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Abstract— In this study, the potential of electromagnetic scat-
tering models to retrieve quantitative parameters of sea oil spills
is investigated using an artificial intelligence (AI)-based approach.
The backscattering coefficient of a slick-covered sea surface is
predicted using the advanced integral equation model augmented
with the model of local balance (MLB), an effective dielectric
constant model, and a composite medium model to include the
effect of an oil slick. Damping ratios (DRs), predicted for different
oil parameters (namely, the oil thickness and seawater volume
fraction), are used to train and test a four-layer neural network.
Once successfully tested, the neural network is applied to an
uninhabited aerial vehicle synthetic aperture radar (UAVSAR)
image collected during the DeepWater Horizon (DWH) oil spill
accident to retrieve the oil slick thickness and volume fraction
of seawater in the oil layer. The inversion results show that the
thicker (i.e., 2–4 mm) emulsions are located in the south and west
of the slick and they are surrounded by thinner (i.e., <1 mm) oil
films. In addition, the seawater volume fraction in the oil slick is
found to be about 20%–30%. Results are contrasted with optical
data and previous studies of the same accidental oil spill, showing
qualitatively good agreement.

Index Terms— Artificial neural network (ANN), DeepWater
Horizon (DWH), oil spill, parameter inversion, scattering model,
synthetic aperture radar (SAR).
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I. INTRODUCTION

THE synthetic aperture radar (SAR) is unanimously rec-
ognized as a key operational remote sensing instrument

for oil spill surveillance and damage assessment owing to
its all-day and almost all-weather observation ability together
with its fine spatial resolution. Although SAR sea oil slick
surveillance is a mature enough application [1], the estimation
of ancillary information as the oil thickness and fractional
volume of seawater is still a challenging task [2]. After crude
oil is spilled into the marine environment, it spreads over
the sea surface and, under the action of wind and waves,
typically starts to mix with seawater giving rise to an emulsion
layer underneath the oil film [3]. Thick layers can be formed
for fresh-spilled crude oils or emulsions with their thickness
ranging from micrometer to millimeter and even centimeter in
the case of low sea state [4]. The spatial extent of the oil and
its thickness distribution are pivotal parameters for remediation
purposes that drive the choice of the more suitable response
method and the spatial allocation of response resources. Thick
or emulsified oil, which needs to be contained, dispersed,
burned, or recovered for clean-up work or prosecution, has the
thickness of 0.5–10 mm [5], [6]. In these cases, the knowledge
of thickness and volume fraction of oil in the water column is
required to target the thickest oil layer or the water area with
the highest oil concentration [7].

However, the accurate and reliable estimation of the oil
thickness and the percentage of oil dispersed into the seawater
remain difficult tasks [8]. In fact, nowadays, operational oil
thickness estimation is performed by trained personnel who
visually inspect the oil slick with the aid of optical cameras.
Empirical relationships between the visual appearance of an
oil slick and its thickness have been proposed, among which
the most extensively adopted is the one included in the Bonn
Agreement [9]. Nevertheless, the visual estimation of the
oil film thickness depends on subjective and environmental
factors. In addition: 1) the estimation approach included in
the Bonn Agreement saturates when oil slicks are thicker
than 0.1 mm, which is the case that includes emulsified oils
requiring clean-up operations [10]; 2) the range of oil thickness
visually inspected is orders of magnitude below the relevant
thickness ranges needed for oil spill countermeasures to work
correctly [2]; and 3) water-in-oil emulsions may differ from
nonemulsified oils in both appearance and physical properties
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leading to incorrect oil thickness estimations [6]. All this
matter suggests that the existing operational methodology to
estimate oil thickness is not mature enough and there is still
large room for improvement [2].

Recent studies demonstrate the potential of SAR imagery to
provide information about the physical properties of oil slicks,
namely, thickness and water-in-oil fraction [11], [12]. In the
SAR image plane, oil slicks are detected as dark spots since
they have lower brightness compared to slick-free sea surfaces.
This is due to both geometrical and dielectric effects of the
oil slick, which, one on side, damps the short-gravity and
capillary sea waves resulting in a lower backscattered signal
and, on the other side, if thick or emulsified slicks are in place,
the dielectric properties of the upper sea surface can be altered
in a way that can be observed at microwave frequencies [8].
To extract information about the oil slick from SAR imagery
while limiting effects of sea state conditions and incidence
angle, the damping ratio (DR), i.e., the slick-free-to-slick-
covered backscattering ratio, has been widely adopted [7],
[11], [13], [14], [15], [16], [17], [18], [19]. It has been shown
that thick crude oils or emulsified oils may give rise to larger
DR values than those of thinner oils. In [20], the DR is
estimated over heavy and light fuel oils and it is shown
to be largest for heavy fuel oils and it increases with the
thickness of the oil layer. In [21], a significant reduction of
the backscatter signal is observed in the thickest part of the
oil slick. In [11], the DR is exploited as a proxy of oil slick
thickness, with larger DR values being related to thicker oil
layers. The DR metric is also used to infer the percentage of
oil-in-water. In [15] and [16], DR values obtained from L-band
uninhabited aerial vehicle SAR (UAVSAR) data collected over
the DeepWater Horizon (DWH) polluted area are analyzed to
estimate the oil/water mixing ratio. Experimental results show
that the oil volume fraction is about 65%–90%. Accordingly,
different DR-based metrics are proposed to determine the
relative oil slick thickness [7]. In [22], the DR evaluated
using co-polarized TerraSAR-X measurements is shown to
well-correlate with the oil volume released on the seawater
oil under low-to-moderate wind speed. Despite automatic or
semiautomatic methods to evaluate the DR of an oil slick [23],
[24], SAR-based oil thickness estimation is still far from being
a mature application using DR [25].

