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Abstract— Image registration is a crucial step in interfer-
ometric synthetic aperature radar (InSAR) and in synthetic
aperture radar (SAR) tomography. Generally, a displacement
of the sensors, e.g., due to different flight tracks, causes an
image distortion that is dependent on the terrain height that
is being observed. While ground truth digital elevation map
(DEM) data are often available to roughly compensate for this
distortion, there are application scenarios where the acquisition
paths are too irregular or DEMs are not available. In such cases,
image registration via image processing is a suitable choice.
While the SAR community prefers patch-based correlation
techniques, the computer vision community has investigated the
same issue from technically different points of view. In this article,
we study the performance of correlation- and computer vision-
based image registration techniques for the image registration
problem in SAR, in particular in airborne SAR without ground
truth. We show that computer vision algorithms can outperform
correlation-based techniques.

Index Terms— Airborne synthetic aperture radar (SAR),
computer vision, image registration, optical flow.

I. INTRODUCTION

IMAGE registration is the process of matching pairs of
images of the same scene obtained with different imaging

parameters. Often, the image pair is taken from different
positions of a sensor, possibly acquired at different times or
even with different sensors [1], [2]. We focus on synthetic
aperture radar (SAR) image coregistration that is mandatory
in the fields of SAR interferometry (InSAR) [3] and SAR
tomography [4], but that is also useful in other applications
such as change detection, comparison of data from different
acquisitions, etc. Our goal in this article is the comparison
of classical correlation-based approaches that are commonly
used in the literature [1] with algorithms developed over the
last decades in computer vision community that faces similar
challenges.

In both, InSAR and SAR tomography, SAR data is captured
from different positions and different incident angles of the
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sensor which results in an apparent shift of pixels in every
image with respect to a reference position. In practice, the
shift may not be uniform in all areas of the image due to
factors such as the influence of the flight track, the height of
the targets and the atmospheric conditions while capturing the
data.

In spaceborne InSAR constellations (like TerraSAR-X and
TanDEM-X) the position and the rough height model of the
scene are known a priori, so that the mutual shifts of the pixels
can be compensated using this geometry [5]. The remaining
mutual shifts are usually detected using cross correlation [6],
even though the techniques evaluated in this article may prove
useful for this task as well.

Instead, we investigate the more challenging scenario of
airborne SAR interferometry, i.e., SAR with data obtained
from airplane-mounted SAR sensors because it includes a
set of additional challenges. Supposedly, an algorithm that is
robust in the more challenging scenario also yields more robust
results on simpler problems. For this scenario, the additional
challenges include imperfect, nonparallel airplane trajectories
as well as poor coherence between images due to a wide
variety of incidence angles.

In the computer vision context, the image registration
problem, when considered on a per-pixel level, is known as
the optical flow problem. Optical flow refers to the visual
perception of the movement of objects in a scene, which arises
from the motion of either the sensor or an object, or both.
Since the literature on the subject is extensive, we refer to
the Middlebury benchmark [7] for a comprehensive reference
and comparison of different algorithms developed over the
course of about four decades of research on the problem in this
community. In the field of SAR, some researchers have drawn
inspiration from optical flow techniques to analyze high-
resolution 3-D scene data by monitoring how the movement
of circular SAR affects the energy patterns generated by
targets [8], [9].

Even though the benchmark is extensive and has been
methodologically improved several times, it is relevant only
to photographic visible light images, the conclusions of which
may not carry over to other application scenarios [10]. In par-
ticular, the benchmark is, at the time of writing, dominated
by neural network-based algorithms. These algorithms achieve
success by having access to a very large database of ground
truth results. This is possible because sensor variation between
different photographic cameras and lenses is less pronounced
than that found in different SAR sensors. It is therefore
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difficult to apply network-based approaches in the SAR image
registration context. We demonstrate this claim by including
recurrent all-pairs field transform (RAFT) [11], one of the top-
performing network-based methods in our evaluation.

Before the machine learning revolution in computer
vision, energy-based optimization approaches were domi-
nating the benchmark. They were modifications of two
classical approaches, both published in 1981: the Lucas and
Kanade [12] approach is a local window-based gradient
descent approach that is lacking regularization, whereas the
Horn and Schunck [13] method is a global variational
approach including a regularization term, which enables its
application to images containing homogeneous regions. Both
approaches rely on local linearizations which makes them
applicable to small shifts on the order of 1–2 pixels only. Over
the years different improvements have been employed, the
most important being multiscale processing for handling larger
displacements and the avoidance of approximations that were
necessary for computational efficiency in the original papers.
Given modern implementations, Sun et al. [14] concluded,
classical energy-based optimization techniques are competitive
in settings where large-scale datasets such as the KITTI
dataset [15] are not available. We, therefore, include modern
implementations of these algorithms in our evaluation:
eFolki [1] is a variant of the Lukas-Kanade algorithm
developed for SAR data, whereas a multiscale Horn and
Schunck method [16] (H&S) and one with total variation (TV)
regularization [17] (TV-L1) are representatives of variational
techniques. The latter allows for sharp edges and corners in
the estimated displacement fields, which the original method
smoothes over. All evaluated algorithms have open source
implementations which we have used for evaluation.

