
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 5907712

Monitoring Subsurface Fracture Flow Using
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and Stanislav Glubokovskikh

Abstract— Fracture flow is the fluid movement in a fracture
or a fracture zone. Since fracture flow can induce long-duration
(LD) microseismic events, classifying different types of microseis-
micity is crucial for reliable monitoring of subsurface fracture
flow. We analyze hydraulic fracturing-induced microseismic
data recorded by borehole geophones and find four types of
microseismic events: two types of short-duration events and
two types of LD events. Among the two types of LD events,
one contains frequency-drop LD (FDLD) characteristics, and
the other exhibits low-frequency LD (LFLD) characteristics.
We employ an unsupervised machine-learning algorithm based
on the U-Net convolutional network to classify microseismic
events. Our study shows that LFLD events occur only during the
proppant injection period of hydraulic fracturing and that the
spatiotemporal distributions of the LFLD events gradually grow
from the fracture stimulation wells outward with time. Also, the
cumulative seismic moment of the LFLD events is proportional
to the cumulative amount of injected proppant. These results
can be used to optimize hydraulic fracturing parameters in
unconventional reservoirs.

Index Terms— Deep learning, low-frequency long-duration
(LFLD) event, microseismicity classification, time–frequency
analysis.

I. INTRODUCTION

LONG-DURATION (LD) events, characterized by their
extended seismic duration, play an important role in

understanding subsurface fluid flow dynamics and optimizing
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hydraulic stimulations [1], [2]. The time–frequency character-
istics of LD events can be found in (deep-)volcanic tremors
observed in Kilauea, Hawaii (1.5–3 Hz, several minutes) [3]
and Mount St. Helens (∼1–2 Hz, 20 s) [4], [5], and those
of tectonic tremors observed in Cascadia Subduction Zone
(1–5 Hz, a few minutes to several days) [6], [7]. In exploration
seismology, Das and Zoback [8] argue that the LD microseis-
micity lasts for tens of seconds and spans a frequency range of
tens to hundreds of hertz, with moment magnitudes between
−2 and −1. These studies showed that the source of LD
events is likely to originate from subsurface fluid movement
such as magma flows beneath volcanoes [9], [10], or injection-
induced aseismic slip along fractures/faults [11], [12], [13] and
tensile opening of a crack [14], [15]. Based on the relationship
between subsurface fluid migration and LD events, we aim to
classify the LD events from borehole microseismic waveform
data during hydraulic fracturing and develop a fracture flow
monitoring method using the most related types of LD events.

Locations and source mechanisms of microseismic events
play key roles in the monitoring of hydraulic fracture propa-
gation [16], [17], [18]. The techniques of physically inverting
source parameters depend on an accurate subsurface velocity
model that is often not available. They also require significant
effort to evaluate the data quality and assess the accuracy and
uncertainty of the inversion results. Furthermore, the data size
of continuous seismic waveforms is usually in the order of
terabytes. Therefore, it is impractical to manually examine and
analyze such data that is often required for optimizing energy
production and mitigating seismic hazards [19]. The emer-
gence of machine-learning methods presents an opportunity
for efficient data analyses. In seismology, machine learning
has been used for source discrimination [20], event detection
and phase picking [21], [22], [23], [24], [25], [26], phase asso-
ciation [27], [28], seismic wave simulation [29], and seismic
signal labeling and classification [30], [31], [32]. For data
clustering, Jenkins et al. [30] developed a machine-learning
technique for low-frequency icequakes and earthquake data.
Chien et al. [33] applied unsupervised clustering for micro-
seismicity induced by fluid injection. Recently, Mousavi and
Beroza [34] gave a thorough review of machine-learning
methods in earthquake seismology.

For monitoring of subsurface fracture flow, we use a
seven-layer U-Net convolutional neural network based on
spectrograms to efficiently cluster high-frequency (up to
∼2 kHz) borehole seismic waveform data acquired during
hydraulic stimulation. The output of the U-Net for a win-
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dowed seismic waveform dataset is a lower-dimensional latent
vector containing image features. We use these latent feature
vectors to perform Gaussian mixture model (GMM) clustering.
Our analysis shows that there exist four different types of
microseismic events: two distinct types of LD events and two
types of short-duration events. One type of LD event has the
characteristics of frequency-drop long-duration (FDLD), and
the other type of LD event contains the characteristics of low-
frequency long-duration (LFLD). We explore the correlations
between LFLD events and proppant injection histories, cumu-
lative seismic moments, and spatiotemporal evolution of event
locations. Our results demonstrate that only one type of LD
event, the LFLD event, can be used to monitor fracture flow.

II. DATASET

Our study area is located at the Permian Basin Wolfcamp
shale formation in the Midland Basin, Reagan County, Texas
[see Fig. 1(a)]. This unconventional oil and gas production
site contains 11 horizontal injection wells and 37–49 hydraulic
stimulation stages in total [see Fig. 1(b)]. We analyze micro-
seismic data recorded during Stage 25 in treatment well 1 and
Stage 25 in treatment well 2, which we refer to as HF-1 and
HF-2 for brevity.

The monitoring wells shown in Fig. 1(b) include a hor-
izontal well (with MH-1 and MH-2 arrays) and a vertical
well (with MV-1 array), and borehole geophones installed in
these wells continuously recorded microseismic data during
hydraulic fracturing stimulation in the two treatment wells
with a sampling rate of 4 kHz. The geophone arrays of
MH-1 and MV-1 were used to record microseismic data during
Stage HF-1, while those of MH-2 and MV-1 were used to
acquire microseismic data during Stage HF-2. In each case, the
seismic waveforms contain 54 traces from 18 three-component
borehole geophones with a resonant frequency of 15 Hz.