A key issue that limits the development of robust and effec-
tive methodologies to retrieve oil thickness from SAR imagery
is the lack of field measurements and validation data [2]. In [3]
and [26], the DR is used to estimate the concentration of oil
within an oil-in-water emulsion. Numerical predictions, per-
formed using the universal weighted curvature approximation
(UWCA) surface scattering model, are contrasted with high-
quality [i.e., high signal-to-noise ratio (SNR)] L-band SAR
measurements collected during an oil spill clean-up exercise.
Although no ground information was available, the estimated
thickness is shown to be consistent with the expected behavior
of the released oil. In [15] and [16], the DR is used to evaluate
the oil concentration in the DWH slick based on the tilted
Bragg scattering model. The spilled oil is estimated to be a
mixture of approximately 20% seawater and 80% oil whose
thickness is at least a few millimeters. These studies open new

perspectives for quantitative monitoring of marine oil slicks by
dual-polarization SAR imagery [3]. In literature, to the best of
our knowledge, there is no study addressing a simultaneous
quantitative retrieval of oil thickness and seawater (or oil)
volume fraction in the oil slick using the DR metric ingested
in an artificial neural network (ANN) processing, i.e. using a
model-based ANN approach.

Recently, artificial intelligence (AI) technology has been
widely trialed for ability to perform flexible input–output
nonlinear mappings between remotely sensed data and geo-
physical parameters, which has been applied, among all,
to retrieve ocean water depth [27] and soil moisture [28] and
to predict precipitation [29] and agricultural yield [30]. It has
been found great potential for revolutionizing data analysis
and application in the field of quantitative remote sensing [31],
[32]. In [33], the thickness of DWH oil spill has been retrieved
utilizing ANN, which reveals the thickness distribution of the
oil slick present on the SAR image. Nevertheless, since the
spilled oil appeared highly emulsified characteristics, more
information about the emulsion oil is desired to be obtained
from SAR measurements.

In this article, an inversion method is proposed to retrieve oil
parameters, i.e., oil thickness and fractional volume of seawa-
ter simultaneously, from SAR measurements by exploiting an
AI strategy. The rationale consists of overcoming the lack of
ground information using a forward scattering model (FSM).
Hence, first, the backscattered signals from slick-free and oil-
covered sea surface are predicted using an FSM specialized
to the case of thick oil emulsion [34] and, then, they are
combined according to the DR metric. The inversion of oil
parameters is carried out by the AI technique that is trained and
validated on simulated data obtained from the forward model.
Finally, the inversion method is verified using UAVSAR data
collected during the DWH oil accident to demonstrate the
effectiveness of the proposed approach to estimate oil thick-
ness and water-in-oil volume fraction. Inversion results are
qualitatively compared with optical camera images acquired
during the DWH accident and visually inspected by trained
personnel.

The remainder of this article is organized as follows. The
forward model used to predict sea surface scattering with and
without thick emulsified oil slicks is introduced in Section II,
while the AI-based inversion methodology is outlined in
Section III. The UAVSAR and ancillary data collected during
the DWH oil spill accident are introduced in Section IV,
while the experimental results relevant to the inversion of oil
parameters are presented in Section V. Conclusions are drawn
in Section VI.

II. FORWARD SCATTERING MODEL

Several scattering models have been proposed in literature
to predict the microwave signal scattered off a randomly rough
surface. Those methods can be either numerical or analytical,
with the former being typically computational demanding in
the case of large scattering media. Hence, a good tradeoff
between accuracy and computer-time effectiveness is provided
by analytical methods. Among the latter class, the advanced
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Fig. 1. Flowchart of the FSM for predicting the backscattering from
oil-covered sea surfaces.

integral equation method (AIEM), i.e., an improved version
of the well-known integral equation method (IEM), has been
extensively used to deal with sea surface scattering with and
without surfactant in both monostatic and bistatic geome-
tries [12], [34], [35], [36].

In this study, the FSM, depicted in the schematic of
Fig. 1, employs the AIEM augmented with a damping
model and a model to deal with the effective dielectric
constant of the oil/water layer and its effects on the Fres-
nel reflection coefficients Those models are described in
Sections II-A–II-C.