The article is structured as follows: for the reader’s
convenience, we first review the major ideas of the algorithms
participating in our evaluation, Section II. We then describe
the characteristics of the acquisition scenario, Section III,
and the testing methodology, Section IV, which includes both
synthetic and real data. Finally, we discuss the results of our
extensive tests and derive an outlook for future work in the
context of SAR image registration, Section V.

A. Notations

We adopt the notation of using boldface lower case for
vectors a and boldface upper case for matrices A. The
transpose and complex conjugate operators are denoted by
the symbols (.)T and (.)∗, respectively. RM×N is the set of
M × N real matrices. CM×N is the set of M × N complex
valued matrices. Where applicable the notation follows the
original articles to facilitate an easy comparison. In addition,
for a vector a, E[a] denotes the expectation of a.

II. COREGISTRATION TECHNIQUES

In the following, we are reviewing the basic principles
behind the algorithms that participate in our evaluation.
We mention their principal characteristics which inform the
interpretation of the results provided in the experimental
Section IV.

A. Correlation Based Registration

The standard method for coregistration in the SAR com-
munity is a 2-D normalized cross correlation (NCC) between
a reference and one or multiple secondary images [18].
NCC is often applied to complete images or using a
block partitioning strategy for images that contain localized
distortions. We denote the available reference image as Iref ∈

CM×N and the available secondary image as Isec ∈ CM×N .
For our evaluation, we use the magnitude of the reference,
Iref ∈ RM×N , and secondary images, Isec ∈ RM×N . The SAR
image undergoes double oversampling, effectively addressing
concerns related to offset estimation issues arising from cross
correlation. We implement the algorithm to perform a per-
pixel window search for the maximal NCC score. Denoting
the window by W and enumerating the pixels (xi , yi ) in the
reference image using the index i , we aim to determine a
most likely displacement (ui , vi ) for each pixel that aligns the
window W around (xi + ui , yi + vi ) in the secondary image
with that around (xi , yi ) in the primary image. Each candidate
displacement (ui , vi ) is evaluated using the NCC score

ρ(ui , vi ) =

1
N

∑
(1x,1y)∈W

[Iref(xi +1x,yi +1y)−µW
ref]·

[Isec(xi +ui +1x,yi +vi +1y)−µW
sec]∗

σ W
refσ

W
sec

(1)

where µW represents the mean and σ W the standard deviation
of the windows in Iref and Isec; N is the number of pixels inside
the window. The highest correlation score indicates the most
likely displacement between the two images, i.e., the output
is determined by the following equation:

argmax(ui ,vi )
ρ(ui , vi ) (2)

for every pixel i . The tunable parameter for correlation-based
registration are the window size and the displacement search
range.

NCC can be applied to complex-valued SAR images or to
real-valued amplitude images [18]. In the case of good SNR,
the phase information can be helpful for registration, however,
in the case of low SNR it is usually leading to more noisy
results [18], [19]. Since our application scenario, Section III,
involves large displacements and low SNR, magnitude-only-
based correlation is preferred.

We include the technique in our evaluation as the baseline
technique for SAR coregistration. In practice, we use the fast
implementation of Lewis [20] that is based on real-valued
images. We use sub-sampling to achieve sub-pixel accuracy.

B. Interlude: Optical Flow Background

Before discussing the evaluated techniques, we make a
few general remarks that apply to all evaluated optical flow
methods.

Optical flow is the distribution of apparent velocities of
movement of brightness patterns in an image [13]. It can
arise from the relative motion of the object and the viewer,
and, as a result, can also provide information about the spatial
arrangement of the objects viewed and the rate of change of
the arrangement [21]. The point of view is slightly shifted in
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that the reference and the secondary images are considered to
be part of a temporal sequence of images: I (x, y, t) := Iref
and I (x, y, t +1t) := Isec. Optical flow computation is based
on the brightness constancy assumption

I (x, y, t) = I (x + 1x, y + 1y, t + 1t) (3)

where a continuous motion of image points from (x, y, t) to
(x + 1x, y + 1y, t + 1t) is assumed. Similarly, the image I
is considered to be a continuous space-time function.

