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Evaluating Topographic Effects on Kilometer-Scale
Satellite Downward Shortwave Radiation Products:

A Case Study in Mid-Latitude Mountains
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Abstract— Downward shortwave radiation (DSR) is critical to
many surface processes, and many satellite-derived DSR products
have been released. Few studies have validated DSR over moun-
tains where it is highly heterogeneous, and so, the shortwave flux
measured at ground stations does not match kilometer-scale DSR
products. To tackle this challenge, we used a high spatial resolu-
tion (30 m) daily DSR over Sierra Nevada, Spain, for 2008–2015,
and a mountainous radiative transfer model to explore how
topographic effects impacted the performances of DSR products.
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Four widely used satellite products were selected as proxies for
our evaluation: 1) MCD18A1 V6.1 (with a spatial resolution of
1 km); 2) Meteosat Second Generation (MSG) DSR (∼3.3 km);
3) Global LAnd Surface Satellite (GLASS) DSR V42 (0.05◦); and
4) Breathing Earth System Simulator (BESS) DSR (0.05◦). There
are three main findings under clear skies. First, the product accu-
racies were slope-dependent, decreasing by 59.8%–134.6% with
a slope of ≥25◦ compared with areas with a slope of <10◦. Sec-
ond, the product accuracies were aspect-dependent, exhibiting a
higher degree of overestimation (i.e., average of 27.6 W/m2) on the
north side and underestimation (i.e., an average of −1.3 W/m2)
on the south side. Third, and finally, the product accuracies were
time-dependent, exhibiting seasonal variations and pronounced
overestimation in summer (i.e., 8.8–18.2 W/m2). Moreover, the
impact of topography decreased with increasing cloud cover.
Our findings can be applied to various mountainous areas due
to the same mechanism of how topography influences the DSR
estimation. This study corroborates the substantial uncertainties
of the current DSR products in mountains and the necessity of
incorporating topographic information into DSR estimations.

Index Terms— Downward shortwave radiation (DSR), moun-
tains, satellite products validation, topographic effect.

I. INTRODUCTION

SURFACE downward shortwave radiation (DSR) is the
driving force of many land processes, such as vegetation

and snow dynamics [1], [2], crop growth [3], and evapotran-
spiration [4], [5]. Many satellite-derived DSR products have
been released [6], [7], [8] and are widely used [9], [10],
[11], [12]. Furthermore, the accuracy of the DSR products
has been continuously improved by upgrades to estimation
algorithms [7], [13], [14], [15] and the new generation of
satellites [16], [17], [18], [19].

Many evaluations of the DSR products have been con-
ducted against shortwave flux measurements from ground
networks, e.g., FLUXNET, surface radiation budget network
(SURFRAD), and baseline surface radiation network [20],
[21], [22], [23] where the local terrain over the evaluation
sites was generally flat and homogeneous. Currently, the global
DSR products can typically achieve a reasonable accuracy
under most conditions (e.g., with the root-mean-square errors
(RMSEs) of approximately 35 W/m2 at daily scale [24]);
however, the accuracies of the DSR products in mountainous
areas have not been well documented.
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Mountains cover approximately 23% of the land and are of
great importance to the Earth’s hydrological, ecological, social,
and environmental systems [25], [26], [27]. Clear-sky DSR is
abundant in mountainous areas because of their high elevation
and the additional radiation reflected from surrounding envi-
ronments, and accurate estimation of the DSR in mountains
helps in solar energy generation [28], [29]. In addition, a better
understanding of DSR patterns and variations in mountains
would advance our knowledge of mountainous ecosystems
and land surface processes, such as surface warming [30],
vegetation dynamics [31], [32], and snow melting [33], [34].
However, the topography influences the radiative transfer over
the heterogeneous land surface of mountains [35], [36], [37],
[38], [39], [40], and the substantial impacts of the topogra-
phy on high spatial resolution DSR (H-DSR; e.g., ≤100 m)
estimations have been reported [41], [42], [43], [44], [45].
There is also some evidence that moderate and coarse spatial
resolution (i.e., >100 m) shortwave radiation modeling suffers
from topographic effects. For example, Liou et al. [46] found
that compared with the flat surfaces, DSR anomalies on the
Tibetan Plateau could reach 600 W/m2 at a 1-km spatial scale
using a 3-D Monte Carlo photon tracing program at noon.
In a land surface modeling study, Hao et al. [47] incorporated
subgrid topographic parameterization in the Energy Exascale
Earth System Model and found that the topography could
introduce the differences of >20 W/m2 for 0.125◦ resolution
net shortwave radiation at the seasonal scale on the Tibetan
Plateau. However, the topographic effects on the current DSR
products have typically been ignored, and the accuracies of the
DSR products have not been well investigated in mountainous
areas [16], [18].

In general, topography induces changes in the amount of
direct and diffuse radiation the ground receives, introduces
shadows, and results in the receipt of additional reflected
radiation from surrounding environments. The surface het-
erogeneity caused by subpixel variations in the topography
induces challenges in evaluating kilometer-scale DSR products
in mountains. In general, there are two problems inhibiting the
evaluation of the DSR products in mountains. First, ground
stations in mountains are sparse, and few of them are located
on sloping terrain (e.g., slope angles of greater than 5◦) [48],
[49], so they cannot represent the surface energy exchange
scheme modified by the change in solar illumination and
adjacent reflections. Second, the shortwave flux measured
on the ground usually has a limited spatial footprint (e.g.,
decameter to hectometer scale, dependent on the local topog-
raphy) and cannot match the moderate and coarse spatial
resolution of DSR product pixels in mountains [50], [51].
In this context, the evaluation of the DSR products in complex
mountainous areas (e.g., steep hills and valleys) remains a
challenge. Nevertheless, reliable H-DSR maps could serve as
a bridge to evaluate the moderate and coarse spatial resolu-
tion DSR products in mountains [52]. Nowadays, there are
remaining unknowns in the performances of DSR products in
mountains.

1) Are the uncertainties of DSR satellite products related
to the surface heterogeneity induced by topography?

2) What factors determine the uncertainty of DSR estima-
tion in mountains? And how?

Accordingly, we tried to answer the above two scientific
questions by implementing the first comprehensive evaluation
of DSR products in mountains. Our study provides instructions
for the current user community, as well as recommendations
for future product algorithm improvement over mountains.
It should be noted that we focused on a new contribution by
quantitatively assessing the contributing factors of topography
to the accuracies of kilometer-scale DSR products rather than
a simple evaluation of their absolute accuracies. The materials
and methods are presented in Sections II and III, respec-
tively. The evaluations of the DSR products are presented
in Section IV and are discussed in Section V. Finally, the
conclusions are provided in Section VI.