A. Rough Surface Scattering Model: AIEM

For multiscale roughness surfaces, e.g., the sea surface,
the family of two-scale models is largely adopted to include
in the predicted normalized radar cross section (NRCS) the
effects of both large- and small-wave structures. Among these
models, the AIEM has been largely employed since it does
not rely on splitting the roughness spectrum into different
parts [37], [38]. The AIEM integrates the classical Kirchhoff
approximation (KA)—used to describe the scattering contri-
butions resulting from large-scale roughness—with the small
perturbation model (SPM)—adopted to describe the scattering
contributions resulting from small-scale roughness. The AIEM
includes KA and SPM as special cases achieved in the low-
and the high-frequency regions of the sea surface roughness
spectrum, respectively. By bridging the gap between KA and
SPM, the AIEM can be used to predict the NRCS of a sea
surface calling for a broad range of roughness. According to
the AIEM, the surface field consists of the sum of a Kirchhoff
term and a complementary field term. In this way, the NRCS
can be obtained as the sum of the Kirchhoff term σ k

pq , the
complementary term σ c

pq , and the cross term σ kc
pq [37]

σ 0
pq = σ k

pq + σ c
pq + σ kc

pq (1)

where subscripts p and q denote the transmitted and received
polarization of the microwave signal, respectively. Given small

slopes of typical sea surfaces, the multiple scattering can be
neglected and the NRCS of the sea surface predicted by AIEM
is given by

σ 0
pq =

k2

2
e−σ 2(k2

sz+k2
i z)

∞∑
n=1

σ 2n

n!

∣∣I n
pq

∣∣2W n (2)

where k is the wavenumber of the electromagnetic wave with
ksz and ki z being the projection of the scattering wave and
incident wave on the normal direction. For backscattering
configuration, since the scattering angle θi is identical to the
incidence angle θs , ksz equals ki z . I n

pq denotes the surface field
function, which can be referred to [37] for details. Roughness
parameters of the sea surface include: 1) σ , the root-mean-
square (rms) height, and 2) W n , the n-fold convolution of the
sea surface spectrum, which is also the Fourier transform in
the spatial domain of the nth power of the autocovariance
function ρ(r, ϕ). For sea surfaces, σ can be calculated from
the omnidirectional sea spectrum S(K ) as

σ 2
=

∫
∞

0
S(K )d K (3)

with K being the wavenumber of sea waves. The functions
ρ(r, ϕ) and W n can be calculated from the directional sea
spectrum S(K , φ) as

ρ(r, ϕ)

=
1
σ 2

∫
∞

0

∫ 2π

0
S(K , φ) exp( j Kr cos (ϕ − φ))K d K dφ (4)

W n(K , φ)

=
1

2π

∫
∞

0

∫ 2π

0
ρn(r, ϕ) exp( j Kr cos (ϕ − φ))rdrdϕ (5)

with φ being the wind direction with respect to the incident
direction of radar. Note that the directional sea surface spec-
trum S(K , φ) is factorized into the product of S(K ) and the
angular spreading function 8(K , φ) as

S(K , φ) = S(K ) · 8(K , φ). (6)

In this study, S(K ) and 8(K , φ) are the ones described
in [39].

To predict the scattering from an oil-covered sea surface, the
slick-free sea surface AIEM scattering model should be aug-
mented to describe two oil-related effects: 1) the damping of
small-scale wind-induced surface waves and 2) the reduction
of the sea surface dielectric constant when a thick or emulsified
oil is in place [16]. The two effects are described and modeled
in Sections II-B and II-C. The backscattered signal, and
therefore information retrieval process, also depends on the
penetration depth of the radar signal into the mixture that is
given by [40]

δ =
1

k
∣∣I

(√
εeff

)∣∣ (7)

where I (·) stands for imaginary part and εeff is the dielectric
constant of the oil/water mixture. The oil—in the microwave
range of the spectrum—calls for a dielectric constant, which
is relatively much lower than the (typical) sea surface one.
According to [40], the intensity of the radar signal reduces
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to about 37% of its value at the upper boundary of the layer
at δ meters within the scattering layer. This means that, from
an electromagnetic viewpoint, two factors play a key role in
the radar sensitivity to oil thickness: the damping and the
modification of the dielectric constant.

A thin film (thickness lower than roughly δ/10 [8]) only
marginally affects the dielectric constant of the underlying
water and, therefore, it does not have any “measurable” effect
on the effective dielectric constant of the scattering surface.
In this case, the “measurable” effect relies on the attenuation
of the NRCS due to the damping of the small-scale Bragg-
resonant roughness.

In a thicker layer (thickness larger than roughly δ/10), the
radar signal interacts with the medium composed by oil and
seawater and, therefore, at least in principle, the backscattered
wave carries out information about oil thickness.

The abovementioned theoretical rationale suggests that the
radar ability to provide information about the thickness of
the mixture layer depends on the radar frequency (according
to (7), the higher the frequency, the lower the penetration
depth), the dissipation term (i.e., the imaginary part of the
dielectric constant), with the larger being the dissipation term
and the lower the penetration depth. In addition, the retrieval
performance significantly relies on the SAR figure of merit—
among them, the noise equivalent sigma zero (NESZ) plays a
key role in sea state conditions [41], [42].

