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Abstract— Land subsidence caused by mining activity is one
of the most serious anthropogenic geohazards. The rapid detec-
tion and continuous monitoring of mining subsidence facilitate
the swift detection of geohazards. The traditional methods
of monitoring mining subsidence have shortcomings, such as
offering only a limited coverage and being time consuming.
Interferometric Synthetic Aperture Radar (InSAR) has been
proven to be a powerful tool to identify mining subsidence
hazards from unwrapped interferograms, but this method can
be complex and inefficient, particularly for wide areas. In this
article, a mask R-CNN model is presented to automatically
detect mining subsidence and monitor the surface activity over
wide areas using original SAR interferograms to avoid the
time-consuming and error-prone phase unwrapping procedure.
Using Sentinel-1 wrapped interferograms as the real dataset and
simulated wrapped interferograms generated with the Gaussian
surface function combined with Generic Atmospheric Correction
Online Service (GACOS) for InSAR as the simulated dataset, the
mask R-CNN deep neural network was used to train the mining
subsidence detection model. It turned out that the accuracy
of the detection model was 91.48%, while the precision was
96.44%, the recall rate was 93.88%, and the F1 index was
0.949. The detection model was then utilized to detect mining
subsidence in southwestern Shanxi, China, between 2016 and
2022. A total of 152 land subsidence points were detected and
long-term monitoring results were also obtained. An analysis of
the state of land subsidence in the mining areas was carried out
to obtain land subsidence activity during the monitoring period.
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I. INTRODUCTION

UNDERGROUND mining often leads to a lowering of the
Earth’s surface (hereafter referred to as land subsidence)

as a result of the collapse of bedrock and the subsequent
sinking of unconsolidated surface sediments [1]. Although
there is often a time lag between when the underground mining
starts and when the mining subsidence occurs, rapid detection
and long-term monitoring of land subsidence in mining areas
are important elements in the monitoring of mining activity,
which is vital for the economic development of mining cities
and the safety of people and property. Such monitoring is used
to guide underground mining work, facilitate the supervision
of mining activities, and allow the timely detection of illegal
mining [2].

Currently, mining subsidence can be monitored in a number
of ways, from in situ instruments to remote sensing from UAV
and satellites. Optical leveling is a traditional method to moni-
tor the mining subsidence. Although offering a high degree of
accuracy (at the mm level), spirit leveling is time-consuming,
which in turn makes it expensive, particularly when dealing
with a wide area (e.g., [3]). The Global Navigation Satellite
System (GNSS) is another traditional method to monitor
land subsidence, but it, similar to spirit leveling, can only
provide point measurements [4]. With the rapid development
of unmanned aerial vehicles (UAVs), UAV photogrammetry
and Light Detection And Ranging (LiDAR) have been widely
used for subsidence monitoring [5], [6]. However, they can
only be applied to limited areas (e.g., tens to hundreds of
km2) and struggle to penetrate vegetation.

In the past three decades, Interferometric Synthetic Aper-
ture Radar (InSAR) has gradually become a powerful tool
in the monitoring of volcanos [7], earthquakes [8], [9],
landslides [10], glaciers [11], [12], and large-scale land defor-
mation [13] and shows unprecedented advantages [14].

Wright and Stow [15] used ERS images to obtain the line
of sight (LOS) deformation maps over the Selby coalfield in
the U.K. and reported that the interferometric fringes were
associated with underground mining activities. Since then,
InSAR has been widely used to monitor mining subsidence,
which is currently believed to be a powerful and quantitative
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tool for this purpose (e.g., [16]). Many scholars have proposed
a range of methods to acquire precise mining subsidence,
e.g., combining InSAR with mining subsidence prediction
models [17], [18], SAR pixel offset tracking technique [19],
and combining InSAR with terrestrial 3-D laser scanning [20],
[21].

Two categories of approaches have been developed to detect
areas with mining subsidence: 1) setting deformation rate
thresholds (e.g., [22]) and 2) using machine learning (ML)
algorithms (e.g., [23], [24]). For Category I, they mainly
work on the mean deformation rate maps derived from InSAR
stacking or time-series algorithms, which is easy to be imple-
mented. However, areas with small deformation rates are
difficult to detect, even if a region has deformed significantly
over a short period of time, the deformation rate will be
small if the deformation rate is calculated over a large time
span. Another disadvantage of Category I approaches is that
phase unwrapping is computationally expensive and slow and
additional uncertainties can be introduced. For Category II,
several ML-based algorithms have been developed to detect
mining subsidence using originally wrapped interferograms.
For instance, Schwegmann et al. [25] employed the deep
convolutional neural network (CNN) to identify deforming
areas, but both the accuracy and recognition ability require
further improvement. Rotter and Muron [26] proposed a
single-shot multibox detector (SSD) architecture based on
visual geometry group (VGG) networks and an algorithm
based on Tiny You Only Look Once (TinyYOLOv2) to detect
collapsed pits caused by coal mining in wrapped interfero-
grams. Wu et al. [27] managed to automatically detect mining
subsidence from wrapped interferograms with the deformation
detection network (DDNet) and unwrap the cropped interfer-
ogram patches centered on the detected subsidence locations
with the phase unwrapping network (PUNet). Previous studies
have demonstrated that Category II approaches can be promis-
ing to detect mining subsidence, but they failed to determine
the subsidence boundaries. In addition, computational effi-
ciency remains a challenge, especially when a large number
of SAR images are available.