II. STUDY AREA AND MATERIALS

A. Study Area
The Sierra Nevada is a typical massif of semiarid Mediter-

ranean high mountains located in southeast Spain. Covering
2273 km2, the Sierra Nevada contains the highest peak in
continental Spain and has a large elevation variation (i.e.,
from 262 to 3479 m above sea level). Sierra Nevada contains
a wide variety of surface topography, with a maximum slope
of 50◦ and obvious north and south faces. There is a regular
presence of snow at >2000 m above sea level, which may last
from November to June on the summits [53]. Substantial land
use and land cover types are present, including forests, urban,
shrubs, crops, and pastures [54]. The diversity of topographic
and ground characteristics makes Sierra Nevada a globally
representative mountainous site and contributes to the better
evaluation of the DSR products in this study. This study
also benefits from the prevalence of clear skies in the study
area [55]. Sierra Nevada has a fragile environment and has
undergone substantial changes over the years [56]. Thus, it has
been a scientific research hotspot, including studies focused on
snow dynamics [57], [58], hydrology [59], [60], climate [61],
ecosystems [62], and solar radiation [41]. Meanwhile, Sierra
Nevada was internationally recognized as a biosphere reserve
(2003), a national park (1999), a special area of conservation
(2012), and an important observatory for global change. Fig. 1
shows the location, topography, and astronaut photograph of
Sierra Nevada, Spain.

B. DSR Products
We evaluated four widely used DSR products, namely,

the Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD18A1, Meteosat Second Generation (MSG) daily DSR
flux (DIDSSF-R; hereinafter denoted as MSG DSR to make it
consistent with other products), Global LAnd Surface Satellite
(GLASS) DSR, and Breathing Earth System Simulator (BESS)
DSR on the daily scale. Although these DSR products have
been continuously improved and widely used, the topographic
effects in mountains are not explicitly accounted for in their
product algorithms; thus, their applicability in mountains
requires further investigation. High-level information on each
DSR product is shown in Table I, and detailed information is
provided as follows.

1) MODIS DSR Product (MCD18A1): The MCD18A1
Version 6.1 [12] is a combined MODIS Terra and Aqua
DSR gridded Level 3 product. The estimation algorithm uses



MA et al.: EVALUATING TOPOGRAPHIC EFFECTS ON KILOMETER-SCALE SATELLITE DSR PRODUCTS 5609816

Fig. 1. Location, topography, and photograph of the Sierra Nevada,
Spain. (a) Location of Sierra Nevada, Spain (marked in blue), (b) elevation
distribution, and (c) astronaut photograph (acquired on December 11, 2005,
with a Kodak 760C digital camera), downloaded from https://earthobservatory.
nasa.gov/images/6237/sierra-nevada-spain, last accessed January 29, 2024.
(d) and (e) Slope and aspect of Sierra Nevada. The DEM used for (b), (d),
and (e) is AW3D30. The black lines in (b), (d), and (e) denote the study
area boundary. The points in (b) refer to the ground stations for generating
and evaluating H-DSR where the numbers are the station codes (for details
please refer to Table B1). In (b), (d), and (e), the top-left corner is 37.3592◦N,
3.7789◦W; and the bottom-right corner is 36.8092◦N, 2.5561◦W.

TABLE I
HIGH-LEVEL INFORMATION OF THE DSR PRODUCTS EVALUATED HEREIN

a lookup table (LUT), following Liang et al. [65], which
directly uses top-of-atmosphere (TOA) data and does not
rely on additional aerosol or cloud inputs. The MCD18A1
Version 6.1 was validated against measurements at 142 sta-
tions from six observational networks and had an RMSE of
39.2 W/m2 at daily scale [24]. MCD18A1 has contributed to
many fields, such as gross primary production estimation [66],
radiative forcing quantification [67], and evaporation estima-
tion [68]. The MCD18A1 Version 6.1 was downloaded from
https://search.earthdata.nasa.gov/ (last accessed January 29,
2024), and the daily mean DSR was calculated by averaging
the DSR estimates every 3 h. The MCD18A1 was also
upscaled from 1 km to 0.05◦ (see Section III-A) for the
intercomparison with GLASS DSR and BESS DSR.

2) MSG DSR Product: The MSG DSR was derived from the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) Satellite Application Facility for Land
Surface Analysis (Land-SAF) [69] with observations pro-
vided by the Spinning Enhanced Visible and Infrared Imager

(SEVIRI) instrument onboard the MSG series of geostationary
satellites. MSG DSR was estimated with separate algorithms
for clear-sky and cloudy-sky situations [63], [64]. The spatial
resolution of the MSG DSR is approximately 3.3 km in
our study area. MSG DSR was reported to have a standard
deviation of 20–44 W/m2 at the daily scale against six stations
in Europe [63]. MSG DSR was used to map soil mois-
ture [70], land surface temperature reconstruction [71], and
topographic correction of surface reflectance [72]. We down-
loaded the MSG DSR from https://landsaf.ipma.pt/en/ (last
accessed January 29, 2024).

3) GLASS DSR Product: The GLASS DSR V42 was gen-
erated from MODIS TOA reflectance data using a direct
estimation method [9]. The GLASS DSR was validated
against shortwave flux data measured at 525 ground sta-
tions around the world from 2003 to 2005, yielding an
RMSE of 32.84 W/m2 and a bias of 3.72 W/m2 at the
daily scale [9]. Studies, including energy budget genera-
tion [73], selecting photovoltaic sites [74], and long-term
DSR variations analysis [2], have benefited from the GLASS
DSR. We downloaded the GLASS DSR V42 product from
http://glass-product.bnu.edu.cn/ (last accessed January 29,
2024).

4) BESS DSR Product: The BESS DSR was derived using
an atmospheric radiative transfer model combined with an arti-
ficial neural network, and MODIS aerosol and cloud parameter
products [11]. The BESS DSR has been reported to have an
RMSE of 36.4 W/m2 when validated against the same 142 sta-
tions in six observational networks as used for MCD18A1
Version 6.1 [24]. The BESS DSR has been used to explore
vegetation carbon sequestration [75] and to quantify the radia-
tive forcing of hydropower reservoirs [76]. We downloaded the
BESS DSR from https://www.environment.snu.ac.kr/bess-rad
(last accessed January 29, 2024).