B. Damping of Sea Surface Roughness

The oil slick damps capillary and short-gravity waves
through the reduction of wind friction velocity and surface
tension, which both suppress wave growth and increase wave
viscous dissipation [43]. In addition, the longer wave part can
be also affected through nonlinear wave–wave interaction [44].
To include these aspects comprehensively, the model of local
balance (MLB) is adopted, which is based on the action
balance equation. Accordingly, the damping of sea waves by
an oil slick is given by [34]

yMLB
(
u∗,s, yvis[d, νs], 1α, K

)
=

β
(
u∗,s

)
− 2(1 · yvis)cg + (α + 1α)

β(u∗) − 21cg + α
(8)

where β denotes the wind growth rate that depends on the
wind friction velocity u∗. In the case of the slick-covered sea
surface, the friction velocity is reduced with respect to the
slick-free one by a damping factor µ ≈ 0.7–0.8. Hence, u∗,s =

µ · u∗. The viscous dissipation term 21 · cg , with cg being the
group velocity of sea waves and 1 being the clean sea surface
damping coefficient, is enhanced in the case of slick-covered
surface by the viscous damping coefficient yvis.

In the case of the thick emulsified oil, the two-layer fluid
model is here adopted, which relates the viscous damping
coefficient yvis with the thickness d , oil viscosity νs , and
other physical parameters of the finite layer covered on the
sea surface [45]. Experimental results have proved that the
viscous damping of emulsions (with a thickness spanning
from several tenths to 10 mm) can be well described by yvis

[46]. The reduction of the wind input energy β(u∗,s) and the

increasing of viscous dissipation 2(1 · yvis)cg in the capillary
and the short-gravity wave regions of the sea spectrum make
the energy transfers from the longer to the shorter wave part to
maintain the equilibrium of the sea surface. This is accounted
for using the nonlinear wave–wave interactions rate α that is
increased with a factor 1α. Further details about MLB are
provided in [34].

The sea surface geometry is described by the roughness
spectrum S(K , u∗), i.e., the Fourier transform of the auto-
correlation sea surface function. Hence, the slick-covered sea
roughness spectrum, Ss(K , u∗,s), is described by applying the
MLB coefficient to the Elfouhaily sea spectrum [39]

Ss(K , u∗,s, d, νs) =
S(K , u∗)

yMLB
(

K , u∗,s, d, νs
) . (9)

The roughness parameter required for the scattering predic-
tion using (2), namely, σ and W n , are, therefore, both obtained
by the slick-covered sea roughness spectrum Ss(K , u∗,s, d, νs).

C. Reduction of Dielectric Constant for Oil Emulsion

In the microwave region, the dielectric constant of seawater
(e.g., εr ≈ 72 − j73 at L-band) calls for both real and
imaginary parts larger than the corresponding crude oil one
(which is roughly equal to εo = 2.3 − j0.02). However, the
mixing of seawater and oil, namely, the oil-in-water emulsion,
leads to significant variations in the sea surface dielectric
properties. The effective dielectric constant of an oil emulsion
can be described by the Bruggeman mixing formula [47]

εeff( fv) =
εe

4
− (1 − 3 fv)(εi − εe)

+

√[
εe − (1 − 3 fv)(εi − εe)

]2
+ 8εiεe (10)

where fv stands for the fraction of volume that contains
homogeneous spherical inclusions, whose dielectric constant
is εi , while εe denotes the dielectric constant of the host
homogeneous environment. In this study, water-in-oil (W/O)
emulsions are considered, where seawater droplets (i.e., the
inclusions) are surrounded by the oil. In this way, fv is the
seawater volume fraction of the emulsion oil, when fv = 0 (1),
the pure crude oil (pure seawater) case is in place.

In addition, the emulsion-covered sea surface is modeled as
a composite medium, which consists of three layers: air, finite
oil layer, and semi-infinite seawater. The effective reflection
coefficient R̃ can be calculated based on the layered medium
model

R̃(d, εeff) =
R01 + R12e−2γ1d cos θ1

1 + R01 R12e−2γ1d cos θ1
(11)

where R01 and R12 (are the reflection coefficients) at the
air–oil and the oil–water interfaces, which are both related
to the effective dielectric properties of the oil layer εeff, and,
therefore, they depend on the fraction of seawater in the oil,
fv . γ1 and θ1 are the propagation constant and the refraction
angle of the electromagnetic wave in the oil layer, respectively,
which are both referred to [48]. Note that R01 and R12 are both
related to the permittivity of the oil layer, namely, εeff. The
composite reflection coefficient is derived from the reflection
and transmission of incident waves in the air–oil surface and
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oil–seawater interface and is thus suitable for the oil layer with
arbitrary thickness.