In this article, a new technical framework is presented to
detect mining subsidence and monitor mining activity from a
series of originally wrapped interferograms. This framework
consists of two key parts: 1) the mask R-CNN model training
and 2) the model application. There are three noticeable fea-
tures of the proposed technical framework. The first noticeable
feature is the use of originally wrapped interferograms to
detect mining subsidence and map their corresponding bound-
aries, which is based on the fact that mining subsidence is
usually characterized as concentric circles or elliptical fringes
in the wrapped interferograms due to the working mode of
mining activity. Since ML is particularly good at digesting
large amounts of data and identifying patterns or finding
anomalies in that data, mask R-CNN, being one of the most
powerful object recognition ML algorithms shall be effective
for detecting concentric circular or elliptical fringes corre-
sponding to mining subsidence. The second noticeable feature
of this technical framework is that the simplest interferogram
network is adopted, which is beneficial to the rapid processing

of historical SAR imagery and new acquisitions. The third
noticeable feature of this technical framework is that a novel
indicator titled surface activity is proposed to indicate how
frequently the mining subsidence occurs. The more frequent
the occurrence of mining subsidence, the greater the surface
active will be.

The mask R-CNN structure is described in Section II.
In Section III, the mining subsidence detection technical
framework is established. The application of the technical
framework to southwestern Shanxi, China is demonstrated in
Section IV. Discussions are presented in Section V followed
by conclusion in Section VI.

II. ML ALGORITHMS

ML—a popular data analysis method in recent years—
automates the learning of sample features by simulating human
learning behaviors and continuously reinforcing them [28].
In remote sensing, ML has been widely used in the automatic
classification of remote sensing images [29], remote sensing
image target monitoring [30], [31], and biomass monitor-
ing [32]. Target detection models, as one of the main and most
widespread applications in ML, have undergone many years
of development. The current mainstream algorithms include
AlexNet [33], GoogleNet [34], visual geometry group network
(VGGNet) [35], regions with a convolution neural network (R-
CNN) [36], fast R-CNN [37], faster R-CNN [38], SSD [39],
and You Only Look Once (YOLOv3) [40].

Mask R-CNN—a pixel-level detection and classification
network—is an improved network model based on faster R-
CNN. Mask R-CNN fully integrates the features identified
by each layer of the CNN network to improve the semantic
features and increase the accuracy and resolution of target
location detection, thus providing the advantage of pixel-level
recognition.

A. Network Model Structure

Based on the faster R-CNN, mask R-CNN utilized a mask
branch for the segmentation task to improve the accuracy of
target detection. Its target detection algorithm is an R-CNN
that not only detects targets but also segments them using deep
semantics. This method allows the more accurate localization
and vivid representation of target objects. Upon detecting a
target, it produces a high-quality segmentation mask that can
be used to quickly predict the target [41]. The mask R-CNN
model introduces the FPN “top–down” extraction of features at
different scales and fuses them with the original convolutional
extracted feature map. This solves the problem of being unable
to recognize small targets and adding the RPN to the CNN to
generate the recommended region, on the basis of which target
recognition is completed.

The mask R-CNN model also uses the region of interests
(RoI) align method to replace the traditional RoI pooling
method, allowing the regression frame to be shifted by a small
number of decimal places and thus solving the problem of
the misalignment of the faster R-CNN feature map with the
original image and reducing the impact on the model accuracy.
The RoI align feature maps are not fed into the fully linked
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network for classification and regression but are fed into the
mask branch, where they are fed through fully convolutional
networks (FCNs) [42] to classify the pixels within the proposal
one by one. The network structure of the mask R-CNN model
used in this article is shown in Fig. 1.

Deep residual network (ResNet) has the advantages of easy
optimization and improved accuracy, while its jump connec-
tion alleviates the gradient disappearance problem associated
with increasing network depth. ResNet50 and ResNet101
are often used as backbone networks for the mask R-CNN
model, the only difference being that the ResNet network
structure has 6 and 23 blocks of convolution layer (conv4),
respectively. ResNet101 is deeper and offers improved target
detection accuracy. As such, ResNet101 is chosen herein as the
backbone network for feature extraction of the input samples.

Its network structure mainly contains five different convo-
lutional modules (C1–C5), and from C1 to C5, the samples
are each downsampled to half of their original sizes. The
original samples go through a normal convolutional layer.
A step size of 2 pixels is used with C1 for feature extraction
of the input samples. These are then fed into C2, which uses
a 3 × 3 pixels maximum pooling layer with a step size of
2 pixels, before it is downsampled and fed into the residual
block. The residual block consists of three convolutional layers
of 1 × 1, 3 × 3, and 1 × 1 pixels, respectively. The images
are passed through the C1–C5 convolutional modules of the
ResNet101 network to extract features, respectively, resulting
in five feature maps of different sizes. The feature pyramid
network (FPN) structure upsamples the upper layer feature
map to the same size as the next layer feature map and sums
it with the next layer feature map to obtain a new feature map.
The new feature map is fed into the RPN and a sliding window
is set up to find a suggestion box for the target area of the
mining.