C. Reference Data: H-DSR

We used the newly published H-DSR data across Sierra
Nevada, Spain [55], as the ground truth for evaluations.
The all-sky H-DSR was derived using a geographic infor-
mation system (GIS)-based model [41] with topographic
consideration (i.e., the hourly direct and diffuse radiation
and reflected radiation from surrounding environments were
modeled, and following integration daily DSR maps were
ultimately obtained) driven by ground DSR measurements
from weather stations, 30-m digital elevation model (DEM)
data, and cloud-free Landsat images for deriving albedo [77].
The radiative transfer process has been fully accounted for
in the modeling. There are many studies to evaluate DSR
products using hundreds of ground-measured data, but it
should be noted that they focused on the overall accuracies of
the products; thus, they need globally distributed “points” to
evaluate DSR products with different atmospheric conditions.
However, our objective is to enhance the understanding of the
topographic impacts on DSR products, and considering each
pixel as a pair of evaluation, there are a total of 147 0.05◦

×

0.05◦ pairs of evaluations, which equals 4719 1×1 km pairs
of evaluations covering the study area.
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The locations of 11 ground stations are shown in
Fig. 1(b), and detailed geolocation information is provided in
Table B1. The quality of DSR observation was evaluated by
Aguilar et al. [55]. The ground-measured DSR data were well
quality controlled, and after the quality control, the excluded
values were approximately 2% for all stations. The H-DSR
used the flux data from the weather stations for interpolation,
and the number of available weather stations controlled the
accuracy of the H-DSR [55], so we selected the H-DSR from
January 23, 2008 to December 31, 2015 (i.e., 2900 days) for
evaluation, as at least seven stations were in operation then.
Note that the pyranometers were horizontally set; thus, the
validation of H-DSR was carried out by assuming that this
pixel was a zero slope in the DEM to be able to compare with
the ground-measured flux. The H-DSR has been evaluated
with reliable performance, as indicated by the overall RMSE
of 25.87 W/m2 (see Fig. B1), ensuring its role as the “reference
truth.”

D. Topographic Data

The Advanced Land Observing Satellite (ALOS) Global
Digital Surface Model “ALOS World 3D-30m (AW3D30)”
has been reported the highest accuracy among the current
freely available DEMs [78], [79]. We downloaded AW3D30
V3.2 from https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/
aw3d30_e.htm (last accessed January 29, 2024) and calcu-
lated the slope, aspect (using the method of Horn [80]),
and surface areas (i.e., the surface areas of pixels changes
with topographic variation, by generating eight 3-D triangles
connecting each pixel’s center point [81]) from AW3D30 for
evaluation. Although the H-DSR estimation was sensitive to
DEM errors, the DSR uncertainties caused by the DEM were
remarkably reduced by the spatial upscaling, i.e., the errors
were less than 2% at a 3-km spatial resolution [82]. Therefore,
it was reasonable to apply the state-of-the-art AW3D30 DEM
to upscale the H-DSR for evaluation in this study.

III. METHODS

A. Indirect Evaluation of DSR Products Over Mountains

Fig. 2(a) shows that the “point observations” by ground
measurements over mountains vary substantially even within
5 km in mountains, indicating nonnegligible spatial mis-
match between ground-measured DSR and kilometer-scale
DSR products [52]. Thus, the previous evaluation against
ground-measured data [22], [83] cannot document the topo-
graphic impacts on DSR products in mountains. Therefore,
we applied H-DSR as the bridge for evaluating topographic
effects in DSR products as Fig. 2(b). The evaluation was
conducted mainly under clear-sky conditions to avoid the
following issues under cloudy skies: 1) the mismatch between
the satellite-derived DSR and ground measurements [84]
and 2) the limited temporal resolution of MODIS, which
makes it difficult to capture substantial cloud variations [19].
In addition, the clear-sky DSR typically suffers from greater
topographic effects than cloudy skies, and thus, the evaluation
of the clear-sky DSR products helps us to better understand
the topographic effects on DSR estimation. The H-DSR data

Fig. 2. Spatial heterogeneity of DSR induced by topography and strategy for
evaluating topographic effects of kilometer-scale DSR products in mountains.
(a) Clear-sky diurnal DSR variation and daily mean DSR over “slope-parallel”
ground measurements in Chengde, China, on November 2, 2018. Note that
the distances among seven stations are within 5 km, and for geolocation
information, please refer to Yan et al. [52]. (b) Overall strategy for evaluation
in our study. The red cross means the ground-measured data cannot be used
for the evaluation of kilometer-scale DSR products in mountains because of
spatial mismatching. The green tick means the H-DSR can serve as a “bridge”
for the evaluation.

were validated against daily DSR measurements from weather
stations in Appendix B, providing us with reliable ground-truth
data for evaluating the DSR products in mountains com-
pared with previous studies [44], [45]. In addition, given that
the H-DSR errors were uniformly distributed in the study
area [55], the uncertainties in the H-DSR could be largely
alleviated by spatial upscaling (Fig. C1). A total of 766 clear-
sky days (i.e., without any cloud contamination throughout the
entire daylight period of each day) from January 23, 2008 to
December 31, 2015 were selected based on the measured
diurnal DSR data from weather stations in Sierra Nevada.
The clearness index (CI) was calculated as the fraction of
DSR and extraterrestrial radiation to separate clear sky [55].
We also visually checked the H-DSR time series to avoid cloud
contamination. For the issues under cloudy-sky conditions,
we also conducted the preliminary evaluation under partially
cloudy (i.e., 1279 days) and fully cloudy (i.e., 814 days)
conditions to explore how topography impacted DSR products
under cloudy skies.

We also conducted the preliminary evaluation over Chengde,
China, where the high spatial resolution daily mean DSR maps
were estimated from Landsat and MODIS atmospheric product
with the assumption that the atmospheric conditions were sta-
ble in the day. The integration of topography was implemented
by the mountainous radiative transfer model in Section III-C.
For the details of the estimation method, please refer to
Ma et al. [82]. This evaluation served as an additional experi-
ment to illustrate whether our findings remain over other areas.
Besides, compared with the very limited estimation from high
spatial resolution satellite data due to sparse Landsat overpass,
the H-DSR generated by interpolating hourly ground measure-
ments offered us invaluable reference data for evaluation. Note
that this is a preliminary comparison, and the quantification
was not conducted due to the uncertainties and assumptions
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(i.e., the stable atmospheric conditions during the entire day-
light hours) when estimating H-DSR from satellite data.

B. Spatial Upscaling of DSR Data

To evaluate the kilometer-scale DSR products using H-DSR
(with 30-m spatial resolution), it was necessary to upscale
H-DSR to spatially match DSR products. In addition, the
1-km MCD18A1 was also upscaled to 0.05◦ for comparison.
The topography induces a difference between the surface area
and projected area, so the spatial upscaling of the fluxes in
mountains should include the surface area weight [85], [86]

Ecoarse
t =

N∑
i=1

pi · Efine
t,i (1)

pi = Ai

/
N∑

i=1

Ai (2)

where Ecoarse
t and Efine

t,i are the coarse and fine spatial resolu-
tion shortwave radiation, respectively; pi is the area-weighted
ratio derived by dividing the surface area of the fine-resolution
pixel by the total surface area of the coarse pixel; and Ai is
the surface area of DEM pixel i derived using the method
described by Jenness [81].