In this way, the roughness damping effect of oil slicks
is embodied through (9) and thus alters σ and W n in (2),
which mainly depends on d. Also, the effect of dielectric
reduction modifies I n

pq in (2) by (10) and (11), which involves
both d and fv . By augmenting the AIEM slick-free scattering
model including the damping effect and dielectric properties
of the oil slick, the NRCS of a slick-covered sea surface, σ 0,s

pq ,
can be predicted. Accordingly, the DR can be predicted as
follows [49]:

DRpq =
σ 0

pq

σ
0,s
pq

. (12)

Fig. 2 shows the L-band DR values predicted at horizontal
transmit–horizontal receive (HH) and vertical transmit–vertical
receive (VV) polarizations with respect to oil thickness (in
mm) and volume seawater fraction (in percentage) at the
incidence angle of 30◦, under a moderate wind speed of
5 ms−1. Fig. 2(a) shows that the VV-polarized DR is slightly
larger than the HH one (less than 0.5 dB), which is consistent
with [16] and [50]. Fig. 2(b) and (c) shows that the DR
increases monotonically with the oil layer thickness, while
it calls for a nonmonotonic trend with respect to the water
content. In addition, the DR exhibits the largest sensitivity to
fv at higher d values, while the largest sensitivity to d is at fv
values around 50%. Note that the nonzero DR values for the
largest fv seawater volume fraction are due to the presence of
the nonemulsified oil layer.

It is also worth noting that the DR, which can be measured
according to (12), carries on key information about both
dielectric (which, at once, depend directly on the W/O volume
fraction and indirectly on oil thickness) and geometrical (i.e.,
the surface roughness) properties of the oil slick.

III. ANN-BASED RETRIEVAL APPROACH

The theoretical model and the sensitivity analysis provided
in Section II have shown the nonlinear and implicit relation-
ship between the quantitative parameters of oil slicks and SAR
backscattering signals, which requires the inversion method
to fulfill the nonlinear modeling capability. ANNs’ nonlin-
ear, sample-based, and model-free architecture allow it to
solve the highly nonlinear multiparameter relationship between
oil parameters and backscattering signals. Therefore, in this
section, the retrieval of the oil layer thickness and seawater
volume fraction is addressed using an ANN-based inversion
scheme, which is applied to simulated SAR measurements.

The proposed retrieval approach consists of three steps:
1) simulating the training dataset using the forward electro-
magnetic scattering model; 2) training the neural network to
optimize its structure and parameter settings; and 3) testing the
neural network using an independent simulated test dataset.
These steps will be detailed in the following.

In this study, the FSM-ANN technique is implemented to
simulate DR values under different incidence angles and oil
parameters. The need for using simulated data is due to the
lack of consistent and reliable in situ NRCS measurements
over slick-covered sea surface. The multilayer perceptron

TABLE I
STATISTICS OF OIL PARAMETERS AND INCIDENCE ANGLE USED

TO SIMULATE THE DR USING THE FSM (n = 6000)

(MLP) is here adopted since, among ANN-based approaches,
it is found to be one of the best solutions for nonlinear
regression of remotely sensed measurements [51]. The MLP
consists of multiple layers whose basic units are known as
neurons. The first layer, i.e., the input layer, is separated from
the last layer, i.e., the output one, by hidden layers.

The neural network is trained using the slick-free and slick-
covered NRCSs predicted using the abovementioned FSM.
The weights and bias of the ANN are iteratively adjusted
during the training process to minimize the error between the
network and forward model output. Finally, the trained ANN
is validated by an independent set of model-predicted data.

A. Training Dataset Simulated by the FSM

To fully train and test the inversion model, the FSM is used
to generate a large dataset of simulated DRs. In this study, the
goal is to show the ability of the proposed approach to retrieve
oil parameters by SAR imagery. Hence, a well-known oil
spill is considered, i.e., the DWH accident, and therefore, the
external environmental parameters (wind speed u∗ and wind
direction ϕw) and rheological properties of oil slicks (viscosity
νs , surface tension, and so on) are given as fixed input parame-
ters. The values assigned to the oil variables d and fv , as well
as the incidence angle θi , are randomly generated based on the
uniform and independent distribution. N = 6000 sets of input
variables are generated and the corresponding co-polarized
DRs are predicted by the FSM. In this study, the simulated
dataset is randomly split into training (3600 sets, 60%) and
validation (2400 sets, 40%) datasets. To improve the reliability
of the oil parameter retrieval, the oil thickness is constrained
in the range of 1–5 mm. The statistics of the FSM simulated
dataset are listed in Table I.

B. Architecture and Training of the ANN

In this study, it is found that a multilayer feedforward neural
network with three hidden layers, each including ten nodes,
is the best architecture, i.e., it guarantees no overfitting in
the retrieval of oil parameters from the simulated DRs. Note
that the DR values ingested by the ANN are subject to data
normalization. The final ANN architecture is shown in Fig. 3,
where the three input neurons (DRHH, DRVV, and θi ) and the
two output neurons (d and fv) are shown. In this study, the
ANN is trained for the retrieval of d and fv simultaneously to
exploit their correlation. In fact, d and fv are a joint effect on
the predicted NRCS since they are both linked to the reflection
properties of the composite sea surface. In addition, d also
affects the oil damping.
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Fig. 2. (a) Predicted L-band VV (blue) and HH (red) DR values (decibel scale is adopted) versus oil thickness and seawater volume fraction. An incidence
angle of 30◦ and a wind speed of 5 ms−1 are considered. (b) Predicted DR values versus oil thickness for fv = 50%. (c) Predicted DR values versus seawater
volume fraction when d = 2 mm.