We use the following procedure to process the seismic data:
1) extract the continuous seismic data for the time intervals
corresponding to the injection times in the two stages (see the
time axes in Fig. 2); 2) remove the instrument response from
the waveforms; and 3) bandpass filter the data to 10–1900 Hz
to suppress low and high-frequency noise in the data. The
processed common-receiver (geophone ST00) waveforms of
Stages HF-1 and HF-2 are shown in Fig. 2 (top). We select
193 microseismic events from the microseismic event catalog
provided by the project contractor [35] for Stage HF-1 and
646 events for Stage HF-2 [see Fig. 1(b)], which are spatially
distributed around the corresponding fracturing stages. The
catalog contains event origin times, locations, and moment
magnitudes that are used in this study. HF-1 and HF-2 in
Fig. 2 (bottom) show histograms of numbers of events within
30-s intervals during the stimulations. Given an average event
magnitude of −2.2 and a source-receiver distance of less than
300 m, our data contain frequencies up to 2 kHz. This is
due to the small source magnitudes and weak seismic wave
attenuation within the short source-receiver distances. This
high-frequency feature of the data is different from most other
studies on LD events that are based on low-frequency data of
tens of hertz.

Using the 839 events from the microseismic catalog,
we obtain 10 325 samples over all 18 geophones for Stages

Fig. 1. Fluid injection stimulation and microseismicity monitoring sys-
tem. (a) Location of the Wolfcamp shale formation in the Midland basin,
Reagan County, Texas. (b) Three-dimensional view of the fluid injection
for hydraulic fracturing. Triangles denote three-component geophones, and
rectangles denote multistage injection simulation sections. Red dots are
locations of microseismic events accompanying Stage HF-1, and blue dots are
those accompanying Stage HF-2. The depth axis “TVD” means true vertical
depth, which is measured relative to a point at the ground surface.

HF-1 and HF-2 in total (here each sample for each event
contains a seismogram, a spectrogram, and event metadata),
and store them as the HDF5 data format for the event
classification procedure.

III. METHODS

A. Spectrogram Calculation of Microseismic Waveform Data

The short-time Fourier transform (STFT) to compute the
time–frequency representation of a seismic trace is expressed
as

S(τ, ω) =

∣∣∣∣ ∫
∞

0
s(t)w(t − τ)e−iωt dt

∣∣∣∣ (1)

where S(τ, ω) denotes a spectrogram of a time-domain seismic
waveform s(t), τ is the time, ω is the angular frequency,
w(τ) is a window function, and i denotes the imaginary unit.
We compute STFT for all vertical-component waveforms of
18 borehole geophones. We use only one component of the
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Fig. 2. Totally detected microseismicity. (a) and (b) (Top) Waveforms
recorded at geophone ST00 for Stages HF-1 and HF-2, respectively. (a) and
(b) (Bottom) Temporal distribution of 193 and 646 microseismic events,
respectively, within consecutive 30 s time intervals.

seismogram to have less data to deal with. We apply the Kaiser
window (a kind of taper using the Bessel function) [36] to (1)
with a shape parameter of β = 5.7, a window length of
0.0625 s, an overlapping ratio between two segments of 0.98,
and FFT window length of 250 points. We choose these STFT
parameters to ensure a balanced resolution between frequency
and time. We take a 0.8 s time window centered at the peak
amplitude of a catalog event and make sure that only one event
exists within this time window. A 0.8 s trace yields 320 time
samples per spectrogram.

We consider the spectrograms of the waveforms as 2-D
images sampled by pixels. Since the decibel scale magnifies
small amplitudes (i.e., singularities) that appear as background
noise in the spectrograms, we scale the original spectrograms
using a fractional power given by

I (τ, ω) = S(τ, ω)1/p, (p > 1) (2)

where p = 2. We use the scaled spectrogram image I (τ, ω)

to train our machine-learning algorithm. We employ (2) to
enhance the lower energy of high-frequency parts in the spec-
trograms. Furthermore, we truncate the spectrograms using a
0.8 s time window centered at the peak amplitude among all
frequencies and a cosine-taper at both ends.

B. U-Net Autoencoder Neural Network

High-dimensional input data, such as spectrograms, are
difficult to cluster [37], [38]. A lower-dimensional represen-
tation of the input data makes it easier and more feasible to
obtain a meaningful clustering result [30]. Here, we construct
a U-Net architecture using a seven-layer 2-D convolutional
(Conv2D) neural network for the encoder process and a
transposed convolutional (ConvT2D) neural network for the
decoder process (see Fig. 3). The numbers in the brackets

Fig. 3. Network architecture for encoder–decoder (U-Net) and GMM
clustering for predicting the class of spectrograms. The numbers in the
brackets denote the size of the tensor in each layer. The input spectrogram
has a size of 126 × 320, where the first dimension is the frequency, and
the second dimension is time. The notations between layers are as follows:
“Conv2D” is a 2-D convolution operator; “Linear” is a linear transforma-
tion; “Flatten” reshapes to a 1-D tensor; “ConvT2D” is a 2-D transposed
convolution operator; and “ReLU” is rectified linear unit function defined as
ReLU(x) = max(0, x).

represent [channel, height, width] of an image. For example,
the input layer Y is composed of one channel, 126 frequency
samples, and 320-time samples within a duration of 0.8 s,
which corresponds to the dimensions of the spectrograms
that need to be reconstructed (Y ′). The encoder segment
generates a “compressed” nine-element latent feature vec-
tor, namely, latent feature X . The first step (Route P1 in
Fig. 3) is training the model weights iteratively. We imple-
ment the mean-squared-error (mse) function to measure the
loss between Y and Y ′ (see Section III-C for details).
The next step (Route P2 in Fig. 3) is performing GMM
clustering (in other words, event label prediction) for the
unlabeled latent feature X derived from the trained model (see
Section III-D for details). The last step (Route P3 in Fig. 3)
is using the labeled latent features and running the decoder
segment to generate the classified waveforms, spectrograms,
and event metadata for spatiotemporal correlation analysis.