C. Mountainous Radiative Transfer Model

We used the mountainous radiative transfer model [37]
to enhance our findings and explore the potential problems
of DSR products (Sections IV-D and IV-E). The DSR in
mountains includes three components, namely, direct radiation
(Edir

t ), diffuse radiation (Edif
t ), and reflected radiation from the

surrounding environment (E ref
t ), which can be calculated using

the following equations, respectively:

Edir
t = 2 · Edir

h · (cos it/ cos θs) (3)

Edif
t = Edif

h · Vd (4)

E ref
t = ā · (1 − Vd) ·

(
Edir

h + Edif
h

)
(5)

where 2 is the shadow factor (unitless), which is equal to 0 in
shadow areas and is equal to 1 in nonshadow areas. Edir

h and
Edif

h are the direct and diffuse radiation (W/m2) in flat areas,
respectively. θS is the solar zenith angle (SZA; ◦ from the
vertical direction). Vd is the sky view factor (SVF; unitless)
of the target pixel (unitless), and it is the local incident angle
(◦ from the normal of terrain); the SVF and local incident angle
can be derived from the DEM and solar angles [87]. ā is the
average surface albedo of the surrounding terrain (unitless).
We assumed that the surface albedo of the targeted area was
close to the average albedo of the surrounding environment:
a ≈ ā. The libRadtran 2.0.4 [88], [89] was used to drive
the mountainous radiative transfer simulations: the direct and
diffuse radiation can be obtained by setting SZA, atmospheric
parameters, and surface albedo. For details about how TOA
reflectance is modeled in the mountainous radiative transfer
model, please see Ma et al. [37].

The objective of employing the mountainous radiative trans-
fer model is twofold: 1) to investigate whether neglecting
topography results in time-varying deviations in regional DSR

estimation and 2) to elucidate the reasons behind the over-
estimations observed in the evaluation of MCD18A1. For
the first goal, simulations of both DSR with and without
topographic consideration were conducted over Sierra Nevada,
Spain, on four solar points to quantify regional deviations.
The simulations encompassed various combinations of aerosol
optical depth (AOD; 0.2 and 0.4) and albedo (0.2 and 0.6)
to represent distinct atmosphere and surface conditions. It is
worth noting that AOD and surface albedo were selected as
variables due to their crucial impacts on clear-sky DSR. For the
second goal, as MCD18A1 utilizes blue-band TOA reflectance
data to determine atmospheric optical depth, simulations of
blue-band TOA reflectance were performed over both rugged
terrain and flat areas under clear-sky and cloudy-sky condi-
tions. A comparative analysis was conducted to assess the
differences between them. The simulation parameters included
an SZA of 60◦, a view zenith angle of 0◦, and an elevation of
2 km. Clear-sky conditions ranged from AOD = 0, 0.05, 0.10,
0.15, 0.20, 0.30, 0.4, and 0.6, while cloudy-sky conditions
varied in terms of cloud optical depth (COD) from 1, 3, 5,
10, 30, 40, 50, 60, 70, 80, and 100. The sloping terrain had a
local incidence angle of 30◦ and an SVF of 0.93. A spectral
library containing 245 typical surface spectra [37], [90], [91]
of snow, vegetation, and soil was used.

IV. RESULTS

A. Preliminary Comparison of the H-DSR and DSR Products
Fig. 3 shows the DSR patterns of the H-DSR (at the 30-m

spatial resolution), upscaled H-DSR with the spatial resolu-
tions of 1 km and 0.05◦, MCD18A1, MSG DSR, GLASS DSR,
and BESS DSR around three solar points (i.e., the two solstices
and the autumnal equinox, and the spring equinox was not
shown since the similar DSR pattern as the autumnal equinox).
Fig. 3 clearly shows that topographic effects are substantial
for the 30-m H-DSR. The DSR varied with the topography
for the upscaled H-DSR (i.e., spatial resolutions of 1 km and
0.05◦), yet the MCD18A1, MSG DSR, GLASS DSR, and
BESS DSR values were very homogeneous over the study
area. Moreover, the MCD18A1 had some underestimations on
the summits, especially during the winter equinox, compared
with the H-DSR and other DSR products. Fig. 4 further shows
the function of the spatial resolution and temporal variations
on the DSR values based on the H-DSR and upscaled H-DSR
at four solar points. The DSR ranges at the two equinoxes
were similar, since the clear-sky DSR largely depended on
the SZA. The H-DSR on December 22, 2008 varied from
0.0 to 322.4 W/m2 at a spatial resolution of 30 m, from
24.8 to 254.6 W/m2 at 1 km, and from 87.6 to 182.3 W/m2 at
0.05◦. Note that the minimum H-DSR is about 0.042 before
rounding on December 22, 2008, and the close to zero value
could be attributed to the sheltering effects from surrounding
mountains during the whole day. On June 21, 2012, the H-DSR
varied from 138.2 to 418.7 W/m2 at a spatial resolution of
30 m, from 260.5 to 400.3 W/m2 at 1 km, and from 301.8 to
371.4 W/m2 at 0.05◦. This is consistent with our knowledge
that topographic effects generally decrease with increasing
pixel size [92] and increase with increasing SZA (i.e., from
summer to winter) [37], [39].
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Fig. 3. Clear-sky H-DSR (30 m), upscaled H-DSR with the spatial resolutions
of 1 km and 0.05◦, MCD18A1 (1 km), MSG DSR (approximately 3.3 km),
GLASS DSR (0.05◦), and BESS DSR (0.05◦) around three solar points (i.e.,
the two solstices and the autumnal equinox). The specific date is noted at the
top of the column.

Fig. 4. Boxplot of the clear-sky DSR ranges for the H-DSR (30 m)
and upscaled H-DSR with the spatial resolution of 1 km and 0.05◦ around
four solar points (i.e., the two solstices and two equinoxes). Evaluations
on (a) March 22, 2008, (b) June 21, 2012, (c) September 22, 2012, and
(d) December 22, 2008.

Fig. A1 shows the comparison using the satellite-derived
H-DSR in Chengde, China. We only obtained three entire
clear-sky images (with no clouds in the whole daylight time)
from 2013 to 2019 because of the high cloud cover and sparse
overpassing of Landsat 8. There was an overestimation of
H-DSR on June 1, 2017 [82], so it exhibited higher values
than the three DSR products. In general, the comparison offers
the same information as Fig. 3 that the kilometer-scale DSR
products are homogenous and do not show variations with
topography, while the topographic impacts exist even for the
upscaled H-DSR at 0.05◦ resolution.