Fig. 3. (a) Sketch of the ANN structure with blue and red dashed boxes denoted NN and NN+, respectively. (b) Density plot of predicted versus modeled oil
thickness values. (c) Density plot of predicted versus modeled W/O seawater volume fraction. The colormap in (b) and (c) represents the estimated Gaussian
kernel density of the testing dataset multiplied by the number of testing samples with red color denoting much greater density of testing samples and blue
color denoting the opposite.

The training is carried out using the resilient backprop-
agation algorithm. To evaluate the ANN performance and
to discuss its robustness, a set of simulation samples—
independent of the training process—which consists of oil
parameters and corresponding DRs, is considered as a valida-
tion dataset. The early stopping is utilized to stop the training
at the right time and to improve the training efficiency. Once
the network is adequately trained by random data generated
using the FSM, the ANN is tested on the validation dataset, for
which the same normalization applied for the training dataset
is adopted. The ANN output is then subjected to the inverse
normalization.

The retrieved d and fv values are contrasted with the
corresponding modeled values from the test dataset, see
the density plot of Fig. 3(b) and (c), respectively, where the
z-axis represents the variable density estimated using a Gaus-
sian Kernel. The scores of the inversion scheme, i.e., the
coefficient of determination (R2), the mean absolute error
(MAE), and the mean square error (MSE), are listed in
Table II. The network that deals with the oil thickness retrieval,
see Fig. 3(b), has been accurately trained as can be observed
by the distribution of ANN retrieved values that mostly
concentrate along the 1:1 line with the FSM modeled values.

TABLE II
INVERSION SCHEME PERFORMANCE EVALUATED ON THE TEST DATASET

Quantitatively, R2 is equal to about 0.98, while MAE and MSE
values are about 0.11 and 0.02 mm, respectively.

The network that deals with the inversion of W/O volume
fraction is fed with the same inputs of the ANN used for
oil thickness retrieval (see Fig. 3(a) denoted by blue dashed
box). Results, depicted in Fig. 3(c), show that the ANN
results in volume fraction values, which are less consistent
with the FSM ones, especially when the latter are larger than
0.3 where values inverted from the network saturate. This is
quantitatively confirmed by R2 that decreases to 0.59 with
an MAE of about 14.03%, see Table II. This means that the
trained ANN does not work properly in the retrieval of fv .
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Fig. 4. Density plot of W/O seawater volume fraction retrieved by NN+

versus the one simulated with FSM.

To improve the retrieval of fv , a new NN structure (NN+,
see Fig. 3(a) denoted by the red dashed box) is designed where
the previously retrieved d is used as an input neuron. The
performance NN+ on the test dataset is shown in Fig. 4 and
Table II. Those results clearly demonstrate that NN+ signifi-
cantly improves all the scores of the former ANN and that the
distribution of fv values retrieved by NN+ is much closer to
the 1:1 line with the FSM model values. By contrasting NN
and NN+ density plots (see Figs. 3(c) and 4), it can be noted
that NN+ improves the retrieval performance at fv around
0.4 and fv larger than 0.8 but overestimates fv values smaller
than 0.4.

It must be pointed out that the ANN approach, to reduce
the occurrence of multiple solutions of d and fv , adopts a
strategy that consists of minimizing the error in the training
dataset. In this way, the underestimation of inversion results
for fv in the range of 0–0.4 in Fig. 4 may be at the expense
of improvement of fv inversion around 0.4 and 0.8.

IV. EXPERIMENTS ON ACTUAL AIRBORNE SAR IMAGERY

In this section, the proposed ANN-based retrieval approach
is applied to actual polarimetric L-band airborne SAR mea-
surements.

A. DWH Oil Spill

The DWH oil spill in the northern part of Gulf of Mexico
can be considered as the largest marine oil spill accident in
the history. On 20 April 2010, the DWH drilling rig exploded
causing human losses and casualties. The oil spillage has
lasted for 87 days before the well was finally capped. An enor-
mous disaster took place, which can be roughly estimated to be
3.19 million barrels (roughly 500 000 m3) of oil and several
hundreds and thousand tons of hydrocarbon gases released
into the ocean, which caused extensive damage to marine
and coastal environment, as well as the wildlife habitat and
ecosystem [52]. The enormous oil slicks that formed during
the accident provide an unprecedented opportunity to study
oil films, characterized by unique thickness variability and
spatial extent features, using remotely sensed measurements,
including the ones collected by SAR [53].

Fig. 5. VV-polarized UAVSAR image of DWH oil spill collected on June
23, 2010 at 20:42 UTC. The green line indicates the slick-free sea surface
range-oriented transect considered for the quantitative analysis.

B. UAVSAR Data

During the accident, many measurements were remotely
sensed by airborne and satellite sensors over the polluted
area, including the airborne UAVSAR equipped on the
Gulfstream-III aircraft operated by the U.S. National Aero-
nautics and Space Administration (NASA). The UAVSAR
is a quad-polarimetric L-band sensor with wide range and
high-quality imaging capabilities (incidence angle spanning
from 22◦ up to 65◦ from near to far range), i.e., a swath width
of about 22 km, calling for a minimum NESZ of −54 dB [54].
During the DWH oil spill, UAVSAR acquired images of the
main slick area on 22–23 June [55].