Considering a Taylor expansion of the temporal image
sequence to first-order

I (x + 1x, y + 1y, t + 1t) = I (x, y, t)

+
∂ I
∂x

∣∣∣
(x,y,t)

1x +
∂ I
∂y

∣∣∣
(x,y,t)

1y +
∂ I
∂t

∣∣∣
(x,y,t)

1t (4)

and enforcing the brightness constancy constraint, (3), the
optical flow constraint is obtained

∂ I
∂x

1x
1t

+
∂ I
∂y

1y
1t

+
∂ I
∂t

= 0. (5)

The optical flow is then considered as the vector field
(u(x, y), v(x, y)) := ((1x/1t), (1y/1t)) that pixel-wise
aligns the two images. With these conventions, the optical flow
constraint is often written as Ix u + Iyv + It = 0, which is a
linear equation in the unknown displacement vectors (u, v).
The linearization is due to the Taylor expansion and restricts
the application of the linearized optical flow constraint to small
displacements on the order of 1–2 pixels. Typical extensions
are therefore multiscale search schemes [14].

C. Lucas-Kanade/eFolki

Lucas and Kanade [12] tracking is a differential technique
to compute optical flow locally by applying the optical
flow constraint, (5), to every pixel in a window W
surrounding a pixel (xi , yi ). A single displacement vector
(ui , vi ) corresponding to the center of the window is computed
by solving a linear system for the N equations resulting from
the constraint. In some variants, the window is combined with
a weighting function and a weighted least squares problem is
solved per pixel. The process can be iterated and/or applied
in a multiscale fashion to compute larger displacements either
by pre-warping the image Isec or by shifting the window in
the secondary image. Lucas-Kanade tracking is a purely local
method and cannot calculate flow in the interior of uniform
regions of the image [22].

A fast and robust approach derived from the Lucas-Kanade
method is the eFolki algorithm [1] which is a derivative
of the FOLKI optical flow estimator [23]. eFolki includes
hierarchical estimation, a computational trick that enables a
faster evaluation and a number of improvements regarding
matching scores and filtering that have been established over
the years [14]. We use the eFolki algorithm as a modern variant
of Lucas-Kanade tracking in our evaluation. eFolki has been
developed and tested for SAR coregistration [1]. We have used
this implementation for our evaluation.

The variable parameters that can be adapted for the SAR
case include the window size ω which is varied from coarse

to fine for every iterative step, the number of iterations per
level K and the pyramid levels J and a rank constraint r .

We include the technique in our evaluation as an
advanced processing technique that has been tested for SAR
coregistration.

D. Horn and Schunck

Local techniques as discussed above are not able to compute
flow in homogeneous image regions. The Horn and Schunck
(H&S) [13] method is a global energy minimization technique
that includes regularization to mitigate this problem

argminu,v

∫
�

∥Ix u + Iyv + It∥
2
2 + α2(

∥∇u∥
2
2 + ∥∇v∥

2
2

)
dxdy.

(6)

The first term encodes the optical flow constraint and is
known as the data term, whereas the second term emphasizes
a smooth displacement field and is known as prior term.
The support of the image is denoted as �. The user
parameter α2 allows selecting a trade-off between a good
data fit and a smooth solution. The parameter is squared
to enable an interpretation as the standard deviation of
the expected Gaussian noise [16]. The method is typically
implemented in a multiscale fashion to allow for the
computation of large displacements. In our evaluation, we use
the implementation [16]. In practice, the number of scales
and the scaling ratio are additional parameters to be tuned.

The technique provides a smooth flow and allows the
possibility of using more than two frames of data. The
disadvantage of the technique is that it can result in smoothed
boundaries and is sensitive to outliers, like salt and pepper
noise, in the data. Both disadvantages are due to the use of
the square norm in the data and the prior terms, respectively.

We include the method as a representative of classical
energy-based optimization techniques. Despite its age, it was
found to be performing well if implemented correctly [14].
In some applications such as fluid mechanics, it can
outperform more advanced techniques [10].

E. TV-L1 Algorithm

The TV-L1 algorithm [17] addresses the aforementioned
problems by replacing the data and the prior term norms with
the L1-norm. The L1-norm of the Euclidean norm of a gradient
field is also known as TV

argminu,v

∫
�

λ∥Ix u + Iyv + It∥1 + (∥∇u∥2 + ∥∇v∥2)dxdy.