C. Spectrogram-Based Training and Validation
Fig. 4 shows how we window the seismograms and the

spectrograms for visualization throughout this article. Based
on the events catalog, we first window a 0.25 s waveform
starting from the event origin time and mark the 0.125 s as the
middle point of the time window. Centered at the middle point,
we extend both sides by 0.4 s to make a 0.8 s waveform as the
input data for training. When plotting the spectrogram and its
corresponding seismogram, we find the maximum spectrogram
amplitude and then extend both sides away from the maximum
amplitude point by 0.2 s.

In the encoder–decoder deep learning network, we employ a
randomly chosen subset of 8261 samples for training purposes
and 2064 samples for validation, among the total of 10 325
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Fig. 4. Illustration of the time windows for input seismograms (time
windows 1 and 2), and for spectrogram visualizations in this article (time
window 3). The duration of the input seismogram is 0.8 s, while the duration
for spectrogram visualization is 0.4 s.

samples. We use the following mse misfit function to quantify
the loss in each iteration:

L(y, y′) =
1

M N

N∑
i=1

M∑
j=1

(
yi j − y′

i j

)2 (3)

where y and y′ are the input and reconstructed spec-
trograms, respectively, N denotes the mini-batch size (a
to-be-determined hyperparameter), and M represents the count
of grid points within each input spectrogram (40 320 for this
study). Here, the reconstructed spectrograms “reproduce” the
most useful signal properties that resemble the input spectro-
grams via the U-Net training process [39]. We implement a
rectified linear unit (ReLU) activation function between every
pair of convolutional neural layers, the same for transposed
convolutional layers (see Fig. 3). In each iteration, we employ
the Adam optimization method [40] with the stochastic gradi-
ent descent to update the model weights.

We utilize a grid search method to determine the optimal
hyper-parameters for the U-Net training, with an initial learn-
ing rate of lr = 0.0001 and a mini-batch size of N = 64.
Fig. 5(a) shows the learning curve for training, indicating that
the recognition of patterns given the ground-truth spectrogram
results in a less than 20% mse loss. The validation loss
stays close to the training loss, and both curves converge
at the 74th epoch. The plateau of the learning curve in
Fig. 5(a) is likely due to nonlinear complexity and gradient-
based optimization, which takes several iterations/epochs to
move away from the plateau until the algorithm starts con-
verging rapidly again. To test the training results for the entire
microseismic dataset, we input all the spectrograms to the
trained model, and the average mse loss is 6.0645 × 10−6,
which agrees with the validation loss in the convergence range.
Fig. 5(b) illustrates the training results of the final iteration
by selecting four different time–frequency event types. The

Fig. 5. Spectrogram training results. (a) Learning curves for training and
validation. The left vertical axis is the normalized loss to represent percentage
change based on the absolute mse loss of the right vertical axis. (b) Results
of the final epoch using four different time–frequency types of events. (Left)
Ground-truth spectrograms. The middle column shows the latent feature
vectors after the encoder process. (Right) Reconstructed spectrograms using
the latent features.

reconstructed spectrograms preserve the major frequency con-
tent and time-duration features, but are smoother than the
input spectrograms, suggesting that the latent vector stores
LD features and can be used to distinguish LFLD and FDLD
events from the other short-duration event types. An alternative
solution to this issue is to employ supervised deep-learning
algorithms. With prior labeling knowledge, small details in
the spectrograms can be well learned. For our project, we do
not have enough datasets to perform labeling, which is one
of the reasons for us to choose unsupervised deep learning
methods.

D. Clustering Using GMM
The likelihood distribution for GMM is given by [41], [42]

p(xn) =

K∑
k=1

πkN (xn|µk, 6k) (4)
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Fig. 6. Examples of four distinct types of microseismic events. (a) FDLD event. (b) LFLD event. (c) High-frequency short-duration event (HFSD).
(d) Low-frequency short-duration event (LFSD). (Top) Three-component waveforms. (Bottom) z-component spectrograms in decibel scale.

Fig. 7. GMM clustering results for microseismic events. Columns show the labeled spectrograms with the same cluster number from 1 to 10. The top row
shows the maximum likelihood (centroid) predictions in respective clusters with latent features (xc) and reconstructed spectrograms (yc). Rows 2–4 illustrate
samples with ascending distances from the centroid prediction of the cluster, denoted by the subscripts 1, 300, and 700. (Top to bottom) Each subplot is
arranged with the nine-element latent feature vector (x1, x300, and x700), the ground-truth spectrogram (y1, y300, and y700), and the ground-truth seismogram.
All subplots share the same horizontal axis (time in seconds) and vertical axis (frequency in kilohertz).

where xn denotes the latent feature vector obtained from
the encoder segment, K is the number of clusters, a
to-be-determined hyperparameter, N represents the normal

distribution, πk is the mixing probability, µk is the mean
value, and 6k is the covariance of kth cluster. Multiplying
p(x1)p(x2), . . . , p(xN ) and taking logarithm on both sides,
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the logarithm of the joint probability for all latent features is
given by

ln p(x) =

N∑
n=1

ln p(xn) (5)

where N is the total number of samples. To determine
(πk, µk, 6k) in (4), we employ the expectation-maximization
algorithm [41] to iteratively update them using

π∗

k =

∑N
n=1 γnk

N
(6)

µ∗

k =

∑N
n=1 γnkxn∑N

n=1 γnk
(7)

6∗

k =

∑N
n=1 γnk||xn − µk ||2∑N

n=1 γnk
(8)

until the logarithmic probability (5) converges. The interme-
diate probability γnk in (6)–(8) can be calculated using

γnk =
πkN (xn|µk, 6k)∑K
j=1 π jN (xn|µ j , 6 j )

. (9)

IV. RESULTS

A. Two Types of LD Microseismic Events

By visually inspecting the data, we present four different
types of microseismic events in Fig. 6. The top panel of each
subfigure illustrates waveforms recorded by geophone ST00
located in the vertical monitoring well, while the bottom panel
shows the spectrograms of the z-component waveforms.

