

Fig. 8. Impacts of the radiance reconstruction on ALH retrieval for the BPC from August 2020 to July 2021. (a) Absolute and percentage changes in ALH
values resulting from radiance reconstruction. (b) Intercomparison between the ALH retrievals from CALIOP and GEMS (for both with and without radiance
reconstruction). The numbers of data points (N ), RMSE, and the percentage of data points within the 1-km bias lines are indicated.

To verify whether the ALHs become more accurate after
radiance reconstruction, we conduct intercomparison with
retrievals from the Cloud-Aerosol Lidar with Orthogonal

Polarization (CALIOP) (CAL_LID_L2_05kmAPro-Prov-V3-
41 product) [45]. We calculate aerosol-weighted extinction
height zext, referred to as CALIOP ALH hereafter, following
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Fig. 9. Impacts of the radiance reconstruction on AOD and ALH retrievals at 07:45–08:15 UTC on April 10, 2022. The first row shows: (a) AOD at 443 nm
and (b) ALH retrieved without radiance reconstruction. The second row presents: (c) AOD at 443 nm and (d) ALH retrieved with radiance reconstruction.
Differences between the gap-filled and the original retrievals are presented for (e) AOD and (f) ALH. (g) Fire pixels obtained from the VIIRS VNP14A1
product at 1-km resolution for April 10, 2022. (b), (d), and (f) Only GEMS pixels with AODs >1.0. Aerosol retrievals over cloudy pixels are filtered out.

the approach of Koffi et al. [46]:

zext =

∑n
i=1 βi zi∑n

i=1 βi
(12)

where βi and zi represent the extinction coefficient at 532 nm
and altitude at vertical layer i , respectively, and n is the
number of vertical layers. To achieve data co-location, we cal-
culate the average of GEMS ALH values obtained from
spatial indices 1104–1134 within a ±1-h window around each
CALIOP measurement time from August 2020 to July 2021.
We apply a radius of 0.05◦ for this averaging process. Given
that the sensitivity of ALH retrieval depends on the AOD,
only GEMS pixels with AODs >0.4 are used. In addition,
ALH values outside the GEMS ALH lookup table coverage
(0–6 km) are excluded for both GEMS and CALIOP. Fig. 8(b)
presents the intercomparison results. The RMSE values before
and after radiance reconstruction correspond to 1.53 and
1.48 km, respectively, with data points falling within the
±1-km bias lines at proportions of 51.5% and 56.9%. These
statistics suggest that the radiance reconstruction leads to ALH
retrievals with better quality.

In Mainland Southeast Asia, the GEMS BPC is spatially
projected onto territories in Myanmar, Thailand, Laos, Cam-
bodia, and Vietnam [see Fig. 6(a) and (e)]. This region,
characterized by substantial mountainous terrain, experiences
frequent biomass burning during dry seasons due to slash-
and-burn agriculture practices [20], [21], [22]. Yin et al. [21]
showed that AODs observed from MODIS in March and April
were much higher than in the other months from 2011 to 2016.
On April 10, 2022, GEMS observed high AOD values typically
exceeding 1.0 in this region. Fig. 9(a) shows an enlarged

view of the AOD field retrieved without radiance recon-
struction from 03:45 to 04:15 UTC that day. To verify
the presence of biomass burning, we extract fire mask data
at 1-km horizontal spatial sampling from the daily Suomi
National Polar-orbiting Partnership (Suomi NPP) NASA Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) Thermal
Anomalies/Fire (VNP14A1) Version 1 data product [47].
Fig. 9(g) displays the detection of fire pixels from the VIIRS
satellite instrument throughout the region on April 10, sug-
gesting the influence of biomass burning on the elevated
AOD values. Consistent spatial patterns are found between
AOD and fire over these areas in general, although aerosol
retrievals over dense fire pixels in Laos and Vietnam are
filtered out due to cloud contamination. The ALH values,
derived without radiance reconstruction, are presented only
for GEMS pixels having AODs >1.0 to focus on those with
stronger aerosol signals, ensuring more reliable ALH retrievals
[see Fig. 9(b)].