(7)

The TV-L1 algorithm is robust to outliers in the data and
enforces step edges in the flow field due to its use of the
TV. In usual implementations, again, multiscale strategies
are employed. For our evaluation, we use the implemenation
of [17]. The user parameters are λ to trade-off prior
enforcement and data fit, as well as the number of scales
and their ratio as in the H&S case. It should be noted that
λ and α2 behave inversely since λ can be factored out of the
integral without changing the optimal u, v. However, note that
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the parameters are still not strictly comparable because of the
different norms involved in the H&S case and TV-L1.

We include the technique as it was the top-performing
class of algorithms in computer vision applications before the
advent of machine learning techniques.

F. Recurrent All-Pairs Field Transform

RAFT is a modern machine learning technique used in
optical flow and achieves state of the art performance on
optical data. The RAFT extracts per pixel features, builds
multiscale 4-D correlation volumes for all pairs of pixels, and
iteratively updates a flow field through a recurrent unit that
performs look-ups on the correlation volumes [11].

The working of the method can be divided into three main
categories.

1) Feature encoder: this step extracts per pixel features
from both images and also includes a context encoder
which extracts features from the reference image.

2) Correlation layer: the inner product of the feature vectors
are computed to result in a 4-D correlation volume. The
last two columns of the volume are pooled at multiple
scales resulting in a multiscale volume [11].

3) Update operator: performs an update on the current
estimate of the optical flow values to the look up values
obtained from the correlation layer.

The method and its variants are, at the time of writing,
dominating the Middlebury benchmark and the KITTI
benchmark [24].

We include RAFT [11] in our evaluation to assess the
potential and the challenges associated with machine learning
techniques in the field of SAR coregistration. Note that we
do not perform retraining on SAR data due to a lack of
sufficient amounts of training data. The results are therefore
only indicative of the potential of RAFT for SAR, but
not exhaustive. A discussion of the findings is included in
Sections IV and V.

III. EVALUATION METHODOLOGY

We evaluate the candidate algorithms under increasingly
realistic conditions. For this, we first generate synthetic
data from the real dataset described in Section III-A, that
features realistic distortions, first without and subsequently
with realistic noise levels. We also use different pairs of
images to directly evaluate the algorithms on real data. The
test data preparation is described in Section III-B. Finally,
in Section III-C we describe the evaluation methodology, i.e.,
testing conditions and performance scores that will be used in
Section IV.

A. Dataset: Multitrack Airborne SAR Images

1) Description: The SAR raw data is obtained from a
flight campaign using the wachtberg imaging radar (WIR-10)
operated at X-band at the Fraunhofer Institute for High
Frequency Physics and Radar Techniques (FHR). The sensor
was mounted on an aircraft and recorded the radar echoes
of the scene while it was passing eight different tracks in
succession. The incidence angles of the tracks toward the scene

Fig. 1. Incidence angle over time to the scene center for all tracks of the
airborne dataset.

center for the different images over flight time are shown in
Fig. 1. The scene is centered at 50.913N and 8.047E and
is of the region Dreis-Tiefenbach, Siegen, Germany, as seen
in Fig. 2 (left). The signal of the sensor has a bandwidth
of 500 MHz and a center frequency of 9.8 GHz. The scene to
be investigated has an extent of 400 m in the range and 300 m
in the azimuth direction, discretized at 4000 × 3000 pixels.

Complex valued SAR images are processed from the radar
raw data for a fixed reference height taken from scene center
using a backprojection processor. The aircraft flew eight times
in an almost straight parallel course whereby the altitude
varied in a range of approximately 48 m. In our specific case,
the SAR images obtained from the experimental radar system
were not subjected to radiometric calibration. Nevertheless,
all radar images were captured from a consistent distance
and under identical radar parameter settings. In order to
equalize the intensity values, the histograms of the images
were first adjusted to each other; however, this adjustment had
no discernible influence on the final results. The main aim of
the SAR campaign was to obtain a stack of SAR images which
can be used for SAR tomography. In this article, we use it to
test coregistration algorithms in challenging scenarios.

2) Data Characteristics: The different heights of the tracks
of the acquired dataset lead to different incidence angles
toward the individual targets which results in a corresponding
shift in pixels for every acquisition geometry. According to
this, different local shifts in the image result for different
target heights. The expected shifts due to a ground truth
digital elevation map (DEM) and the relative positioning of
Tracks 1 and 2 are depicted in Fig. 2 (middle).

The instability of the airborne sensor (variation of altitude,
heading and lateral direction) lead to additional variations
of the shifts between the individual SAR images. However,
the main cause of the locally different pixel-wise shift is
resulting from the foreshortening effect as depicted in Fig. 3,
which is scaled differently in each image pair due to the
different angle of incidence of the individual images. Large
differences of incidence angles lead to large decorrelation
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effects, as is the case for example between Track 1 and
Track 2. The coherence map of the two resulting SAR images
is shown in Fig. 2 (right). This in turn makes the coregistration
process difficult and complex, providing a challenging test
environment for the algorithms in our evaluation.