We observe two types of LD events. The first type, FDLD
exhibits approximately 1600 Hz at the event start time (0.25 s),
and it decreases to 500 Hz at the event end time (0.5 s)
[see Fig. 6(a)]. The second type of event is characterized by
relatively low-frequency signals of up to approximately 500 Hz
from the event start time at 0.25 s to the event end time at
0.6 s, namely, LFLD [see Fig. 6(b)]. These two types of LD
events last hundreds of cycles. By contrast, the spectrograms
in Fig. 6(c) and (d) indicate that these events last for less than
0.1 s, or about ten cycles. The event in Fig. 6(c) contains
high-frequency signals of up to 1600 Hz, and that in Fig. 6(d)
comprises only low-frequency signals of up to 500 Hz. We call
these events short-duration events.

B. Event Categorization
We use spectrograms of borehole microseismic data and

our deep learning clustering method to extract LD events.
Fig. 7 shows a gallery of spectrogram clustering results.
As an illustration, we show the maximum likelihood pre-
diction and three ground-truth datasets for each category.
By visually comparing the clustered events, this clustering
result indicates that microseismic events are labeled not only
by the time–frequency patterns, but also by the signal-to-noise
ratios (SNRs). For instance, Cluster 1 contains the lowest
SNR events; Clusters 2 and 3 are low-frequency short-duration
events with higher SNR events in Cluster 2 and lower SNR
events in Cluster 3; Clusters 4 and 7 comprise high-frequency
short-duration events; and Cluster 6 events contain dominant

TABLE I
COMPUTATION COST OF TRAINING AND CLUSTERING. THE FIRST ROW

SHOWS THE GPU PARAMETERS. THE SIZE OF THE DATASET USED FOR
TRAINING AND VALIDATION IS 165 GB

Fig. 8. Optimal Silhouette score search for K = 4–12.

Fig. 9. Silhouette analysis for clustered events in K = 10. The dashed line
represents the mean Silhouette score for all the clustered events.

high-frequency energy. Clusters 5, 9, and 10 are LFLD events,
and Cluster 8 consists of FDLD events.

We perform deep learning and clustering of HF-1 and HF-2
microseismic data using only one GPU. As shown in Table I,
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Fig. 10. Comparisons of the injected proppant density and pressure with the occurrence times of the LFLD, FDLD, and non-LD events. (a) Injection stage
HF-1. (b) Injection stage HF-2. We use the history of the injected proppant density (i.e., “Inj. prop.” shown in the top) to represent the occurrence of proppant
injection. The number of events is counted with an interval of 30 s. “N(LFLD),” “N(FDLD),” and “N(Non-LD)” denote the classified numbers of LFLD
events, FDLD events, and non-LD events, respectively.

although the training and validation time takes more than
1 day, the clustering of microseismic events takes only about
2 min for a specific categorization. The major computation
cost is spent on the training and validation process.

To test the reliability of the clustered results, we perform
Silhouette analysis [43] for the clustered microseismic events
in the latent vector domain. The Silhouette scores among
various K values from 4 to 12 with an increment of 1 are
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Fig. 11. Relationships between the cumulative proppant injection volume and the cumulative seismic moment of the LFLD and non-LFLD events. (a) Injection
stage HF-1. (b) Injection stage HF-2.

shown in Fig. 8. The maximum Silhouette score is 0.025 when
K = 10, which indicates that K = 10 is the optimal number
of clusters. According to the Silhouette coefficients of each
component in the optimal number of clusters K = 10 (see
Fig. 9), clusters 6, 7, and 9 are not well separated because
more events have negative Silhouette coefficients than positive
Silhouette coefficients, while the other clusters have more
events with positive Silhouette coefficients.

C. Injection Period and Event Occurrence Times
During hydraulic stimulation, fracture propagation is closely

related to injected fluid volume, as shown by earthquake
hypocenter analysis [44] and fracture mechanics model-
ing [45]. However, the spatiotemporal relationship between
LD seismicity and fluid flow/fracture development has rarely
been studied.

Fig. 10(a) and (b) (top) shows histories of pressure (green
curves) and injected proppant density (blue curves) for Stages
HF-1 and HF-2, respectively (proppant is a solid granular
material – unconsolidated sand for example—used to keep a
hydraulic fracture open). In practice, fracturing fluid (usually
≥ 98% water) is injected first into the reservoir stimulation
region, which aims to increase pore pressure and create initial
fractures. This process is demonstrated from 02:50–03:40
(hour: minute, same notation below) for Stage HF-1 and

03:50–04:25 for Stage HF-2 when the pressure curves fluctuate
the most (see Fig. 10). Proppant is injected into HF-1 during
03:40–05:10 and into HF-2 during 04:25–05:55, and the
pressure is almost constant during proppant injection, as shown
in Fig. 10.

Fig. 10 also depicts histograms of clustered LFLD, FDLD,
and nonlong-duration (non-LD) events as a function of time
for Stages HF-1 [see Fig. 10(a)] and HF-2 [see Fig. 10(b)]. The
sample interval for the histograms is 30 s. We find that the
LFLD events occurred mainly during the proppant injection
period, and the FDLD and non-LD evens were induced before,
during, and after the proppant injection period. The FDLD
event catalog may not be complete because FDLD events
are more complex and thus more difficult to detect than
LFLD and non-LD events. Because the LFLD events occurred
during the proppant injection period as shown in Fig. 10
(top), we hypothesize the following mechanism of fluid flow
in a fractured rock system. During the initial period of fluid
injection, cracks are created, and the effective stress is reduced,
inducing the early stage microseismicity. Without proppant,
most cracks return to a closed state. The proppant injection
dilates the created fractures and forms unhindered conduits
for fluid flow [46]. The oscillation of fluid flow within these
opened fractures results in new fractures, inducing the LFLD
events.