B. Model Evaluation Indices

Three metrics are commonly used in deep learning to
evaluate the performance of network models: precision (P),
recall (R), and accuracy (A), which are calculated as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

A =
TP + TN

TP + TN + FP + FN
. (3)

True positive (TP) are the positive samples divided into
positive samples, true negative (TN) are the negative samples
divided into negative samples, false positive (FP) are the
negative samples divided into positive samples, and false
negative (FN) are the positive samples divided into negative
samples. P is the predicted outcome of the sample, R is the
original sample, and the two are mutually dependent on and
affect each other. F1 is a summed average of P and R and
can be calculated as follows:

F1 =
2TP

2TP + FN + FP
. (4)

The mask R-CNN model typically uses mean pixel accuracy
(MPA) and mean intersection over union (MIoU) metrics to
evaluate the segmentation results of regression classification.
Pixel accuracy (PA) represents the proportion of all pixels
correctly predicted by the classification, MPA represents the
average percentage of correctly classified pixels for the sample
used for accuracy assessment, IoU represents the ratio of
intersection over union of the segmentation result to the true
mask result, and MIoU represents the average intersection over
union result for the sample used for accuracy assessment. MPA
and MIoU are calculated as follows:

MPA =
1

n + 1

n∑
s=0

Pss∑n
t=0 Pst

(5)

MIoU =
1

n + 1

n∑
s=0

Pss∑n
t=0 Pst +

∑n
t=0 Pts − Pss

(6)

where Pss denotes the sample category of s predicted to be
s, Pst denotes the sample category of s predicted to be t , Pts

denotes the sample category of t predicted to be s, and n
denotes the number of predicted categories. As there is only
one category of mining area, n is 1.

III. METHOD DEVELOPMENT

Fig. 2 shows the proposed technical framework for using
the mask R-CNN model to identify mining subsidence and
monitor its evolution. The mask R-CNN is trained to obtain the
mining subsidence detection model, which detects the mining
subsidence areas in the wrapped interferograms based on the
learned features of mining surface deformation, atmospheric
effects, and random noise. When a new wrapped interferogram
is available, the mining subsidence detection model can be
used to detect the mining areas directly, determine their
locations and boundaries, and examine the evolution of the
mining areas.

A. Dataset Preparation

The use of ML methods does not require the manual
extraction of features but does require a large training dataset.
Note that land subsidence in mining areas is affected by a
range of conditions, such as mining time, mining depth, and
government policy, making it difficult to obtain sufficient real
data. This results in a smaller real dataset being collected
for model training and validation. In order to solve problems
such as low model training accuracy that may be caused by
the small number of samples in the real dataset, this article
proposes a method by which to simulate InSAR interferograms
of land subsidence in mining areas, increasing the number
of samples involved in training and validation by producing
simulated interferograms. The real and simulated datasets are
labeled and used together as the training and validation dataset
for the model. The accuracy of the training model is achieved
by comparing and analyzing the real dataset, the simulated
dataset, and the mixed dataset combining the two, to obtain a
mining subsidence detection model based on mask R-CNN.

In this article, Sentinel-1 A/B wrapped interferograms taken
from the Yushen and Changzhi mining areas were used
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Fig. 1. Network structure of the mask R-CNN model. On the left of the Net, the images are input into the model. At the bottom left of the network,
the structure of FPN is illustrated. At the bottom middle, the structure of RPN and activation function used is described. On the right of the Net, the full
convolutional network structure and mask branches are shown.

as the real dataset. Sentinel-1A/B SAR images spanning a
period of two years were acquired and wrapped interfer-
ograms with minimum temporal baselines were generated
using the GAMMA software [43], using SRTM DEM and
high-accuracy orbital data to remove topographic and orbital
phases. The Goldstein filtering method was used to reduce
phase noise [44]. The color images used to make the dataset
were generated using the default parameters set by the rasmph
script (from the GAMMA DISP package). During the pro-
duction of the dataset, the generated color images were sliced
according to an overlap of 34% and a size of 800 × 800 pixels.
Afterward, the land subsidence characteristics of the mining
areas were manually labeled on the sliced color interferograms.
The result files contained the original images, mask informa-
tion, and labeled mask images as the standard dataset format
for training the network model.

Large-scale, high-intensity underground mining often causes
a short-term, rapid surface deformation that exceeds the
detection capability of InSAR, which can appear as phase
decoherence on InSAR interferograms [45]. At the same time,
short wavelength SAR signals, such as X- and C-band, do not
penetrate vegetation well, leading to poor imaging quality of
InSAR interferograms; this is especially the case in areas with
heavy summer vegetation. Therefore, it is difficult to collect a
large real dataset of good quality.

In this article, a method for simulating InSAR wrapped
interferograms of land subsidence in mining areas is proposed
to increase the number and quality of the training dataset;
this simulated dataset offers enhanced generalization capability
over the real dataset. The InSAR wrapped phase usually
contains a deformation phase ϕdef, atmospheric phase ϕatm,
and noise phase ϕnoise, and so, the wrapped phase ϕwrap can
be expressed by the following equation:

ϕwrap = ϕdef + ϕatm + ϕnoise. (7)

According to (7), to simulate the InSAR wrapped phase, the
deformation phase caused by the land subsidence of the mining
area can be modeled using the Gaussian surface function.