B. Evaluation Datasets

In order to quantitatively evaluate the different coregistration
methods, we need a known ground truth modality, e.g.,
expected pixel shifts as in Fig. 2 (middle). Since this is
difficult to obtain for real data, we proceed in three steps
of increasing realism in Sections III-B1–III-B3. We generate
log-scale normalized intensity data in all cases since first,
the computer vision techniques require this input format, and
second, the decorrelation between different tracks is so large
as to make the phase information unreliable.

1) Synthetic Case: For the used test site in the region of
Dreis-Tiefenbach, a high-quality DEM is available, which can
be used as ground truth. From the DGM1 data of Geobasis
NRW with a grid size of 1 m and a height accuracy of
+/−2 dm, an exact height value can be determined for
each pixel position. In conjunction with the flight track
coordinates, Fig. 1, 3-D positions on the ground can be
transformed into the coordinate systems of the individual SAR
images. We use this information to compute ground truth
displacements, Fig. 2 (middle), between any pair of SAR
images in our dataset. One of the images, Track 1, is used as
a reference image throughout the synthetic tests. This image
is warped using the ground truth displacements using inverse
lookup to produce a synthetic secondary SAR image. Note
that this procedure ignores occlusion and disocclusion effects
at height discontinuities of the DEM. For the current purpose,
we consider this to be acceptable since, e.g., wall heights of
buildings are generally small in our data. The LIDAR-based
data contains large changes in areas with vegetation in the
range of several meters within a few pixels, so we smoothed
this reference dataset for the evaluation of the synthetic data.

With reference to Fig. 3, the transformation is computed as
follows: Given the height (Hi ), and the ranges to the height
of the object (rih) and to the reference height (ri0) the pixel
displacement on ground (1rgi ) within the different images
i depending on the height model can be calculated using
trigonometry

1rgi =

√
H 2

i − r2
i0 −

√
H 2

i − r2
ih . (8)

The vector field VFref used as ground truth is given by the
difference of the displacements of images i and j

VFref = 1rgi − 1rg j . (9)

We refer to this test case as “synthetic noiseless.” It is
important to note that the noise and speckle in the original
image essentially become features in this setting: they need
to be considered as artificial surface texture for proper
interpretation. This case serves as a baseline result.

2) Synthetic Case With Gaussian Noise: In real situations,
noise is a complex issue due to the combined actions
of random processes associated with both the emitter, the
detector, and the scene. Overall, these lead to locally different
contrast and noise properties as well as speckle.

Analyzing the noise properties of the SAR images used,
we observed that the real and imaginary parts of the
images have an approximate Gaussian-shaped distribution (cf.
[25]). We measured the statistics of this Gaussian noise in
homogeneous and low amplitude areas of the reference image.

We then generate different additive white Gaussian noise for
the reference and synthesized secondary image, Section III-B1,
via the estimated mean and standard deviation of the low
amplitude level patches for the real and imaginary parts.

Our experiments are performed for the calculated shifts
using all interferometric image pairs with respect to image 1,
and on different noise levels: the same noise values are added
to the SAR data in differently scaled versions reducing the
SNR of the whole image: 0× (noiseless), 2× (−3 dB),
4× (−6 dB), 6× (−8 dB) and 8× (−9 dB). The purpose of
the test is to explore the degradation in algorithm performance.

3) Real Case: Finally, our airborne dataset, Section III-A,
contains eight different SAR images. We use them in
a pairwise fashion as reference and secondary images.
In addition to the synthetic tests, for these image pairs all
real-world effects such as different brightness distribution due
to the different angles of incidence, different speckle noise
and inconsistent occlusion/dis-occlusion regions play a role in
the performance of the algorithms. We evaluate N/2(N − 1)

pairs of images with N = 8 to obtain statistics, Figs. 8 and 9,
across expected algorithm performance.

C. Testing Methodology

Our main test scenarios are the synthetic data cases
Sections III-B1 and III-B2 since exact ground truth is available
in these settings. We analyze the performance of the algorithms
using different measures. The measures can be classified into
two main categories: 1) an evaluation of the intensity image
after coregistration and 2) an evaluation of the actual flow
vector fields underlying the coregistration.