DUAN et al.: MONITORING SUBSURFACE FRACTURE FLOW USING UNSUPERVISED DEEP LEARNING 5907712

Fig. 12. Spatiotemporal distributions of LFLD and non-LFLD events projected onto an east-north plane parallel to the horizontal treatment wells 1 and 2.
Three-time intervals (marked at the top of each panel) are used to show the evolutions of the LFLD and non-LFLD events during the two hydraulic fracturing
stages. “Well 1” and “Well 2” represent the two horizontal treatment wells from which the fluid injection stages HF-1 and HF-2 are positioned, respectively.
(a) Blue, green, and black dots are the LFLD event locations with respect to the above time intervals for injection stages HF-1 and HF-2, respectively. The
95% confidence ellipses have dark colors for relatively early time while light colors for relatively late time. (b) Blue, green, and red dots are the non-LFLD
event locations with respect to the three-time intervals for injection stages HF-1 and HF-2, respectively.

D. Cumulative Seismic Moment of LFLD Events

We then investigate the relationship between the cumulative
seismic moment of LFLD events and the cumulative proppant
injection volume, as displayed in Fig. 11. The seismic moment

(M0) is determined using

M0 = 101.5Mw+9.1 (10)

where Mw is the moment magnitude of microseismicity in
Newton meters (N · m) [47]. The cumulative seismic moment
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can approximate the released seismic energy of an earthquake
sequence. The cumulative seismic moment of LFLD events
exhibits a similar trend to the curves of the cumulative
proppant injection volume. For Stage HF-1, the cumulative
seismic moment of the LFLD events increases linearly as the
cumulative proppant injection volume growths [see Fig. 11(a)].
For Stage HF-2, the cumulative seismic moment of the LFLD
events shows a better linear relationship with the cumulative
proppant injection volume [see Fig. 11(b)], partially because
Stage HF-2 contains more detected LFLD events than Stage
HF-1. In addition, using the same vertical axis for plotting
LFLD events, the cumulative seismic moment of non-LFLD
events does not correlate well with the cumulative proppant
volume curves (see Fig. 11).

Bentz et al. [48] found a proportional relationship between
the cumulative seismic moment and the cumulative volume
of fluid injected. Our results further reveal that such a linear
relationship is better reflected in LFLD events than in non-
LFLD events. This relationship improves the estimate of
the released seismic energy in hydraulic fracturing. It also
provides practical insight into monitoring the progress of
fracture creation, which may help optimize proppant injection
parameters in future work.

E. Spatiotemporal Evolution of Microseismic Events
If our above hypothesis is correct, the detection of LFLD

events provides a new means for monitoring the fluid and
proppant flow through newly created fractures accompanying
fluid injection. Spatiotemporal evolutions of LFLD events can
further validate our hypothesis. We extract the LFLD event
locations from the microseismic catalog provided by Stegent
and Candler [35]. We divide the total time duration of the
LFLD events into three equal time intervals with the starting
time being the occurrence time of the first LFLD event.
Fig. 12(a) shows the results for Stage HF-1. The detected
LFLD events (marked by dots) started at approximately 35 m
away from the starting point of HF-1 and then gradually
spread outwards with time to approximately 115 m away from
the injection well. Assuming that the locations are normally
distributed, the confidence ellipse for each time segment can
be derived using (

x
σx

)2

+

(
y
σy

)2

= χ2 (11)

where (x, y) are the East and North coordinates of the
confidence ellipse, σx and σy are the standard deviations
at East and North directions, and χ2 is the value of the
χ2-distribution (for 95% confidence interval, χ2

= 5.991).
The 95% spatiotemporal confidence ellipses for LFLD events
are shown with a darker color for an earlier time and a
lighter color for a later time as depicted in Fig. 12(a), which
clearly indicates that the fracture flow and created fractures
expand outward from the injection well. We observe the same
phenomena for Stage HF-2 as depicted in Fig. 12(a) (bottom).
During the time period 05:25:21–05:54:59 (hour: minute:
second) on November 18, 2015, the outer ellipse of the LFLD
events crosses through the seismically active zone of Stage
HF-1. The fluid injection in HF-1 was performed two days

earlier than that in HF-2, therefore, the connectivity between
these two adjacent fracture stimulation stages is possible.
When proppant is injected during Stage HF-2, the fluid can
flow to those preexisting fractures and create new fractures.
By contrast, the spatiotemporal distribution of non-LFLD
events [see Fig. 12(b)] is mostly randomly (top) or repeatedly
(bottom) distributed and does not expand from the injection
wells outward with time evolution.

V. CONCLUSION

To cluster hydraulic fracturing-induced microseismic events
recorded in boreholes, we reduce the dimensionality of the
event spectrograms using the U-Net deep neural network and
then classify the events into ten clusters using GMM. We find
four types of microseismic events: 1) the FDLD events;
2) the LFLD event; 3) the HFSD event; and 4) the LFSD event.
We compare the proppant injection history with the occurrence
times of the LFLD events, FDLD event, and non-LD events,
and find that only LFLD events occur during the proppant
injection period, while the other types of microseismicity occur
before, during, and after proppant injection. We also observe
that the cumulative seismic moment of the LFLD events is
linearly related to the cumulative proppant injection volume.
The spatiotemporal distributions of the LFLD events validate
that they are induced by sequential fracture flow, whereas
the other types of microseismic events may not be directly
related to fracture flow. Our findings strongly suggest that the
LFLD events may be induced by the fracture flows during
hydraulic fracturing. Therefore, by clustering LFLD events,
we can optimize the proppant injection parameters (e.g., time,
volume) to improve the efficiency of hydraulic fracturing.