By adjusting the parameters, the mining land subsidence area
can be obtained for different settlement amounts, boundary
ranges, and morphologies. The Gaussian surface function is
represented as follows:

dsim_def =
1

2πσ 2 exp

(
−
[
(X − u)2

+ (Y − u)2]
2σ 2

)
(8)

where dsim_def is the modeled land subsidence, X and Y
represent the grid size, u represents the location of the
subsidence center, and σ 2 is the variance. The atmospheric
phase can generally be divided into those caused by stratified
atmosphere and those caused by turbulent atmosphere. The
Generic Atmospheric Correction Online Service (GACOS) for
InSAR, using the iterative tropospheric decomposition (ITD)
model, is applied to separate stratification and turbulence
signals from tropospheric delay and to generate high spatial
resolution atmospheric delay maps [8]. The simulation of the
atmospheric phase in this article was obtained by differenc-
ing the atmospheric delay maps obtained by GACOS. The
equation for differencing is shown as follows:

dsim_atm = ZTD1 − ZTD2 (9)

where dsim_atm is the simulated atmospheric error, and ZTD1
and ZTD2 are the two atmospheric delay maps generated by
GACOS at different times. In order to make the simulated
atmospheric phase more realistic, multiple pairs of GACOS
results were randomly selected for differencing, respectively,
among the GACOS results generated in spring, summer,
autumn, and winter. Finally, the simulated noise dsim_noise was
randomly simulated by a continuous uniform distribution.

The process of fusing dsim_def, dsim_atm, and dsim_noise and
wrapping to obtain the simulated wrapped phase can be
expressed as

ϕsim_wrap = W (dsim_def + dsim_atm + dsim_noise) (10)

where W (·) is the wrapping process and ϕsim_wrap is the final
obtained simulated phase. The flowchart of the simulated data
generation is shown in Fig. 3.
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Fig. 2. Technical framework of the mining subsidence detection (a) flowchart of the model training, the interferograms were sliced and labeled to generate the
training dataset and test dataset, and then, the mask R-CNN was trained and tested to create the mining subsidence detection model and (b) flowchart
of the model application, the orange and purple circles represent the SAR images acquired at different times, while the yellow and blue pentagrams represent
the interferograms generated with adjacent SAR images.

B. Long Time Series Mining Subsidence Detection Patterns

In order to examine the evolution of the mining subsi-
dence areas, only the SAR interferograms generated from
two adjacent SAR images are employed. To avoid additional
uncertainties introduced by phase unwrapping, particularly in
areas with large deformation gradients, the wrapped InSAR
interferograms are directly utilized to identify the mining sub-
sidence areas. Note that the abovementioned strategies ensure
the high efficiency of this proposed technical framework for
obvious reasons: 1) the number of the SAR interferograms is
minimized with the first strategy and 2) phase unwrapping,
the most time-consuming step in interferometric processing,
is not required.

As shown in Fig. 2(b), all historical SAR images are
co-registered to the same master image, and wrapped inter-
ferograms are generated with two adjacent SAR images.
Each wrapped interferogram is input into the land subsidence
detection model to detect the mining subsidence areas and
determine their locations and boundaries. When a newly
acquired SAR image is available, the same operation as used
for the historical images is then performed to generate a
wrapped interferogram together with the most recent SAR
image in the historical SAR datasets. Then, the wrapped
interferogram can then be input into the model to identify
the latest land subsidence areas.

After obtaining the historical and latest land subsidence
areas, their evolution can then be determined, and then, the
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Fig. 3. Simulated InSAR wrapped phase, where (a) is the Gaussian surface function simulating the mining deformation phase, (b) is the GACOS simulated
atmospheric phase, (c) is the random noise, and (d) is the simulated mining subsidence wrapped phase.

level of surface activity (i.e., the activity timing and frequency
of each land subsidence area) can be assessed. For N scenes of
archived historical SAR images, only N − 1 interferograms are
generated and no phase unwrapping is needed, which greatly
reduces the required storage space and processing time, while
avoiding additional uncertainties introduced as a result of
unwrapped interferograms. For newly acquired SAR images,
there is no need to deal with multiple previous SAR images
or to reinvert all interferograms to obtain information, such as
the average rate, reducing the huge computational effort and
possible mismatch with historical data caused by the addition
of new data.

IV. APPLICATION OF SENTINEL-1 DATA TO
SOUTHWESTERN SHANXI

Shanxi is located in the North China Plateau, which is
the most extensive coal production province in China [46].
Shanxi has exhibited the continuous, ultraintensive, large-scale
exploitation of coal resources, which has led to numerous and
widespread land subsidence in mining areas [47]. Therefore,
southwestern Shanxi was selected as the study area. A total
of 132 scenes of Sentinel-1A/B ascending SAR images (see
Fig. 4) were collected during the period from October 2016 to
March 2022. In order to obtain the surface activity index,
only interferograms with the minimum time baselines were
generated. The 132 SAR images were acquired at 12-day inter-
vals, resulting in 131 interferograms. All the interferometric
processing was conducted using the GAMMA software [43].
All the SAR images were cropped and mosaicked to the
appropriate size, before being co-registered to the SAR image
acquired on November 26, 2018 (lying central to the collection
dates of all the SAR images) and generating interferograms.
A 2-pixel multilook operation in the range direction and a
10-pixel multilook operation in the azimuth direction were
performed to suppress noise.

The original interferograms were binary grayscale images,
which were converted to RGB color images by the rasmph
script in GAMMA with default parameters, in order to be
better recognized by the deep learning network. The trained
mask R-CNN model of the mining areas was applied to these
interferograms and periodic land subsidence detection was
carried out in the study area, based on which the state of
mining-induced land subsidence in the long time series was
determined and statistics were produced. Finally, the active

durations of mining-induced land subsidence in the study area
were examined in detail.