1) Intensity Image Evaluation: The measures evaluated for
this case are on the resampled intensity images obtained after
compensation of the shift, except for the measure of coherence,
where complex data is used.

a) Coherence: Measures the preservation of phase
relationships in the received signal and thus a measure for the
similarity of two images. The coherence of two SAR images
a and b is given by the cross correlation coefficient given by
the following equation [26]:

ρ =
E
[
a b∗

]√
E
[
|a|2
]
E
[
|b|2
] . (10)

Coherence is a standard measure in SAR to evaluate the quality
of registration [19]. It is evaluated on complex resampled
images.
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Fig. 2. (Left) One of eight airborne SAR images of the area Dreis-Tiefenbach captured by the WIR. (Middle) Magnitude of expected displacement between
tracks 1 and 2 derived from a DEM of the region. (Right) Coherence map between SAR images 1 and 2 before coregistration.

Fig. 3. Geometry of the foreshortening effect in SAR for two different
incident angles. The corner of the object will be imaged at different ground
range positions rgi due to foreshortening. In addition, layover of object and
ground plane may occur. In black the iso range lines of position 1 are shown,
explaining this effect in slant range (1r1) and its projection onto ground
range (1rg1).

b) Root Mean Squared Error: Root mean squared error
(RMSE) measures the average difference between the intensity
values, Î produced by the technique and the reference intensity
values, I . RMSE is given by the following equation:

RMSE =

√∑N

i=1

(
Ii − Î i

)2

N
. (11)

We evaluate RMSE on log-intensity images.
c) SSIM: The structural similarity index (SSIM) [27] is

a perceptual quality metric in computer vision. It is designed
to be robust against local contrast changes and other common
variations in visual images. SSIM is a full reference metric,
i.e., a noise-free image is necessary for its computation.
We use the noiseless reference image for that purpose. The
SSIM for images is given by the following equation:

SSIM =
(2µI µ Î + c1)(2σI Î + c2)(

µ2
I + µ2

Î + c1
)(

σ 2
I + σ 2

Î + c2
) (12)

where, µI and µ Î is the pixel mean of images I and Î
respectively, σI and σ Î is their standard deviation, respectively,
and σI Î is the covariance of I and Î . The constants
c1 = 10−4, c2 = 9 · 10−4 are user variables with standard
values. We evaluate SSIM on log-intensity images. The values
of SSIM range between 0 and 1, where larger is better.

2) Flow Vector Evaluation: The metrics used in this case
are to evaluate the flow vector quality.

a) Root Mean Squared Error: Measures the accuracy of
the flow vectors. We compute the RMSE of the Euclidean
distance between the predicted flow vectors v̂ and the reference
flow vectors vgt

RMSE =

√√√√ N∑
i=1

(
v̂i − vgt

i

)2

N
. (13)

The RMSE is sensitive to outliers, i.e., a large difference
between predicted value and ground truth [28].

b) Average Endpoint Error: EPE is used in computer
vision to estimate the absolute accuracy of the estimated flow.
It is defined as the average Euclidean distance between the
estimated v̂ and the ground truth vgt vector fields

EPE =
1
N

N∑
i=1

∥∥v̂i − vgt
i

∥∥. (14)

N is the total number of samples in the SAR image. Since the
norm is not squared, EPE is relatively insensitive to outliers
and large errors but can be affected by the density of the
flow field. EPE is the widely used performance metric in
the Middlebury benchmark [7] for evaluating optical flow
estimation methods.

c) Average Angular Error: Average angular error (AAE)
is defined as the mean angular distance between the estimated
flow vector and the ground truth flow. This is represented as
follows:

AAE =
1
N

N∑
i=1

∥∥∥∥∥arccos

(
v̂i · vgt

i

||v̂i || · ||vgt
i ||

)∥∥∥∥∥. (15)

AAE is used in combination with EPE to provide a more
comprehensive evaluation of the accuracy of the optical flow
techniques. AAE is commonly reported in the Middlebury
benchmark along with EPE.

IV. RESULTS

We first verify the coregistration ability of the different
algorithms on synthetically generated data. As described in
Sections III-A and III-B1, the dataset consists of seven image
pairs containing the synthetically generated pixel shift that
arises from the acquisition geometry of the different flight
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Fig. 4. (Left) Coherence of SAR image 5 and 7 before registration. (Middle) Coherence of SAR image 5 and 7 after registration using TV-L1. (Right)
Histogram of the coherence obtained before and after registration.

Fig. 5. (Top row) Registration results on noise-free data. (Middle two rows) Registration results with added noise. (Bottom row) Performance on real data.
Zoom into the digital version for full detail.

trajectories. The reference trajectory and reference image are
in each case Track 1 since it represents an extreme case in
this measurement campaign. In addition, noise is added as
described in Section III-B.