Fig. 5. Overall evaluation of the clear-sky daily mean (a) MCD18A1 (1 km),
(b) MSG DSR (approximately 3.3 km), (c) GLASS DSR (0.05◦), (d) BESS
DSR (0.05◦), and (e) upscaled MCD18A1 (0.05◦) against the H-DSR over
Sierra Nevada from January 23, 2008 to December 31, 2015. N is the sample
size. The RMSE and bias have the units of W/m2. The colors indicate the
relative data density.

B. Overall Evaluation Accuracies

We conducted an overall evaluation of the MCD18A1
(1 km), MSG DSR (approximately 3.3 km), GLASS DSR
(0.05◦), BESS DSR (0.05◦), and upscaled MCD18A1 (0.05◦)

against the H-DSR in Sierra Nevada. Fig. 5 shows the
overall evaluation of the daily mean clear-sky DSR from
January 23, 2008 to December 31, 2015. As can be seen
from Fig. 5, the R2, RMSE, relative RMSE (rRMSE), and
bias of the MCD18A1 were 0.86, 39.8 W/m2, 16.0%, and
16.3 W/m2, respectively, and those of the MSG DSR were
0.95, 22.3 W/m2, 9.0%, and 4.4 W/m2, respectively. The
GLASS DSR achieved an R2 of 0.94, an RMSE of 22.7 W/m2,
an rRMSE of 9.1%, and a bias of −0.8 W/m2, while the BESS
DSR achieved the values of 0.94, 30.0 W/m2, 12.1%, and
13.3 W/m2, respectively. With spatial upscaling from 1 km
to 0.05◦, the accuracy of the MCD18A1 improved (R2

=

0.91, RMSE = 35.3 W/m2, rRMSE = 14.2%, and bias =

16.2 W/m2), yet the upscaled MCD18A1 still performed worse
than the GLASS and BESS DSR. The MCD18A1 contained
substantial underestimations in Fig. 5(a) where the maximum
deviation reached 345.7 W/m2, and the upscaling alleviated
this issue.

Fig. 6 shows the pixel-scale evaluation results for the
MCD18A1, MSG DSR, GLASS DSR, BESS DSR, and
upscaled MCD18A1 in Sierra Nevada. The RMSE and bias
exhibited considerable heterogeneity in the study area, espe-
cially for the MCD18A1 at >2000 m above sea level
(Fig. 1). The RMSE of the MCD18A1 ranged from 17.4 to
137.9 W/m2, and the bias ranged from −91.2 to 99.0 W/m2.
The MCD18A1 performed better with upscaling, with the
RMSE values of 17.2–83.4 W/m2 and the bias values of
−52.8 to 42.1 W/m2. The performances of the MSG DSR,
GLASS DSR, and BESS DSR were more stable than those
of the MCD18A1. The RMSE of the MSG DSR ranged
from 10.6 to 54.6 W/m2, and the bias ranged from −28.2 to
52.3 W/m2; the GLASS DSR had the RMSE values of
12.2–42.6 W/m2 and the bias values of −30.2 to 37.6 W/m2;
the BESS DSR had the RMSE values of 19.2–54.1 W/m2 and
the bias values of −18.8 to 50.0 W/m2. Despite the remarkable
differences in the performances of these DSR products, their
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Fig. 6. RMSE and bias patterns of the MCD18A1 (1 km), MSG DSR
(approximately 3.3 km), GLASS DSR (0.05◦), BESS DSR (0.05◦), and
upscaled MCD18A1 (0.05◦). RMSEs of (a) MCD18A1, (c) MSG DSR,
(e) GLASS DSR, (g) BESS DSR, and (i) upscaled MCD18A1, which share
the same color bar. Biases of (b) MCD18A1, (d) MSG DSR, (f) GLASS DSR,
(h) BESS DSR, and (j) upscaled MCD18A1, which share the same color bar.

RMSE and bias patterns were similar, with the following:
1) larger RMSEs in the rugged terrain than in the flat areas
(Fig. 1) and 2) positive biases (i.e., overestimation) in the
northern Sierra Nevada and underestimation in the southern
Sierra Nevada.

C. Evaluating the Topographic Effects on DSR Products

To investigate how topography impacted the DSR products,
we conducted further evaluations of the four DSR products
under different terrain conditions. Table II shows the evalua-
tions of the DSR products for different slope ranges. The low
uncertainties of the four DSR products compared with the
H-DSR in flat areas (i.e., a slope of <10◦) demonstrated the
consistency of the DSR products with the H-DSR for relatively
smooth terrain and highlighted the fact that the poor perfor-
mances of the DSR products in the rugged terrain (Fig. 6) were
related to the topography. All DSR products showed worse per-
formances with increasing slope (from slope <10◦ to ≥25◦),
i.e., the RMSE increased by 134.6% (from 24.3 to 57.0 W/m2)

for the MCD18A1, 86.5% (from 16.3 to 30.4 W/m2) for
the MSG DSR, 59.8% (from 18.4 to 29.4 W/m2) for the
GLASS DSR, and 62.4% (from 25.0 to 40.6 W/m2) for
the BESS DSR. We also explored how topography impacted
the evaluation results under cloudy-sky conditions (Fig. D1).
The performances of the DSR products did not typically
depend on the topography under fully cloudy conditions,
yet the performances of the DSR products deteriorated with
increasing slopes under partially cloudy conditions, while the
variations were much lower than those under clear skies.

Fig. 7 shows the evaluations of the DSR products for
the south- and north-facing slopes, where pixels with slope
angles ≥10◦ were included. The MSG DSR and GLASS

TABLE II
EVALUATION OF THE DAILY MEAN CLEAR-SKY MCD18A1 (1 KM), MSG

DSR (APPROXIMATELY 3.3 KM), GLASS DSR (0.05◦), BESS DSR
(0.05◦), AND UPSCALED MCD18A1 (0.05◦) AGAINST THE H-DSR

FOR DIFFERENT SLOPE RANGES FROM JANUARY 23, 2008 TO
DECEMBER 31, 2015. THE RMSE AND BIAS HAVE THE

UNITS OF W/M2 . THE [0, 10) FOR SLOPE MEANS THE
PIXELS WHERE SLOPE ANGLES ARE ≥0◦ AND <10◦ ,

AND SO ON FOR THE OTHER CLASSES

DSR had larger RMSEs on the south-facing slope (24.8 and
26.1 W/m2, respectively) than on the north-facing slope
(22.6 and 20.2 W/m2, respectively). However, the RMSEs
of the MCD18A1 and BESS DSR were lower on the
south-facing slopes (40.8 and 29.1 W/m2, respectively) than
on the north-facing slopes (44.8 and 32.6 W/m2, respectively).
In addition, substantial differences in the bias were observed
on the south- and north-facing slopes; that is, the DSR
products all showed overestimation on the north-facing slopes
(i.e., from 10.1 to 33.5 W/m2) and a small or negative bias on
the south-facing slopes (i.e., from −9.2 to 7.1 W/m2). The dif-
ference in the bias between the north- and south-facing slopes
within a certain satellite product ranged from 18.1 W/m2

(MSG DSR) to 29.8 W/m2 (MCD18A1). The evaluation in this
section showed that the topography, in terms of both the slope
and aspect of the terrain, largely determined the performances
of the DSR products in mountains.