ACKNOWLEDGMENT

This work was completed as part of the Science-informed
Machine Learning for Accelerating Real-time Decisions in
Oil and Gas (SMART-OG) Initiative (edx.netl.doe.gov/smart).
Support for this initiative was provided by the U.S. Depart-
ment of Energy’s (DOE) Office of Fossil Energy and Carbon
Management through the National Energy Technology Lab-
oratory (NETL). The authors wish to thank Joseph Renk
III (NETL), Grant Bromhal (NETL), Mark McKoy (NETL),
Darin Damiani (DOE Office of Fossil Energy and Carbon
Management), and Mark Ackiewicz (DOE Office of Fossil
Energy and Carbon Management), for programmatic guidance,
direction, and support.

CODE AVAILABILITY

The authors modified the existing deep clustering code
to align with the goals of their project. The original code
can be accessed from https://github.com/NeptuneProjects/
RISWorkflow.

REFERENCES

[1] Z. E. Ross and E. S. Cochran, “Evidence for latent crustal fluid
injection transients in Southern California from long-duration earth-
quake swarms,” Geophys. Res. Lett., vol. 48, no. 12, Jun. 2021,
Art. no. e2021GL092465.



DUAN et al.: MONITORING SUBSURFACE FRACTURE FLOW USING UNSUPERVISED DEEP LEARNING 5907712

[2] M. Zecevic, G. Daniel, and D. Jurick, “On the nature of long-period
long-duration seismic events detected during hydraulic fracturing,” Geo-
physics, vol. 81, no. 3, pp. 113–121, May 2016.

[3] K. Aki and R. Koyanagi, “Deep volcanic tremor and magma ascent
mechanism under Kilauea, Hawaii,” J. Geophys. Res., Solid Earth,
vol. 86, no. 8, pp. 7095–7109, Aug. 1981.

[4] M. Fehler, “Observations of volcanic tremor at Mount St. Helens
Volcano,” J. Geophys. Res., Solid Earth, vol. 88, no. 4, pp. 3476–3484,
Apr. 1983.

[5] A. Hofstetter and S. Malone, “Observations of volcanic tremor at Mount
St. Helens in April and May 1980,” Bull. Seismolog. Soc. Amer., vol. 76,
no. 4, pp. 923–938, 1980.

[6] G. Rogers and H. Dragert, “Episodic tremor and slip on the cascadia
subduction zone: The chatter of silent slip,” Science, vol. 300, no. 5627,
pp. 1942–1943, Jun. 2003.

[7] A. G. Wech, “Cataloging tectonic tremor energy radiation in the cascadia
subduction zone,” J. Geophys. Res., Solid Earth, vol. 126, no. 10,
Oct. 2021, Art. no. e2021JB022523.

[8] I. Das and M. D. Zoback, “Long-period, long-duration seismic events
during hydraulic stimulation of shale and tight-gas reservoirs—Part 1:
Waveform characteristics,” Geophysics, vol. 78, no. 6, pp. 97–108,
Nov. 2013.

[9] B. A. Chouet, “Long-period volcano seismicity: Its source and use
in eruption forecasting,” Nature, vol. 380, no. 6572, pp. 309–316,
Mar. 1996.

[10] J. Woods et al., “Long-period seismicity reveals magma pathways
above a laterally propagating dyke during the 2014–15 Bárðarbunga
rifting event, Iceland,” Earth Planet. Sci. Lett., vol. 490, pp. 216–229,
May 2018.

[11] H. Hu, A. Li, and R. Zavala-Torres, “Long-period long-duration seismic
events during hydraulic fracturing: Implications for tensile fracture
development,” Geophys. Res. Lett., vol. 44, no. 10, pp. 4814–4819,
May 2017.

[12] A. Kumar, E. Zorn, R. Hammack, and W. Harbert, “Long-period, long-
duration seismicity observed during hydraulic fracturing of the Marcellus
Shale in Greene County, Pennsylvania,” Lead. Edge, vol. 36, no. 7,
pp. 580–587, Jul. 2017.

[13] M. D. Zoback, A. Kohli, I. Das, and M. McClure, “The importance of
slow slip on faults during hydraulic fracturing stimulation of shale gas
reservoirs,” in Proc. SPE Americas Unconventional Resour. Conf., 2012,
p. SPE-155476.

[14] D. Bame and M. Fehler, “Observations of long period earthquakes
accompanying hydraulic fracturing,” Geophys. Res. Lett., vol. 13, no. 2,
pp. 149–152, Feb. 1986.

[15] V. Ferrazzini, B. Chouet, M. Fehler, and K. Aki, “Quantitative analysis of
long-period events recorded during hydrofracture experiments at Fenton
Hill, New Mexico,” J. Geophys. Res., Solid Earth, vol. 95, no. 13,
pp. 21871–21884, Dec. 1990.

[16] R. Wang, Y. J. Gu, R. Schultz, M. Zhang, and A. Kim, “Source
characteristics and geological implications of the January 2016 induced
earthquake swarm near Crooked Lake, Alberta,” Geophys. J. Int.,
vol. 210, no. 2, pp. 979–988, Aug. 2017.

[17] R. Wang, Y. J. Gu, R. Schultz, A. Kim, and G. Atkinson, “Source
analysis of a potential hydraulic-fracturing-induced earthquake near
Fox Creek, Alberta,” Geophys. Res. Lett., vol. 43, no. 2, pp. 564–573,
Jan. 2016.

[18] J. Yang and H. Zhu, “Locating and monitoring microseismicity,
hydraulic fracture and earthquake rupture using elastic time-reversal
imaging,” Geophys. J. Int., vol. 216, no. 1, pp. 726–744, Jan. 2019.