As an example, Fig. 5 shows the magnitude of the vector
fields computed by the different algorithms. The dynamic
range is the same for all images and is normalized to the
maximum and minimum of the displacement magnitude of the
reference vector field (varying from −1.5 to 19.2 pixels, using
the data of Tracks 1 and 2). In the noiseless case, Fig. 5 (top
row), all algorithms perform satisfactorily even though the
machine learning technique RAFT produces overly smooth
structures.

The noisy synthetic cases depicted in Fig. 5 (middle
two rows), show results obtained for the weakest levels of
reduction of the SNR in the test set (−3, −6 dB). The
overall performance of the correlation method is mainly
hampered by outliers and the window size of the patches.
For outlier elimination, a median filter of size 4 × 4 pixels

is used. In contrast, the optical flow methods are able to
detect displacements without outliers. For the low noise setting
illustrated here, all optical flow methods perform reasonably
well, while small variations can be discerned: Horn & Schunck
preserves the features of the structures in comparison to
eFolki. TV-L1 shows the best results in both noise settings
by suppressing noise and preserving the sharp edges in the
image. RAFT again over-smooths the vector field.

To further meaningfully compare the correlation method
with the optical flow-based ones, we increase the correlation
window size of the patch to produce less outlier regions. These
measures lead to a smoothing of the vector field and to longer
computation times. We also balance oversampling for sub-
pixel precision (≥8) against computation time. The resulting
larger spacing of the control points creates larger gaps at the
edges, which have to be extrapolated.

A numerical evaluation of all our synthetic tests is presented
in Fig. 6. In the left column of the figure, the image-dependent
measures are plotted, whereas on the right side, the measures



5206711 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 6. Evaluation of optical flow algorithms for the synthetic case for different performance measures. For coherence and SSIM a larger score is better, for
the other measures, a lower score indicates better results.

evaluating the vector field quality are shown. The parameters
for the different techniques in our test are provided in Table I.

For the image-measures, it is notable that the optical flow-
based algorithms perform similarly as a group and yield
better results than correlation-based and RAFT coregistration.
The optimization-based approaches degrade continuously with
increasing noise levels. The errors witnessed in the vector
field of optical flow techniques at 0, −3, and −6 dB exhibit
similarities, whereas the errors are slightly smaller in the
case of TV-L1 and H&S for −8 and −9 dB in contrast to
eFolki. The vector field quality measures clearly show the
problems of RAFT for the −8 and −9 dB SNR reduction
settings. The RAFT algorithm rapidly drops in performance
once the noise level exceeds the training noise level of the
network. In particular, the angular error at −8 dB includes
partial success and partial failure cases explaining the large
variance. The −9 dB RAFT case consists of almost random
results. If you look at the results with regard to the vector
field quality measures of the correlation-based method, it is
noticeable that with this method large errors occur even at
0 dB, which certainly deteriorate less with worse SNR. This
is obviously due to the large window size. Overall, TV-L1 is
the best algorithm in terms of the quality of reconstruction of
the original vector field across noise levels.

We further apply the algorithms to the real data,
Fig. 5 (bottom row). We note that RAFT completely fails
in this setting, which hints at different noise sources than
Gaussian noise in the real data. The other algorithms can
handle the non-Gaussianity, however, the neural network-based
technique has not been trained on these statistics and fails
catastrophically. In terms of robustness in real-world settings,
TV-L1 is the clear winner. If we look at Fig. 9, the TV-L1
algorithm provides the best coherence values of all algorithms,
regardless of the length of the baseline.

Fig. 7. Optimal λ values regarding the smallest distance of the vector field
with respect to ground truth (blue) and the best coherence values (light blue).
The optimal α values with respect to the best coherence values (red). All are
plotted over the absolute perpendicular baseline.

The results obtained by TV-L1 or the Horn-Schunck method
depend on the choice of the corresponding parameters. With
poorer SNR (or coherence), for example, when using the
TV-L1 algorithm, a larger λ value should be used in the
calculation; with the H&S algorithm, α should be chosen
smaller. In the case of real data, where a larger perpendicular
baseline value causes a worse coherence, the values must
be adjusted accordingly. For these two algorithms, using all
possible image pairs, Section III-B3, and their baselines,
we determined the optimal parameters, α and λ, respectively,
by parameter scanning for maximum coherence or minimum
deviation from the reference vector fields. The results are
shown in Fig. 7. Here, a linear increase of the optimal λ
value (TV-L1, blue circles) can be observed. The difference
in the two curves is due to the imperfect ground truth,
which, for example, does not take into account the azimuth
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TABLE I
USER-ADJUSTABLE PARAMETERS FOR DIFFERENT LEVELS OF SNR

REDUCTION OF THE SYNTHETICALLY GENERATED DATA

Fig. 8. Influence of algorithm parameters on estimated vector field quality
(real datasets 1 and 2).