A. Performance Evaluation of Network Model

The mask R-CNN model used was trained based on the
TensorFlow framework. The experiments were set to an epoch
of 20, the number of iterations per epoch was 1000, the initial
learning rate was 0.0001, and the weight decay factor was
0.005. To avoid local optimal solutions and accelerate the
convergence rate, the momentum factor was set to 0.9.

The real dataset comprised 723 real samples, using 80%
(588 samples) as the training dataset and 20% (135 samples)
as the test dataset. A total of 2588 training samples (including
588 real samples and 2000 simulated samples) were used in
the mixed dataset to train the network model. Other parameters
in the network model were set identically, and the accuracy of
the model was evaluated using the above evaluation indexes.
We produced two simulated datasets: one with GACOS and
the other one without GACOS, and then trained the model
and calculated the detection accuracy. The results are shown
in Table I.

It is clear that the use of a simulated dataset increased the
number of samples for model training, improved the quality of
the samples, and increased the accuracy of the resulting model
compared to models trained with real data only. Note that
the recall rate decreased (i.e., the detection results of mining
subsidence areas corresponded to the number and locations of
real markers), indicating that increased accuracy rate has an
impact on the recall rate, and the F1 index can better weigh
these two evaluation indexes.

As can be seen from Table I, the model trained on the
simulated dataset with GACOS generally over performed the
model without GACOS, especially in terms of MPA. Analyz-
ing the simulated data without adding the atmospheric errors
in the interferograms will weaken the characteristics of the
real interferograms, resulting in lower model accuracy. So, the
mask R-CNN model, which was trained on a mixed dataset of
real data and simulated data with GACOS, was used for the
detection of mining subsidence areas and further analysis in
subsequent experiments and analyses.

B. Detected Mining Subsidence Areas

Taking seven interferograms containing mining subsidence
in the study area as an example, the land subsidence detection
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Fig. 4. Study area. The datasets of rivers (blue lines) and city boundaries (gray lines) were obtained on the website of People’s Republic of China (PRC)
Natural Resources Department. The red borders indicate the coverages of Sentinel-1 A/B images used.

TABLE I
NETWORK MODEL ACCURACY EVALUATION

model for the mining area was used to detect the images
in the experimental area, and the land subsidence locations
and boundaries were subsequently obtained (see Fig. 5).
In Fig. 5(I)–(VII), (a) shows the interferograms with mining
land subsidence features at different locations at different times
in the study area and (b) shows the detection results of the
mining subsidence detection model corresponding to (a). The
detection results include the suggestion boxes and the bound-
aries of the mining subsidence areas and their corresponding
probability.

In Fig. 5, the land subsidence detection model can detect
the mining subsidence areas in the interferograms, regardless
of the differences in their corresponding RGB colors. The
locations and boundaries of the detected mining subsidence
areas are consistent with those detected by way of visual
recognition. In Fig. 5(I-a), the concentric fringes in the middle
part are obvious with nearly rectangular shapes and their
corresponding recognition probability is 0.997 [see Fig. 5(I-
b)]. The mining subsidence area in the white rectangle of
Fig. 5(I-a) is not detected due to the similarity of the color
of the interferometric fringes to those of the surrounding area,
while the two mining subsidence areas in the white rectangle

of Fig. 5(II-a) are not detected due to the discontinuity of the
interferometric fringes caused by low coherence.

Fig. 5(III-a) is of good quality, with good recognition
results and offer recognition probabilities exceeding 0.86 and
relatively consistent boundaries. The interferogram quality
of Fig. 5(IV-a) is also good. From Fig. 5(IV-b), it can be
seen that consistency with the visual recognition boundary in
Fig. 5(IV-a) is strong, with a recognition probability above
0.95. In Fig. 5(V-a), the interferogram is influenced by the
atmosphere during this time period, which is manifested by
the obvious differences in color on the original interferogram.
However, the overall recognition performance is good and the
leakage rate (the proportion of the undetected number to the
total number) of this interferogram is 28%. In Fig. 5(V-b),
two subsidence areas in the lower left corner are detected as
one mining subsidence area due to their close proximity with
each other, resulting in the underestimation of the number of
mining subsidence areas in the statistics.

The interferogram in Fig. 5(VI-a) is strongly influenced
by the atmosphere, but the land subsidence detection model
offers a strong detection level, with recognition probability
exceeding 0.82 [see Fig. 5(VI-b)]. Although the land
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Fig. 5. (a) Original interferograms and (b) results of the mining subsidence detection model. Note that: 1) (I-a)–(VII-a) show the original interferograms with
mining land subsidence features at different locations at different times in the study area; 2) (I-b)–(VII-b) show the detection results of the mining subsidence
detection model; and 3) Masks are shown in color, and boundary boxes and confidence are also shown.

subsidence in the lower left corner is not visually obvious,
it is detected by the model.

Fig. 5(V-a) and (VII-a) is the two independent interfer-
ograms acquired in the same area at different times, both
of which consist of obvious atmospheric effects and show
different RGB color patterns. It can be seen from Fig. 5(V-b)
and (VII-b) that their leakage rates are lower than 28% (the
calculation method is shown in the above leakage rate), sug-

gesting good performance in both cases in spite of atmospheric
effects and hence strong robustness of the mining subsidence
detection model.