The image used in this study was collected on June
23 at 20:45 UTC, flight ID 14010, where the UAVSAR
overflew the DWH rig site at a heading of 140◦ (filename:
gulfco_14010_10054100_100623). Preprocessing is carried
out that consists of multilooking (3 range × 12 azimuth
looks) to get a pixel spacing of 5 × 7.2 m in slant range
and azimuth. Since the oil may have undergone a weathering
process, including emulsion, evaporation, and sedimentation,
the characteristics of the slick exhibit significant variations
from thin sheens to thicker layers of crude oil and oil emul-
sions. The bulk of the spilled oil imaged by the UAVSAR
consists primarily of brown emulsified oil, ranging from red to
brown in color, mixed with thinner (silver and rainbow) sheen
layers. This analysis comes from collective observations and
interpretations by trained personnel of the properties of the
oil from aerial photographs [16]. At the UAVSAR acquisition
time, the sea surface conditions, obtained by both buoy data
and Wavewatch III model predictions, called for a wind speed
between 2.5 and 5 m/s with directions from 115◦ to 145◦.

In this study, quantitative analysis is performed on data
collected at intermediate incidence angles, i.e., from 37◦ to
63◦, to sort out pixels whose backscattering is dominated
by specular mechanism and pixels whose backscattering is
corrupted by noise [47]. An excerpt of the VV-polarized SAR
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Fig. 6. NRCS versus incidence angle measured over the slick-free sea surface
(see green line highlighted in Fig. 5) at VV (blue) and HH (red) polarizations.
Note that AIEM predictions are also annotated in black with circle (VV) and
cross (HH) markers.

Fig. 7. Probability density function of DR values evaluated from HH (red)
and VV (green) UAVSAR channels.

image that includes the oil slick is depicted, in graytones and
dB scale, in Fig. 5, where several bright spots at the bottom of
the slick are clearly visible that mostly refer to ships involved
in cleaning-up operations.

C. Analysis on SAR Measurements

To verify the effectiveness of the FSM in predicting the
NRCS related to sea surface, the statistics of the slick-free
NRCS are evaluated over the samples belonging to the green
line in Fig. 5. The mean and standard deviation values of
the co-polarized NRCSs, evaluated binning the NRCS using
50 pixels in the azimuth direction and 25 pixels in the range
direction, are shown in Fig. 6 using the error bar format.
Blue and red colors refer to VV- and HH-polarized NRCS.
In addition, the VV- and HH-polarized NRCSs predicted using
the AIEM are also annotated for reference purposes (see the
black plots with circle and cross markers, respectively). It can
be noted that measured and predicted NRCSs exhibit a fairly
good agreement confirming the expected Bragg behavior in
the considered incidence angle range and sea state conditions,

Fig. 8. Oil thickness map obtained using the ANN inversion methodology.

Fig. 9. Water content map obtained using the ANN inversion methodology.

i.e., the co-polarized NRCSs decrease with incidence angle
and the VV channel results in larger backscattering than the
HH one. However, model predictions deviate from measured
NRCS values of about 2–3 (1–2) dB for VV (HH) polarization
at an incidence angle of less than 45◦.

The empirical probability density distribution (pdf) of HH
(red) and VV (green) DR evaluated from the UAVSAR image
is depicted in Fig. 7. The oil mask is obtained by applying a
constant false alarm rate (CFAR) method to the VV-polarized
SAR image [56]. The region of interest (ROI) of the slick-free
sea surface is selected manually and the sea clutter is assumed
to be Rayleigh-distributed. The false alarm rate is set as 10−2

and then the decent threshold to detect the oil slick can be
obtained. To eliminate the effect of the model underestimation,
the NRCS of the clean sea surface [the numerator in (12)] is
derived by applying polynomial fit to mean values of the tran-
sect line in Fig. 6. Both the pdfs can be well-approximated by a
normal distribution at both polarizations, with the mean value
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Fig. 10. (a) ANN-based estimated oil map where ancillary photographs and observations, highlighted in Figs. 10–12, are annotated. (b) Cropping of area A.
(c) Cropping of area B. (d) Cropping of area C.

Fig. 11. Aerial photographs collected in the area A. (First row) Images collected during the EPA ASPECT overflight oblique photography (a) 55-37: “OF 37”
and (b) 55-38: “OF 38” obtained at 16:28 UTC. (Second row) Photograph collected during the RAT Helo overflight (c) “HELO 431” obtained at 19:53 UTC
and (d) “HELO 453” obtained at 19:56 UTC. (Third row) Photograph collected during the TAC OPS Helo overflight “HELO 09” collected at 20:16 UTC.

about 5 (4) dB for VV (HH) polarization, with VV-polarized
DR slightly stronger than that of HH-polarization as it was
found in [16] and [50].

V. OIL PARAMETER RETRIEVAL FROM UAVSAR DATA

In this section, DR evaluated from UAVSAR imagery
together with the incidence angle map is ingested in the trained
ANN to retrieve the oil thickness d and the volume fraction
of seawater fv .