[19] C. Cauzzi et al., “Earthquake early warning and operational earthquake
forecasting as real-time hazard information to mitigate seismic risk at
nuclear facilities,” Bull. Earthq. Eng., vol. 14, no. 9, pp. 2495–2512,
Sep. 2016.

[20] L. Linville, K. Pankow, and T. Draelos, “Deep learning models augment
analyst decisions for event discrimination,” Geophys. Res. Lett., vol. 46,
no. 7, pp. 3643–3651, Apr. 2019.

[21] M. Beyreuther, C. Hammer, J. Wassermann, M. Ohrnberger, and
T. Megies, “Constructing a hidden Markov model based earthquake
detector: Application to induced seismicity,” Geophys. J. Int., vol. 189,
no. 1, pp. 602–610, Apr. 2012.

[22] S. M. Mousavi, W. L. Ellsworth, W. Zhu, L. Y. Chuang, and
G. C. Beroza, “Earthquake transformer—An attentive deep-learning
model for simultaneous earthquake detection and phase picking,” Nature
Commun., vol. 11, no. 1, pp. 1–12, Aug. 2020.

[23] T. Perol, M. Gharbi, and M. Denolle, “Convolutional neural network for
earthquake detection and location,” Sci. Adv., vol. 4, no. 2, Feb. 2018,
Art. no. e1700578.

[24] C. E. Yoon, O. O’Reilly, K. J. Bergen, and G. C. Beroza, “Earthquake
detection through computationally efficient similarity search,” Sci. Adv.,
vol. 1, no. 11, Dec. 2015, Art. no. e1501057.

[25] C. Chai et al., “Using a deep neural network and transfer learning to
bridge scales for seismic phase picking,” Geophys. Res. Lett., vol. 47,
no. 16, Aug. 2020, Art. no. e2020GL088651.

[26] W. Zhu and G. C. Beroza, “PhaseNet: A deep-neural-network-based
seismic arrival time picking method,” Geophys. J. Int., vol. 216, no. 1,
pp. 261–273, Oct. 2018.

[27] W. Zhu, I. W. McBrearty, S. M. Mousavi, W. L. Ellsworth, and
G. C. Beroza, “Earthquake phase association using a Bayesian Gaussian
mixture model,” J. Geophys. Res., Solid Earth, vol. 127, no. 5,
May 2022, Art. no. e2021JB023249.

[28] I. W. McBrearty, A. A. Delorey, and P. A. Johnson, “Pairwise association
of seismic arrivals with convolutional neural networks,” Seismological
Res. Lett., vol. 90, no. 2, pp. 503–509, Mar. 2019.

[29] C. Song, T. Alkhalifah, and U. B. Waheed, “Solving the frequency-
domain acoustic VTI wave equation using physics-informed neural
networks,” Geophys. J. Int., vol. 225, no. 1, pp. 846–859, Dec. 2020.

[30] W. F. Jenkins, P. Gerstoft, M. J. Bianco, and P. D. Bromirski, “Unsu-
pervised deep clustering of seismic data: Monitoring the Ross Ice Shelf,
Antarctica,” J. Geophys. Res., Solid Earth, vol. 126, no. 9, Sep. 2021,
Art. no. e2021JB021716.

[31] S. M. Mousavi, W. Zhu, W. Ellsworth, and G. Beroza, “Unsupervised
clustering of seismic signals using deep convolutional autoencoders,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 11, pp. 1693–1697,
Nov. 2019.

[32] L. Seydoux, R. Balestriero, P. Poli, M. D. Hoop, M. Campillo, and
R. Baraniuk, “Clustering earthquake signals and background noises
in continuous seismic data with unsupervised deep learning,” Nature
Commun., vol. 11, no. 1, pp. 1–12, Aug. 2020.

[33] C.-C. Chien, W. F. Jenkins, P. Gerstoft, M. Zumberge, and R. Mellors,
“Automatic classification with an autoencoder of seismic signals on
a distributed acoustic sensing cable,” Comput. Geotechnics, vol. 155,
Mar. 2023, Art. no. 105223.

[34] S. M. Mousavi and G. C. Beroza, “Machine learning in earthquake
seismology,” Annu. Rev. Earth Planet. Sci., vol. 51, no. 1, pp. 105–129,
May 2023.

[35] N. A. Stegent and C. Candler, “Downhole microseismic mapping of
more than 400 fracturing stages on a multiwell pad at the hydraulic
fracturing test site (HFTS): Discussion of operational challenges and
analytic results,” in Proc. 6th Unconventional Resour. Technol. Conf.,
Houston, TX, USA, 2018, pp. 3754–3781.

[36] J. Kaiser and R. Schafer, “On the use of the l0-sinh window for spectrum
analysis,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28,
no. 1, pp. 105–107, Feb. 1980.

[37] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in Proc. 8th
Int. Conf., Database Theory, London, U.K. Berlin, Germany: Springer,
2001, pp. 420–434.

[38] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering
high dimensional data,” in New Directions in Statistical Physics: Econo-
physics, Bioinformatics, and Pattern Recognition. Berlin, Germany:
Springer, 2004, pp. 273–309.

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[41] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[42] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
Cambridge, MA, USA: MIT Press, 2012.

[43] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,
pp. 53–65, Nov. 1987.

[44] S. A. Shapiro, O. S. Krüger, C. Dinske, and C. Langenbruch, “Magni-
tudes of induced earthquakes and geometric scales of fluid-stimulated
rock volumes,” Geophysics, vol. 76, no. 6, pp. 55–63, Nov. 2011.

[45] M. Galis, J. P. Ampuero, P. M. Mai, and F. Cappa, “Induced seismicity
provides insight into why earthquake ruptures stop,” Sci. Adv., vol. 3,
no. 12, Dec. 2017, Art. no. eaap7528.