D. Exploration of the Time-Varying Deviations in DSR
Products

In this section, we explored whether there are time-varying
deviations in the DSR products resulting from the topography.
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Fig. 7. Evaluation of the daily mean clear-sky DSR products against the
H-DSR on the south-facing slope (green bars) and the north-facing slope
(blue bars) from January 23, 2008 to December 31, 2015. The pixels with the
slope angles of ≥10◦ are countered. (a) RMSE and (b) bias of DSR products.
Parts (a) and (b) share the same X -axis.

Here, we utilized day of year (DOY) as the proxy for
evaluating whether the performance of DSR products is time-
dependent. Fig. 8(a) shows the variations in the clear-sky
DSR with DOY based on the H-DSR and four DSR products.
Fig. 8(b) shows the DSR difference between each of the four
DSR products and the H-DSR between the complex terrain and
relatively flat terrain (e.g., DSR difference for MCD18A1 =

(MCD18A1_complex − H-DSR_complex) − (MCD18A1_
flat − H-DSR_flat), where “_complex” and “_flat” refer to the
areas with the slopes of ≥10◦ and the areas with the slopes
of <10◦, respectively), indicating the deviation of the DSR
products caused by the topography. The general tendency of
the variations in the DSR with DOY is consistent with our
knowledge that the DSR is higher in summer and lower in
winter. The MSG DSR, GLASS DSR, and BESS DSR showed
overestimations compared with the H-DSR during summer and
limited discrepancies in winter, with the DSR differences of
−0.5 to 13.6 W/m2 for the MSG DSR, −1.1 to 10.1 W/m2

for the GLASS DSR, and 1.4–8.8 W/m2 for the BESS DSR.
However, the MCD18A1 exhibited underestimations related
to the unstable estimations (the DSR difference ranged from
−12.0 to 18.2 W/m2), and we further investigate this issue in
Section IV-E.

We also conducted a radiative transfer simulation (see
Section III-C) to demonstrate whether ignoring the topogra-
phy contributed to the time-varying deviations of the DSR
products. Fig. 9 shows the overall mean simulated DSR
differences (i.e., simulated DSR without topography minus
simulated DSR with topography) at the four solar points over
Sierra Nevada. The dependence of the DSR on the terrain
aspect increased from summer to winter when the topography
was ignored (i.e., overestimation on the north-facing slopes
and underestimation on the south-facing slopes). The DSR
difference was typically positive (i.e., overestimation of the
DSR when the topography was ignored) in summer when
the overall mean DSR difference reached 18.8 W/m2 (relative
difference = 5.0%), and the overestimation decreased from

Fig. 8. Variations in the clear-sky DSR with DOY for the H-DSR and the
four DSR products with DOY. (a) Variation of clear-sky DSR with DOY in
Sierra Nevada. (b) DSR difference between the four products and the H-DSR
between the complex terrain (i.e., the slope of ≥10◦) and the relatively flat
terrain (i.e., the slope of <10◦) with DOY in Sierra Nevada. The line refers to
the mean DSR values or the mean DSR difference calculated using a moving
ten-day interval in each year, and the shading represents the standard deviation.

Fig. 9. Overall mean simulated DSR difference (i.e., simulated DSR without
topography minus simulated DSR with topography) at four solar points.
(a)–(d) Pixel-scale mean simulated DSR differences at four solar points.
Simulated DSR difference on (a) March 21, (b) June 21, (c) September 22,
and (d) December 22. (e) Boxplot of the simulated DSR differences at four
solar points. The simulations include four conditions with the combination of
AOD = 0.2 and 0.4 and surface albedo = 0.2 and 0.6.

summer to winter (i.e., mean DSR differences of 7.8 W/m2

(3.1%) at the fall equinox and 3.3 W/m2 (2.9%) at the winter
solstice). This is consistent with the overall trends in Fig. 8.

E. Exploration of MCD18A1’s Potential Problems

Based on the previous results, in this section, we explore
the potential problems with the MCD18A1 in mountains,
specifically the unsatisfactory underestimations (Figs. 3 and 5).
Fig. 10 shows the examples of unsatisfactory underestimations
in MCD18A1, and Fig. 11 shows the corresponding spatial
upscaled H-DSR (1 km) for comparison. The MCD18A1 does
not incorporate topographic consideration, so the estimated
DSR is supposed to generally remain homogeneous over the
entire Sierra Nevada, but underestimation occurred with a
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Fig. 10. Examples of unsatisfactory underestimations in MCD18A1 in 2010.
The labels are the date of the MCD18A1.

Fig. 11. Spatial upscaled H-DSR (1 km) for comparison with the MCD18A1
in Fig. 10. The labels are the date of upscaled H-DSR in 2010.

high frequency. From Figs. 10 and 11, we primarily found
that the unsatisfactory underestimations exhibit certain spatial
and temporal patterns: 1) they mostly occur in winter and
spring (i.e., DOY 1–120 and 305–365) and 2) they have
approximately similar spatial coverages and typically occur
in high-elevation areas (Fig. 1).

We used the mountainous radiative transfer model (see
Section III-C) to explore the potential mechanisms for this
issue. We compared the difference between the clear-sky
and cloudy-sky blue-band TOA reflectance, because the
MCD18A1 uses the blue-band (MODIS band 3) TOA
reflectance to determine the atmospheric optical depth. Fig. 12
shows the range of the simulated blue-band clear-sky and
cloudy-sky TOA reflectance in the flat areas and specific
terrain areas with an SZA equal to 60◦. In the flat areas,
the difference between the simulated clear-sky and cloudy-sky

Fig. 12. Range of simulated clear-sky and cloudy-sky blue band TOA
reflectance variations over the flat areas and specific sloping terrain. SZA=

60◦, view zenith angle = 0◦, and elevation = 2 km. The clear skies have
AOD = 0, 0.05, 0.10, 0.15, 0.20, 0.30, 0.4, and 0.6; the cloudy skies have
COD = 1, 3, 5, 10, 30, 40, 50, 60, 70, 80, and 100. The sloping terrain has a
local incidence angle of 30◦ and an SVF of 0.93. Dots refer to the mean TOA
reflectance, and the bars denote one standard deviation for each condition.

blue-band TOA reflectance was obvious (i.e., higher blue-band
TOA reflectance in cloudy sky and lower values in clear
sky), while the topography impacted TOA reflectance, and
the ranges of the clear-sky and cloudy-sky TOA reflectance
overlapped in the specific terrain areas. Specifically, the
blue-band TOA reflectance-based atmospheric optical depth
retrieval method could separate cloudy pixels and clear pixels
over flat areas, yet it was difficult to do so with topographic
effects.