Combining the sliced detection results provides
detection results for the entire study area, and here,
the results for the winter, with its reduced vegetation
impact, have been selected for presentation, as shown
in Fig. 6.
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Fig. 6. Mining subsidence detection locations for the study area. Blue dots indicate the detected mining subsidence areas.

Fig. 7. Long time series of mining subsidence (example of detected locations). Red color indicates where subsidence has been detected and gray color
indicates where no obvious subsidence has been detected.

Overall, a total of 152 mining subsidence points (Nos. k1–
k152) were detected between 2016 and 2022. During this
period, the number of mining subsidence points were relatively
uniform, with no sudden increases or decreases, and mining
subsidence occurred in the almost same areas, mainly in the
northeast and southwest of the study area. It was verified
that the land subsidence caused by mining mainly occurred
in the Qinshui, Huoxi, and Hedong coalfields, as well as the

Hancheng mining area, and that the distribution of the detected
mining subsidence areas was consistent with the distribution
of major mines.

C. Evolution of Mining Subsidence

Underground mining in the mining areas leads to an imbal-
ance of stresses in the overlying rock layers, which can
cause land subsidence [48]. The extent of land subsidence
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Fig. 8. Map of surface activity (cumulative duration, unit: days). Note that
1) the dot color range from blue to cyan to yellow to red, representing the
cumulative duration of ground motion and 2) areas (a)–(e) are selected for
further analysis in Fig. 11.

in mining areas is often much larger than the extent of the
goaf. Underground mining land subsidence has a certain time
lag, with land subsidence usually occurring months to years
after mining. It is thus important to monitor land subsidence
in mining areas continuously over a long time series.

The long time series (approximately six years) of land
subsidence in the study area was obtained by using the model
to detect 131 interferograms in Section IV-B, and ten selected
subsidence areas are shown in Fig. 7 (see Appendix for full
results). In Figs. 13–16, the overall evolution of the detected
mining subsidence is more clearly demonstrated. Land sub-
sidence is often not detected during the months of June to
August each year, mainly due to the fact that the Sentinel-1A/B
(C-band) signals are not able to fully penetrate vegetation
during summer. This leads to low coherence and makes it
difficult to show concentric circular or elliptical fringes in the
interferograms.

In Fig. 7, the mining subsidence is easy to be detected in
winter but it is difficult to be detected in summer. Regardless
of the influence of summer vegetation on the coherence of the
interferogram, it can be divided into the following states: 1)
mining subsidence is almost continuous, such as K1, K8, K11,
K23, and K53. In addition to the influence of poor quality of
the interferogram caused by seasonal factors, these detected
points are almost in a continuous subsidence state during the
six years; 2) the mining subsidence is discrete, such as K22,
K121, and K145. The subsidence of these detected points
in the six-year period is discontinuous and discrete, and the
subsidence duration is short. These coal seams may be caused
by shallow mining, small-scale mining and short time mining;
3) K98 will only detect mining subsidence in a relatively short
time at the end of 2021. There may be new mining activity
at this time; 4) since 2017, there has been almost no mining
subsidence detected at K133. It appears that the mining work

Fig. 9. Coherence statistics (a) is a statistical histogram of the C-band
interferometric coherence. The upper blue dashed line represents the average
coherence in winter (December, January, and February), while the lower blue
dashed line represents the average coherence in summer (June, July, and
August) and (b) is the number of detected mining subsidence areas versus
the coherence of each interferogram. The blue curve is a fit of the number of
detected mining subsidence areas to the coherence, and the pie charts count
the percentages of detected mining subsidence areas corresponding to different
coherence intervals.

of the corresponding mining face at this point was completed
in 2017.

D. Surface Activity

In this article, surface activity is defined as the cumulative
duration of ground motion and can provide the basis for a
quantitative and qualitative analysis of land subsidence and
its influencing factors. It is believed that surface activity
can also provide preparatory information for the subsequent
prediction and early warning of geological hazards, such as
land subsidence [49].

As demonstrated in Fig. 2, the mining subsidence area
detection is applied to individual interferograms without time
overlapping and the time span of each interferogram is known
(i.e., 12 days for most interferograms in this study). Therefore,
the surface activity (i.e., cumulative duration) of each pixel
can be determined by summing up the time spans of all the
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Fig. 10. Relationship between the detection accuracy and coherence. The
blue points represent interferograms with a detection accuracy of 0, because
no mining area subsidence was visually identified in the interferograms. The
yellow points represent the detection accuracy of other interferograms, and the
black curve represents the fitting curve between the coherence and detection
accuracy.

interferograms, in which the specific pixel is identified as
“active.” Fig. 8 shows the map of surface activity of the study
area during the six-year period. Area (a) is located in Huoxi
coalfield, and the cumulative duration of mining subsidence
is shorter than 240 days (i.e., 15.3%) from 2016 to 2022,
suggesting weak surface activity. Area (b) is located in Qinshui
coalfield, and the cumulative durations of mining subsidence
mostly range from 240 to 960 days (i.e., 15.3%–61.1%),
indicating strong surface activity. Area (c) covers Hancheng
coalfield, Huoxi coalfield, and Qinshui coalfield from west
to east, and the cumulative durations of mining subsidence
vary from 120 to 600 days (i.e., 7.6%–38.2%), implying
moderate-to-strong surface activity. Area (d) is located in
Qinshui coalfield, and the cumulative duration of mining
subsidence is in the range of 120–360 days (i.e., 7.6%–22.9%),
suggesting moderate surface activity. No mining subsidence
area is detected in area (e).