Fig. 9(e) and (f) shows the differences in AOD and ALH
values induced by radiance reconstruction, respectively. The
differences in AODs and ALHs range from −0.09 to 0.96 and
from −3.89 to 1.35 km, respectively. The percentage dif-
ferences in AOD values are found to be between −12.2%
and 30.9%, while those in ALH values are from −99.9%
to >100%. The ALH field is more significantly affected by
the BPC than the AOD field as expected [see Section II-D].
The lower and upper limits of the ALH difference ranges are
significantly higher than the typical values shown in Fig. 8(a).
This example highlights that when analyzing severe pollution
cases caused by biomass burning in Mainland Southeast Asia,
using GEMS AOP retrievals without radiance reconstruc-
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tion can lead to significant errors. In essence, implementing
reconstruction enhances the investigation of biomass burning
in this area, allowing for a more effective utilization of GEMS
data.

IV. CONCLUSION

The bad-pixel radiances from the operational GEMS
Level-1 data lower the quality of Level-2 products. Specif-
ically, the bad pixels of interest in this study lead to
band-shaped anomalies in aerosol retrievals, encompassing the
entire field of regard in the east–west direction at ∼14.4–
16.1◦N. These anomalies obstruct continuous urban-scale air
quality monitoring over India, Myanmar, Thailand, Laos,
Vietnam, and the Philippines.

The reason aerosol retrievals are particularly affected is
because the 490-nm channel used in the retrieval algorithm
overlaps with the spectral range marked by the bad pixels
(485–491 nm). Replacing the 490-nm channel with another
wavelength requires re-optimization of algorithm parame-
ters for the entire GEMS domain, including VISAI criteria
for aerosol type determination and the measurement error
covariance matrix for the OEM process. Without parameter
re-optimization, a simple channel replacement would lead to
biases in aerosol types, AODs, and ALHs. As the algorithm
parameters have been optimized for the 490-nm channel,
radiance reconstruction for 485–491 nm offers an efficient
alternative to derive the spatially consistent aerosol retrievals
over the entire GEMS domain.

This study proposes a robust method to reconstruct radi-
ances, suitable for replacing the interpolated outputs provided
from the currently operational Level-1 product. The recon-
struction is performed based on linear spectral relationships
between radiances from different wavelengths, determined by
the Fraunhofer line structures and spectral patterns of opti-
cal depths. This approach assumes that a consistent spectral
relationship can be found in radiances measured from different
locations on the Earth’s surface. Since this assumption does not
hold true in practice, the reconstructed radiances necessarily
have errors. However, since our ultimate objective is to offer
reliable AOPs for latitudes around ∼14.4–16.1◦N, it is worth-
while to proceed with the reconstruction as long as the errors
in the reconstructed optical depths remain sufficiently small
compared to AODs in the spectral range of 485–491 nm. It is
noteworthy that we find the uncertainties in reconstructed opti-
cal depths to be ∼2 orders of magnitude smaller than typical
AOD values within this spectral range. Also, the reconstructed
Fraunhofer lines show consistent spectral structures with those
from TROPOMI.

Theoretically, the radiance reconstruction method proposed
in this study can be applied to the other two defect areas
on the GEMS CCD. However, given their significantly wider
spectral ranges (∼100 nm wide), careful implementation is
recommended. Errors in our reconstruction method depend on
the spatial variability in spectral patterns of optical depths.
Therefore, the key to reliable application lies in constraining
the spatial and spectral variabilities across the wide wavelength
ranges. A spectrally recursive reconstruction may be a possible
modification. Another consideration is comparing errors in

reconstructed optical depths to the typical optical depths of
the trace gas of interest.

In this study, for the circle-shaped defect area of interest, the
reasonable spectral structures in the reconstructed radiances
result in spatially continuous AOP data from GEMS. The
reconstruction results demonstrate the successful rebuilding of
physical distributions of VISAIs, leading to better aerosol type
determinations. Furthermore, the reconstructed ALH values
exhibit a better agreement with CALIOP observations. Finally,
an analysis of a severe aerosol pollution episode demonstrates
that the radiance reconstruction enhances the investigation of
biomass burning in Mainland Southeast Asia, utilizing GEMS
data more effectively. The GEMS aerosol product will include
retrievals derived from reconstructed radiances, accompanied
by a designated quality flag. Consequently, users will be able
to make informed decisions regarding the utilization of these
data based on their specific analyses and requirements.
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