V. DISCUSSION

A. Topographic Effects on DSR Products

Yan et al. [52] evaluated the MCD18A1 and Himawari-8
DSR in a 5 × 5 km area and found that they were stable (i.e.,
RMSE = 41.254 and 61.707 W/m2 for 3-h scale MCD18A1
and 1-h scale Himawari-8, respectively). Jin et al. [50] also
found that the 1-h scale GLASS DSR achieved a satisfactory
performance (RMSE = 81.91 W/m2) compared with fine
spatial resolution DSR maps. According to Figs. 7 and 8,
the specific topographic and temporal conditions controlled
the DSR evaluation results; thus, our results do not contradict
those of previous studies, and a comprehensive evaluation
under diverse topographic and temporal conditions is needed.

Although the four DSR products we evaluated were based
on different estimation strategies (see Section II-B), they
exhibited similar influences from topography, e.g., the accura-
cies decreased with increasing slope (Table II). The impacts
of the topography resulted in different DSR patterns according
to (3)–(5), for example, lower DSR on the north-facing slopes
(i.e., terrain away from the sun in the northern hemisphere)
and higher DSR on the south-facing slopes (i.e., terrain facing
the sun in the northern hemisphere). This resulted in over-
estimations on the north-facing slopes and underestimation
on the south-facing slopes when topographic effects were
ignored (Fig. 7) at around 37◦N of Sierra Nevada. Besides, the
obstruction induced by the mountains on sensor observations
could contribute uncertainties in DSR estimation over moun-
tains [86]. Our results are consistent with those of previous
studies; that is, the topography affected the kilometer-scale
shortwave radiation modeling [47], [93], though the topo-
graphic effects decreased with upscaling (Figs. 3 and 4).
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B. Time-Varying Deviations of DSR Products in Mountains

Several studies have presented large differences in DSR
between mountains and flat areas [86], [92], [94]. How topog-
raphy controls the instantaneous DSR at the pixel scale can
be seen from (3)–(5): under clear-sky conditions, the direct
radiation dominates, and the DSR achieves higher values for
the terrain facing the sun (i.e., smaller local incidence angles)
and lower values for the terrain away from the sun or in
shadowed areas. However, how topography impacts the daily
mean DSR at the regional scale has largely remained unclear.
From Figs. 8 and 9, we observed the time-varying deviations
of the mean DSR in Sierra Nevada when ignoring topographic
effects from both satellite products and mountainous radiative
transfer simulations. We obtained possible explanations for
why large DSR overestimations occurred in summer. The
daily mean DSR mainly depended on the local incidence
angle (i.e., SZA for flat areas) around local noon under clear-
sky conditions, while at noon in summer, most of the pixels
might have local incidence angles larger than their SZA. For
example, when the SZA was 15◦ at local noon, most of the
pixels in mountains did not have such small solar incidence
angles, and thus, the direct radiation over the sloping terrain
was less than that over the flat terrain. In addition, due to
the long daylight duration in summer, the variation in the
sun azimuth angle (SAA) was large, and thus, few pixels
were always facing the sun, resulting in a smaller daily mean
DSR in mountains and an overestimation of the DSR when
ignoring topography. In contrast, the pixels were continuously
facing toward or away from the sun during the day in winter
because of the relatively large SZA and small variation in
the SAA within a day. Meanwhile, the radiation reflected
from the surrounding snow-covered areas enhanced the local
DSR in winter [95]. Thus, the regional DSR pattern that
ignored the topography in winter differed from that in summer
(Fig. 9): most of the pixels in summer showed overestima-
tions of DSR when ignoring topography, while the simulated
DSR difference was more symmetric in winter. Noting that
this phenomenon is related to the variation of solar angle
and, thus, geolocation-dependent. The deviations of cloud-sky
DSR depended more on the atmospheric conditions, e.g.,
the diffuse radiation dominated the DSR under thick clouds,
and the mountains resulted in shelters of DSR in mountains,
thus overestimation of DSR when topographic effects were
ignored [37]. Gu et al. [96] also found that the simulated
summer mean DSR decreased by more than 30 W/m2 in
the southern and western Tibetan Plateau when topographic
considerations were integrated. In general, the current DSR
products lead to time-varying deviations at the regional scale,
inducing issues in studies on dimming and brightening [97],
snow dynamics evaluation [98], gross primary production [99],
evaporation [100], and surface warming [101].

C. Additional Issues and Future Study

Our evaluation results were somewhat impacted by the
geolocation errors of the DSR products [102]. However,
our primary conclusions persist because of the relatively
homogeneous values of the clear-sky DSR products (Fig. 3).

The various surface and topographic characteristics in Sierra
Nevada (Section II-A), ensured the universality of our results.
Our findings can also be extended to other areas because of
the same mechanism by which the topography influences the
DSR [see (3)–(5)]. The preliminary comparison in Appendix
A showed that the low temporal resolution of high spatial reso-
lution satellite data and the difficulty of temporal extrapolation
from instantaneous estimation to daily mean DSR limited the
application of satellite estimation for DSR products evaluation
in mountains. This indicated that the H-DSR used in this study
offered an invaluable chance to understand the topographic
effects in mountains.

According to Figs. 3 and 5, substantial underestimations
occurred in the MCD18A1. From Figs. 10 and 11 as well as
previous studies [103], the underestimations may be related
to snow. Li et al. [24] reported that the misclassification of
bright surfaces and clouds based on the blue band introduces
uncertainties in the MCD18A1. We found that the topography
made it difficult to distinguish clear sky and cloudy sky
using the blue-band TOA reflectance data (Fig. 12), thus
resulting in misestimation of atmospheric optical depth (e.g.,
the clear-sky snow-covered sloping terrain was misestimated
as high COD), ultimately introducing substantial underesti-
mations into the DSR estimation results. The performances
of the other DSR products were reasonable, presumably
because of the following: 1) more spectral bands were used
(i.e., GLASS DSR) or atmospheric parameter products were
inputted (i.e., the MSG DSR and BESS DSR), which helped
to better separate the clear-sky and cloudy-sky data, and 2) the
coarser spatial resolution of the data alleviated the impacts of
topography.

In addition to the accuracies of the DSR products
being slope-dependent, aspect-dependent, and time-dependent
(Sections IV-C and IV-D), the result of our study indicates
that additional issues may be introduced into DSR products
when topographic effects are ignored, and our results high-
light the necessity of integrating topographic consideration
into DSR generation. For future updates of the DSR prod-
ucts, we recommend incorporating two key points relating
to topography: 1) the sun-target-sensor geometry changes in
complex terrain, so the impact of the topography on satellite
observations should be considered [86], [102] and 2) the
mountains typically experience high cloud dynamics [104],
so integrating topographic consideration under cloudy-sky
conditions is necessary (see Fig. D1 and Ma et al. [37]).