V. DISCUSSION

A. Interferogram Availability Analysis

One of the main challenges in the detection of using the
mining subsidence detection model is whether the subsidence
of a mine is clearly characterized in the interferograms. The
clarity of features in interferograms is mainly related to
coherence. Generally, in midlatitude areas, vegetation is denser
in summer than in winter and provides thicker coverage of
the ground surface. This means that the coherence of C-band
interferograms is generally higher in winter than in summer
and the subsidence features are more obvious. As shown in
Fig. 9(a), the peak of C-band coherence tends to occur in
winter and the trough of coherence tends to occur in summer.
The mean value of coherence in winter is 0.9, and in summer,
it is 0.6.

Fig. 9(b) shows the relationship between the C-band inter-
ferometric coherence and the number of mining subsidence

areas. The pie chart shows the percentages of detected mining
subsidence areas corresponding to different coherence inter-
vals, indicating that 57.63% of the mining subsidence areas are
detected over pixels with coherence greater than 0.8. The blue
curve is fitted to the number of the mining subsidence areas
referenced to the coherence. Generally speaking, the number
of mining subsidence areas increases with the coherence.
It can be seen that only limited mining subsidence areas can
be detected when the coherence is less than 0.5. When the
coherence is greater than 0.7, the land subsidence detection
model performs well.

In order to evaluate the impact of the interferometric coher-
ence on the performance of the detection subsidence model,
its detection accuracy was calculated against the average
coherence of the wrapped interferogram one by one, and the
relationship between the detection accuracy and coherence is
shown in Fig. 10. Note that 1) the mining subsidence areas
were visually identified using high-resolution satellite images
with some of them being verified in the field, and the total
number of the identified subsidence areas was considered
as the truth number; 2) the detection accuracy is defined
as the ratio between the number of the detected subsidence
areas from the detection model and the truth number; 3) the
detection accuracy is defined as 0 in the case that no mining
subsidence area is visually detected areas, which could be
due to low coherence or limited mining activity during the
specific period; and 4) a total of 110 wrapped interferograms
were employed in this evaluation. It is clear in Fig. 10 that 1)
when the coherence is less than 0.6, the mining subsidence is
difficult to be detected and 2) when the coherence is greater
than 0.6, the higher the average coherence is, the higher
detection accuracy could be achieved.

It is worth noting that some small deformations can be
visually detected that cannot be detected by the detection
model, and these points are present in large numbers at certain
moments; second, due to certain errors, some interferometric
fringes caused by mining subsidence are too blurry and can
only be barely detected visually; third, two working faces that
are too close apart result in overlapping of interferometric
fringes, and these reasons lead to the fact that the relationship
between the detection accuracy of the model and the coherence
of the interferograms is not linear and in the appearance of
some outlier points.

B. Comparison Between Categories I and II Approaches

As mentioned in Section I, Category I approaches often
utilize the mean deformation rate maps derived from InSAR
stacking or time series algorithms to detect mining subsidence
areas. In this study, the multilook and filtering parame-
ters used to generate the interferograms were identical to
those mentioned earlier, and a total of 749 interferograms
(from 20170312 to 20220310) were obtained by setting the
maximum number of connections to six. The SBAS InSAR
method [50], [51] was employed to estimate the deforma-
tion rate map [see Fig. 11(I)], with the GACOS + PCA
method [52] being used to reduce the atmospheric errors.
Cluster analysis is one of the techniques that enable to partition
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Fig. 11. Deformation rate map and its cluster maps, divided into areas (a)–(e). (I) shows the deformation rate map (cm/yr) and (II) shows the deformation
rate clusters of the five selected areas.

Fig. 12. Simulated interferograms for deformations of varying magnitude from 1 to 148 mm and results from a mining subsidence detection model.

a dataset into subsets (called clusters), so that data points in
the same cluster are as similar as possible, and data points

in different clusters are as dissimilar as possible. The Getis-
Ord G∗i statistic (G∗i), also known as hotspot analysis, is a
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Fig. 13. Long time series of mining subsidence in area (a).

Fig. 14. Long time series of mining subsidence in area (b).

method commonly used to analyze location-related clustering
of trends in spatial data attributes, and cluster of deformation
rate maps can be used to identify hazard potential points [53].
The deformation rate map was subjected to a hotspot analysis
and the results are shown in detail for areas (a–e) in Fig. 11.

In area (a), no mining subsidence area is observed based on
the deformation rate map [see Fig. 11(I-a)], while the surface
activity map (see Fig. 8) reveals the presence of five mining
subsidence areas, suggesting that Category I approaches are
less sensitive to areas with low mining activity than the
proposed Category II approach in this article.

In area (b), the surface activity map (see Fig. 8) shows
strong surface activity with dot color, indicating the cumulative
duration of each detected mining subsidence area. Some
areas with large cumulative durations are not detected in
Fig. 11(I-b), which is most likely due to the loss coherence
caused by the large displacement gradients [e.g., the west and
south in area (b) of Fig. 8]. On the other hand, it can be seen

Fig. 15. Long time series of mining subsidence in area (c).