A. Oil Thickness Estimation

The oil thickness estimated by applying the ANN approach
to the DWH oil slick imaged by UAVSAR is depicted in
Fig. 8. The thicker part is located in the south and west
parts of the oil slick, which is consistent with most of the
thickness pattern discussed in [4]. The estimated thickness
of the thicker oil layer ranges between about 2 and 4 mm.
These results agree with the visual inspections of the adsorbent
pad samples collected in proximity of the DWH wellhead
during the SINTEF expedition that reported an oil thickness
ranging approximately between 2 and 4 mm [57]. The light
brown/orange/reddish appearance of emulsions suggested that
the emulsified oil was more elastic and less prone to spread

over the sea surface. This indicates that the oil slick had been
heavily weathered [57]. In addition, NOAA aerial observations
conducted over the emulsified oil showed that the latter calls
for a thickness ranging from 0.2 up to 3 mm with a mean value
of 1 mm. Thinner slicks, calling for thickness smaller than
1 mm, are also present in the northeastern and southwestern
parts of the slick.

B. Volume Fraction of Seawater Estimation

The estimated volume fraction of seawater in the oil layer
is depicted in Fig. 9, which shows that most of the oil slick
calls for fv , ranging between 20% and 30%, with an average
value of about 27%. The very right portion of the slick results
in the largest fv , which may be due to the noise corrupting
SAR measurements under high incidence angle and, therefore,
making the inversion results less trustable [16]. The estimates
agree with results reported in [15] where the oil volume
concentration estimated by the same UAVSAR ranges from
65% up to 90% (i.e., fv ranging from 10% up to 35%) with a
mean value of about 80% ( fv of seawater 20%) despite a little
overestimation of the mean value of fv . In addition, in [15],
it is shown that most of the oil was mixed with seawater at
least up to a depth of a few millimeters.
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Fig. 12. Aerial photographs collected in the area B. (a)–(f) Related to oblique photography collected during the EPA ASPECT overflight “OF 14,” “OF 17,”
“OF 18,” “OF 19,” “OF 20,” and “OF 30” obtained between 16:16 and 16:25 UTC. (g) TAC OPS photograph acquired during the overflight “HELO 03” at
16:04 UTC. (h) Photograph taken during the RAT Helo overflight “HELO 449” obtained at 19:56 UTC.

Fig. 13. Aerial photographs collected in the area C. Oblique photography
acquired during the EPA ASPECT overflight (a) “OF 51” and (b) “OF 52” at
16:49 UTC.

C. Experimental Results Contrasted With Aerial Photographs
and Visual Observations

The locations of the aerial observations are annotated on
the ANN-based oil thickness map in Fig. 10. The aerial
observations acquired on June 23, 2010, include NOAA aerial
and helicopter imagery and observations labeled as “HELO”
and Environmental Protection Agency (EPA) oblique pho-
tographs labeled as “OF.” According to their locations and
the ANN-based inverted thickness, the aerial data are divided
into three groups (see Fig. 10): thick area, marked with a red
ellipse (“area A”), middle thick area, marked with an orange
ellipse (area “B”), and thin area, marked with a white ellipse
(area “C”). The pictures related to aerial photographs and
observations in areas A, B, and C are depicted in Figs. 11–13,
respectively. Fig. 11 shows that area A calls for emulsions
with red or brown appearance. Fig. 12 shows that in area B,
brown emulsions together with thin sheen oils can be observed.
Fig. 13 shows that in area “C,” an oil–water mixing is in
place with oil submerged into the seawater appearing as black

stripes, which may indicate emulsions with high water content
or crude oil with no water content.

VI. CONCLUSION

This study is to show the feasibility of a model-based
ANN approach to retrieve ancillary parameters (namely, the
thickness of the oil slick and the volume fraction of seawater)
related to oil spills in SAR imagery. The benefit of the
proposed approach is twofold.

1) It paves the way to overcome the tremendous lack of
trustable in situ measurements about oil parameters. This
represents a drawback that significantly limits the use
of ANN to estimate oil parameters. The approach we
proposed mitigated this drawback by train the network
using an FSM whose accuracy in predicting slick-free
and slick-covered NRCS has been already discussed in
literature.

2) The resulting model-based ANN, trained and tested
by using simulated measurements, is applied to actual
L-band SAR imagery that includes an oil-polluted area
to retrieve the oil thickness and the fraction of water
into the oil maps. Results, contrasted with independent
surveys and literature studies, confirm the accuracy of
the proposed approach.

In fact, by processing the L-band polarimetric radar imagery
collected by the UAVSAR during the DWH oil spill accident,
we found that the thicker emulsified oil—with a thickness
ranging from about 2 to 4 mm—is located in the middle of the
slick, while thinner films (less than 1 mm) are located at the
northeastern and southwestern sides of the slick. In addition,
it is found that the DWH slick is a water-in-oil mixture where
the percentage of seawater ranges between about 20% and
30%. Those results agree with independent studies carried
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out in [15], [16], and [57] and with areal and helicopter
photographs taken by NOAA.

Although the model-based ANN showed very promising
results, there is still room for improvements in both the NN
architecture and the simulation of the parameters that will be
addressed in future work.
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