VI. CONCLUSION

This is the first comprehensive assessment of how topogra-
phy impacts the performances of DSR products in mountains.
We evaluated the MCD18A1, MSG DSR, GLASS DSR, and
BESS DSR products using the H-DSR as the ground-truth data
in Sierra Nevada, Spain, a typical mid-latitude massif with
mountains. The mountainous radiative transfer simulations
were applied to demonstrate our findings. Overall, the topo-
graphic conditions substantially controlled the accuracies of
the DSR products. We concluded that the performances of the
clear-sky DSR products in mountains were slope-dependent,
aspect-dependent, and time-dependent.
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1) With increasing slope (from <10◦ to ≥25◦), the
RMSE increased by 134.6% (24.3–57.0 W/m2) for the
MCD18A1, 86.5% (16.3–30.4 W/m2) for the MSG
DSR, 59.8% (18.4–29.4 W/m2) for the GLASS DSR,
and 62.4% (25.0–40.6 W/m2) for the BESS DSR.

2) The four DSR products all exhibited relative overestima-
tion on the north-facing slopes (i.e., 10.1–33.5 W/m2)

and underestimation on the south-facing slopes (i.e.,
−9.2 to 7.1 W/m2) compared with their bias values in
the flat areas (i.e., −5.4 to 12.6 W/m2) in the northern
hemisphere. This would be reversed beyond the tropics
in the southern hemisphere.

3) The DSR products did not perform equally among
the different temporal ranges, and the selected DSR
products all produced overestimations in summer (i.e.,
8.8–18.2 W/m2), and the discrepancies decreased from
summer to winter.

4) The cloudy-sky DSR also suffered from topographic
effects, yet the topographic effects decreased with cloud
cover increased. We found that there were unexpected
uncertainties in the current DSR products in mountains,
and we demonstrated the necessity of integrating topo-
graphic considerations into DSR estimations. Owing to
the same mechanism of how topographic effects impact
DSR estimation, our findings can be further extended
to various mountainous areas. We highlight the fact that
the current DSR products should be carefully considered
before being applied in mountainous areas.

APPENDIX

A. Preliminary Evaluation of DSR Products in Chengde,
China

Fig. A1 shows the comparison of H-DSR derived from
satellite estimation [82], the upscaled DSR, and the DSR
products. Note that MSG DSR is geostationary satellite-based
data, and it is not available in China.

B. Evaluation of H-DSR Against Ground-Measured Flux

We conducted the evaluation of H-DSR against ground-
measured flux following Aguilar et al. [55]. Note that the
slight differences in the validation results compared with
Aguilar et al. [55] were attributed to the update of H-DSR
and different temporal periods for evaluation. The geolocation
information of ground measurements is provided in Table B1.
The performance of H-DSR was reasonable under clear-sky
conditions (i.e., overall RMSE = 25.87 W/m2) and deterio-
rated with more clouds (Fig. B1).

C. Uncertainties of H-DSR on DSR Evaluation

Although the H-DSR has been reported to have high accu-
racy under clear-sky conditions, uncertainties remain in the
H-DSR and are presumably from DEM errors, resampling
errors, and algorithm uncertainties. We introduced 10% ran-
dom error (refer to Aguilar et al. [55]) into the H-DSR to
investigate how the uncertainties impacted DSR evaluation
in our study. Fig. C1 shows the impact of the 10% random
errors on the 1-km DSR and 0.05◦ DSR. The uncertainties

Fig. A1. Clear-sky H-DSR (30 m), upscaled H-DSR with the spatial
resolutions of 1 km and 0.05◦, MCD18A1 (1 km), GLASS DSR (0.05◦), and
BESS DSR (0.05◦) for three days with clear-sky conditions. Each column
refers to the DSR at the same solar points, and the specific date is noted
at the top of the column. The top-left corner is 41.8◦N, 118.0◦E; and the
bottom-right corner is 41.1◦N, 118.7◦E.

TABLE B1
GEOLOCATION INFORMATION OF THE GROUND MEASUREMENTS USED

FOR H-DSR GENERATION AND EVALUATION

were largely reduced by the upscaling, and the maximum
RMSEs were 1.4 and 0.9 W/m2 for the 1-km and 0.05◦ spatial
resolutions, respectively.

D. Evaluation Under Partially Cloudy and Fully Cloudy
Conditions

A total of 1279 partially cloudy conditions and 814 fully
cloudy condition data were finally selected based on
both the ground-measured data and the H-DSR patterns
(see Section II-C). Fig. D1 shows the evaluation of the DSR
products for different slope ranges under partially cloudy
and fully cloudy conditions. The RMSE typically increased
with increasing cloud cover. For partially cloudy conditions,
the RMSEs of the four DSR products generally increased
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Fig. B1. Cross validation of H-DSR against ground-measured shortwave
flux. Linear fits of daily predicted versus observed DSR at each of the
selected stations for all data (black) and cloudy (CI < 0.3—red), partly cloudy
(0.3 < CI < 0.6—blue), and clear-sky (CI > 0.6—orange) days. The black
numbers above each subplot are the station code (see Fig. 1(b) for locations)
and elevation. For all subplots, the solid black line is the 1:1 line, and lines of
best fit for all data and the three cloudy classes are provided in the relevant
color on each subplot. Units of all axes are W/m2. The subplots are ordered
by site elevation, starting from the top left, by row, to the bottom right.

Fig. C1. Impact of the 10% random error in the 30-m clear-sky H-DSR on
(a) overall mean RMSE of the 1-km DSR and (b) overall mean RMSE of the
0.05◦ DSR. Please refer to Fig. 1 for the geolocation information.

Fig. D1. RMSE of the daily mean DSR products against the H-DSR under
(a) partially full and (b) fully cloudy conditions on varying slopes. (a) and
(b) Share the same X -axis and legend. The [0, 10) for the slope range means
the pixels had the slope angles of ≥0◦ and <10◦, and so on for the other
X -axis groupings. Parts (a) and (b) share the same X -axis.

with increasing slope, i.e., the RMSE increased from 41.6 to
57.4 W/m2 (RMSE increased by 38.0%) for the MCD18A1,
30.0 to 37.0 W/m2 (23.3%) for the MSG DSR, 32.6 to
37.7 W/m2 (15.6%) for the GLASS DSR, and 39.4 to 47.1
(19.5%) W/m2 for the BESS DSR in the areas with the slopes
of <10◦ to ≥25◦. The performances of the four DSR products
did not show obvious dependence on the slope under fully
cloudy conditions.
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