TABLE II
PARAMETERS USED FOR THE DIFFERENT METHODS

FOR THE REAL DATASET

dependencies due to nonlinear, nonconstant trajectories, but
only the displacements due to different heights in the scene.
In practice, a value that lies between the two curves has
proven to be a robust solution. For α (H&S, red triangle)
for our dataset the values vary in the opposite way from
40 to 110 having the highest value for the smallest baseline.
For an impression of the visual impact of the parameter
changes, the outputs of the single algorithms are shown
in Fig. 8. We observe that the choice of the parameters
has a great influence on the smoothness of the result and
that different numerical measures of quality correspond to
different parameter settings. Depending on the task, it can
thus be helpful to adjust the parameters. For example, for the
highest possible coherence between the co-registered images,
a different value may be optimal as compared to the value for
optimal vector field quality. To evaluate the possible advantage
of using optical flow methods for coregistration, we consider
the coherence of all image pairs before and after coregistration.
This is also illustrated in Fig. 4, where the buildings exhibit
a higher correlation index as compared to the hills. In Fig. 9
the coherence of the outputs of all methods for all image pairs
is shown. The coherence value of the original image pairs is
given in black as a baseline for comparison.

Fig. 9. Output coherence over perpendicular baseline of all images pairs is
depicted for all algorithms for the real case.

TABLE III
PEAK MEMORY AND CPU TIME FOR EACH ALGORITHM

(IMAGE SIZE 4000 × 3000 PIXELS)

All methods can improve the coherence between the images,
TV-L1 outperforms the others in our experiment, whereby
the traditional correlation-based method makes only a small
improvement. As a comment, it should be noted here that
the correlation-based method can achieve better results if,
for example, more, or only suitable, sampling points are
used and the oversampling factor is increased. Likewise,
a smarter sorting of the outliers can also lead to a better
result. However, the calculation time increases enormously in
this case and we settled for a compromise (see Table III).
In addition, when evaluating the results, we noticed that with
the Horn–Schunck algorithm it was necessary to adjust the
parameter α to the dataset in order to obtain improved results
in each case. For all other algorithms a constant parameter
was used (see Table II). The TV-L1 algorithm produced the
best result for each image pair. The CPU time and the peak
memory usage for each technique are given in Table III.
From this table, we observe that the correlation-based method
with a reasonably comparable number of control points,
depending on the resolution of the image, needs considerably
longer time to calculate a vector field than the variational
optical flow techniques H&S and TV-L1, which have about
the same requirement of computational time and memory.
eFolki is close to our compromise correlation technique.
RAFT on the other hand has much higher requirements on
the used PC than all other techniques. To demonstrate an
application, we illustrate the improvement of an interferogram
after coregistration. Fig. 10 shows the interferometric phase
from a pair of images as an example. Using the TV-L1
algorithm to register two images results in a significant
improvement in phase. The noise is generally reduced, but
the phase information is preserved. The visual quality of the
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Fig. 10. (Left) Interferometric phase before coregistration and (Right) after coregistration using TV-L1 for tracks 5 and 7.

result is similar to the other optical flow techniques except
RAFT.

V. CONCLUSION

We have compared optical flow techniques from computer
vision for the task of co-registering a set of SAR
images under challenging conditions such as large baseline
and high noise level. Our experiments have shown that
computer vision techniques outperform classical correlation-
based techniques both, in terms of accuracy and in terms
of computational performance. An added advantage is that
dense registration maps are computed that enable a pixel-
wise coregistration without tuning-heavy post-processing as
in correlation techniques.

Among the computer vision techniques, variational methods
are, at the time of writing, the best-performing techniques.
The TV-L1 technique, in particular, offers excellent robustness
and parameter stability. From our tests, we recommend its use
as a baseline technique for future applications. The machine
learning technique RAFT, while showing that ML can work
on SAR data in principle, is not specialized enough to be
competitive without retraining. To also harvest the promises of
ML-based processing, as demonstrated in the computer vision
Middlebury benchmark, in the SAR context, large datasets
of real data with ground truth from a variety of acquisition
platforms needs to be generated. In principle, methods like
style transfer and domain adaptation could be utilized to
synthetically generate data with SAR characteristics from
other image sources. However, we also see that significantly
higher computational resources will be required for progress
in this direction.

For future work, the most important development is the
inclusion of the full complex image information into the
estimation procedures, possibly taking care of the cyclicity
of the phase term, rather than relying on intensity-only
information as done in this article. Explicit prior models
for speckle noise could further improve the ability of the
algorithms to differentiate image structure that should be
registered from noise that is to be ignored.
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