5907712 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

[46] Y. Zheng, “Transient pressure surge in a fluid-filled fracture,” Bull.
Seismolog. Soc. Amer., vol. 108, no. 3, pp. 1481–1488, 2018.

[47] H. Kanamori, “The energy release in great earthquakes,” J. Geophys.
Res., vol. 82, no. 20, pp. 2981–2987, Jul. 1977.

[48] S. Bentz, G. Kwiatek, P. Martínez-Garzón, M. Bohnhoff, and G. Dresen,
“Seismic moment evolution during hydraulic stimulations,” Geophys.
Res. Lett., vol. 47, no. 5, Mar. 2020, Art. no. e2019GL086185.

Chenglong Duan received the Ph.D. degree in
geophysics from The University of Texas at Dallas,
Richardson, TX, USA, in 2022.

He completed his Graduate Research Internship
at the Los Alamos National Laboratory (LANL),
Los Alamos, NM, USA, in 2021. He has been
a Post-Doctoral Fellow at The University of
New Mexico, Albuquerque, NM, USA, since 2023.
His research interests include full-wavefield imag-
ing methods with applications in micro-earthquake
source characterization/Earth structure/volcanology,

and machine-learning classification algorithms in seismology.

Lianjie Huang received the B.Sc. degree in physics
and the M.Sc. degree in mathematics from Peking
University, Beijing, China, in 1985 and 1989, respec-
tively, and the Ph.D. degree in geophysics from the
University of Paris 7/Institut de Physique du Globe
de Paris, Paris, France, in 1994.

He is a Senior Scientist with the Geophysics
Group, Los Alamos National Laboratory (LANL),
Los Alamos, NM, USA. His research areas encom-
pass acoustic and elastic-wave modeling, imaging,
inversion/tomography, and machine learning with

applications to geothermal energy, geologic carbon storage, oil/gas, and cancer
detection and characterization.

Michael Gross received the Ph.D. degree from Penn
State University, State College, PA, USA, in 1993.

He is currently a Senior Research Scientist at the
Los Alamos National Laboratory, Los Alamos, NM,
USA. He is also a structural and petroleum geologist
with a primary focus on brittle deformation (faults
and fractures). He studies the formation and distri-
bution of fractures within the context of mechanical
stratigraphy and structural position/tectonic setting.
Over the past 20 years, he has been mostly involved
in basic research issues; more recently he has been

working with industry to apply various techniques of fracture analysis to
reservoir characterization and optimization.

Michael Fehler received the Ph.D. degree from
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 1979.

Since then, he has been with the College of
Oceanography, Oregon State University, Corvallis,
OR, USA, and Los Alamos National Laboratory, Los
Alamos, NM, USA, where he was a Leader of the
Geophysics Group and later the Division Director
of the Earth and Environmental Sciences Division.
He is currently a Senior Research Scientist in the
Department of Earth, Atmospheric and Planetary

Sciences, MIT. He previously served as the Associate Director at Earth
Resources Laboratory (ERL), MIT. His research interests include seismic
imaging, reservoir characterization, seismic scattering, geothermal energy, and
induced seismicity.

Dr. Fehler was the President of the Seismological Society of America
from 2005 to 2007. He was the Editor-in-Chief of the Bulletin of the
Seismological Society of America for nine years.

David Lumley received the B.Sc. and M.Sc. degrees
in geophysics and astronomy from The University
of British Columbia, Vancouver, BC, Canada, in
1986 and 1989, respectively, and the Ph.D. degree in
geophysics from Stanford University, Stanford, CA,
USA, in 1995.

He is currently a Professor of Earth sciences and
physics at the University of Texas at Dallas (UT
Dallas), Richardson, TX, USA, the Cecil and Ida
Green Endowed Chair in geophysics, the Depart-
ment Head of sustainable earth systems sciences,

and the Director of the Seismic Imaging and Inversion Laboratory at UT
Dallas. Previously, he was a Professor, the Chair in geophysics, and the
Founding Director of the Center for Energy Geoscience, The University of
Western Australia, Perth, WA, Australia, where he was jointly appointed at the
School of Physics and Astrophysics and the School of Earth and Environment.
He was the Founder and a Leader of the 4-D Seismic Research Group,
Chevron Research, San Ramon, CA, USA, and the Founder and the CEO
of Fourth Wave Imaging Corporation (purchased by Fugro in 2007), Aliso
Viejo, CA, USA. His research interests include wavefield data recorded with
large-N sensor arrays, using man-made sources, and natural sources such as
earthquakes and ambient seismic noise. Applications include imaging and
time-lapse monitoring of the Earth’s subsurface, natural resources, energy,
water, fluid flow, CO2 injection and storage, natural and induced earthquake
seismicity, and astrophysical gravitational waves; covering a broad range of
scales including the near-surface “critical zone,” oceans, sediments, deep
aquifers and reservoirs, subduction zones, tectonic crust and mantle, planets
and moons, and astrophysics.

Dr. Lumley was a recipient of SEG’s J. Clarence Karcher Award.

Stanislav Glubokovskikh received the Ph.D. degree
in geophysics (major in physics and mathemat-
ics) from Lomonosov Moscow State University,
Moscow, Russia, in 2011.

He joined the Berkeley Laboratory in November
2020 to work on seismic characterization and mon-
itoring for diverse purposes: from unconventional
reservoirs to geological carbon storage. He is cur-
rently a Research Earth Scientist at the Energy
Geosciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA. Prior to the

Berkeley Laboratory, he was working as a Senior Research Fellow at Curtin
University, Perth, WA, Australia, and a number of research institutions in
Russia. He is a passionate geoscientist with 12 years experience of in
geophysical research and teaching undergraduate and postgraduate courses
to geophysicists.