Fig. 16. Long time series of mining subsidence in area (d).

in Fig. 11(II-b) that a large number of deforming areas are
detected using the deformation rate map plus cluster analysis
approach, but many of those deforming areas are not the result
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of mining activity [e.g., the northwest and southwestern area
(b) of Fig. 8 accounts for about one quarter].

Part of areas (c) and (d) are located in densely vegetated
areas, in which some detected mining subsidence areas in
Fig. 8 [e.g., the southeastern area (c) and the southwestern
area (d) of Fig. 8] do not appear in those detected through
the deformation rate map [see Fig. 11(II-d) and (II-e)]. In the
clustering results for area (d) [see Fig. 11(II-d)], some of
the mining subsidence areas are incorrectly detected [e.g., the
southwestern and southeastern area (d) of Fig. 8].

Fig. 11(I-e) shows the areas with large deformation rates,
but no mining subsidence area is detected in the surface
activity map (see Fig. 8). A visual interpretation with Google
Earth imagery in area (e) shows that there are two large
factories in the area, and the subsidence in the area is likely
to be caused by groundwater extraction. Since the patterns of
the interferometric fringes do not match the characteristics of
mining subsidence, the mask R-CNN-based surface activity
method is able to remove it from the detected mining subsi-
dence list.

Category I approaches utilize deformation rate maps to iden-
tify areas with deformation rates over a given threshold, and
they have several limitations to detect mining subsidence areas.
First, areas with limited mining activity over short time spans
can be easily overlooked in long-term deformation rate maps
and are thus assumed to be “inactive,” which is problematic
and might result in high missing rates. Second, the deformation
rate maps are generated from unwrapped interferograms, and
phase unwrapping (e.g., [50], [54]) is required for each inter-
ferogram. Mining activity often induces surface displacements
with large gradients, thus causing coherence loss, which may
in turn lead to localized holes (missing values) in the resultant
deformation rate maps and then high missing rates in the
mining subsidence area detection. Third, large storage and
high computation time are required to generate deformation
rate maps. For InSAR time series algorithms, a new inversion
shall be performed when a new SAR acquisition is available,
which can be time-consuming and make it difficult for rapid
detection of mining subsidence over wide regions.

In contrast, the proposed Category II approach (i.e., the
mask R-CNN-based surface activity method) can not only
be used to detect mining subsidence areas from individual
wrapped interferograms but also examine the evolution of each
detected mining subsidence area. The surface activity method
is sensitive to areas with limited mining activity, even those
only lasting for short periods. Since only interferograms with
the minimum time baselines (i.e., those with adjacent SAR
acquisitions) are employed and neither phase unwrapping nor
time series inversion are needed, the requirements of data
storage and computation time are low.

C. What Is the Minimum Detectable Surface Displacement?

Interferograms with different mining subsidence signals
were simulated by Gaussian surface function to assess the
minimum detectable surface displacements. A total of 90 inter-
ferograms were simulated with 1–148-mm subsidence and
then detected using the mining subsidence detection model.

It can be seen in Fig. 12 that when the mining subsidence is
≥8 mm, it can be easily detected with the displacement bound-
aries being clearly determined; when the mining subsidence
is <8 mm, the mining subsidence detection model can only
detect the rough area without the displacement boundaries,
which is likely due to the following two reasons: 1) the
amount of mining subsidence signals is limited that there is
no clear subsidence feature in these interferograms and 2)
the interferograms are disturbed by atmospheric effects and
random noises, and such small displacement signals do not
show the subsidence features. Therefore, it is believed that
the theoretically minimum detectable deformation simulated
using Gaussian surface function in wrapped interferograms of
the mining subsidence detection model is approximately 8 mm.
It should be noted that since the wrapped interferograms are
used to detect mining subsidence in the proposed detection
model, the displacement gradient might be another key factor
affecting the detection performance.

VI. CONCLUSION

In this article, the mask R-CNN-based surface activity
method is presented to detect mining subsidence areas from
individual wrapped interferograms and then to examine their
evolutions. The mask R-CNN model is used as the base model
for detection, and originally, wrapped interferograms generated
from two adjacent SAR images are used as the dataset for
detection. The following are the main conclusions of this study.

1) A method combining the Gaussian function and GACOS
for generating simulated datasets in mining areas is
proposed, and it is evident that the simulated dataset
benefits to train the detection model.

2) A mask R-CNN model-based detection model for
mining subsidence is constructed, which can effec-
tively detect the mining surface subsidence areas from
wrapped interferograms, saving the computation time
and reducing additional uncertainties introduced by
phase unwrapping and time series inversions.

3) A total of 152 surface subsidence areas are detected in
the study area during the period from 2016 to 2022 using
the surface subsidence detection method, and their evo-
lutions are carefully examined.

It is believed that the mask R-CNN-based surface activity
method is an efficient approach to detect mining activity and
then monitor the evolutions of the mining subsidence areas,
including their locations and boundaries. However, it should
be noted that this method is not designed to monitor the
magnitudes of the resultant surface displacements, which could
refer to [54].

APPENDIX

The long time series (approximately six years) of mining
subsidence in the study area was obtained using the land subsi-
dence detection model to detect 131 interferograms, as shown
in Section IV-B. Figs. 13–16 show the time series of mining
subsidence for areas (a)–(d), respectively. Note that there is
no detected area in area (e).
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