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Abstract— We present a comprehensive hyperspectral
bi-directional reflectance model for a pristine optical-grade
white Spectralon panel with full azimuthal coverage, a wide
range of view zenith angles, and incident illumination zenith
angles, throughout ultraviolet (UV), visible near-infrared (VNIR),
and shortwave infrared (SWIR) wavelengths (350–2500 nm).
Measurements were acquired using the Goniometer of the
Rochester Institute of Technology-Two (GRIT-T), which
incorporates Analytical Spectral Device (ASD) FieldSpec Full-
Range 4 (FR4) spectroradiometers. Residual plots show that
the empirical model is accurate to within 1%–2% reflectance
within most of the observing hemisphere. We demonstrate an
application of the Spectralon panel model to hyperspectral
imagery (HSI) acquired during a field experiment at the RIT
Tait Preserve where a pair of field Spectralon panels was
imaged from various view geometries from both drone and
mast-mounted hyperspectral imaging systems.

Index Terms— Calibration, goniometers, hyperspectral
imaging, radiometry.

I. INTRODUCTION

SPECTRALON,1 manufactured by Labsphere, is exten-
sively used as a diffuse reflectance standard for a wide

variety of radiometric calibration applications [1], [2], [3].
The material is a sintered but porous polytetrafluoroethylene
(PTFE) powder that exhibits stable, diffuse reflectance prop-
erties when illuminated [4], [5], [6]. In Earth remote sensing
field applications, flat Spectralon panels are often deployed
within a scene to convert digital image data into reflectance
products during postprocessing, typically within the ultravi-
olet (UV), visible and near-infrared (VNIR), and shortwave
infrared (SWIR) [7], [8], [9]. Although Spectralon exhibits
highly diffuse reflectance, Spectralon reflectance departs from
ideal Lambertian behavior [10], [11], [12], [13], [14], mani-
fests varying polarimetric properties [13], [14], [15], [16], [17],
and exhibits temperature dependence [18].
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Reflectance data of various Spectralon products presented
in the literature are often limited to the principal scattering
plane, a limited number of illumination geometries, and a
small range of wavelengths [1], [2], [3], [4], [5], [6], [10],
[11], [12], [13], [15], [16], [17]. Although these analyses
provide sufficient characterization for use in laboratory set-
tings, the extensive possible observational and illumination
geometries in Earth remote sensing field applications neces-
sitate a more comprehensive reflectance model of Spectralon.
Acquiring such measurements in both observer azimuth and
zenith angles requires, at a minimum, a two-axis goniometric
system for measuring the sample and an additional angular
degree of freedom for varying the illumination source geom-
etry. Accurate spectral measurements over a large range of
wavelengths also require a broadband source and a calibrated
spectroradiometer.

The necessary infrastructure for more comprehensive direc-
tional measurements of samples just described, in general, has
inhibited the acquisition and dissemination of such reflectance
products. To support the Earth remote sensing community for
the processing and calibration of accurate reflectance products,
we present an easily accessible comprehensive UV-VNIR-
SWIR reflectance model for a pristine optical-grade white
Spectralon panel. We then also demonstrate the model in
realistic field settings for hyperspectral imaging applications.
Measurements and the source code for our model can be found
on GitHub [19]. To achieve our modeling goals, we expand
upon previous measurements and modeling, primarily done
within the principal plane in the literature, by including full
azimuthal coverage. Our modeling also includes sensor view
zenith angles up to 70◦ and incident illumination zenith angles
between 10◦ and 70◦. For angles beyond these ranges, the
model can be extrapolated.

A. Geometric Considerations for Reflectance

The bi-directional reflectance factor (BRF) quantifies light
scattered from a surface or object of interest at a specific
incident illumination geometry to another specific observation
direction, referenced to the scattering of light from a perfectly
diffuse (Lambertian) surface illuminated and observed in the
same geometry [20], [21]. Specifically, it is defined as the ratio
between the radiance reflected by a sample surface and the
radiance reflected by a perfectly reflecting Lambertian surface
that is irradiated and observed under the same conditions as
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Fig. 1. (Left) GRIT-T viewing the pristine Spectralon panel (model: SRT-99-180) at nadir in the dark laboratory room with the external quartz-tungsten-halogen
(QTH) light source illuminating the measurement area. (Top right) Close-up view of our stage lamp housing the QTH light source used to provide directional
illumination onto the measurement area. (Bottom right) Context photograph showing GRIT-T, the illumination source, and one ASD spectrometer, with an
olivine sand sample.

the sample. The BRF can be written as

BRF(θi , φi ; θe, φe) =
Lr (θi , φi ; θe, φe)

L id
(1)

for incident azimuth and zenith angles φi and θi , view
azimuth and zenith angles φe and θe, reflected sample radiance
Lr (θi , φi ; θe, φe), and the ideal Lambertian surface reflected
radiance L id . For our analysis, we reduce the azimuthal
variables to a relative azimuth

BRF(θi , φi ; θe, φe) → BRF(1φ, θi , θe) (2)

such that 1φ = φi − φe. Due to the uniform composition
of the Spectralon panel, we assume that the BRF is indepen-
dent of the panel’s azimuthal orientation under any lighting
geometry; that is, the azimuthal dependence to characterize is
the view azimuth relative to the incident azimuth. Our model
also assumes symmetry in reflectance across the principal
scattering plane (1φ : 0◦

→ 180◦). This simplifies the panel
model, making it easier to apply in both field and laboratory
settings. We note that the terminology “BRF” is a theoretical,
idealized quantity. Our measurements, in general, are more
precisely described by the terminology bi-conical reflectance
factor (BCRF), which explicitly represents the finite nature
of the source and the sensor aperture in its definition [20],
[21]. However, in our discussion, we will use the generic

terminology BRF to describe our practical measurements and
modeling.

II. GONIOMETER OF THE ROCHESTER INSTITUTE OF
TECHNOLOGY-TWO (GRIT-T)

GRIT-T [22], [23] is a second-generation field and labo-
ratory goniometric system designed and developed at RIT.
GRIT-T incorporates two Analytical Spectral Device (ASD)
FieldSpec Full-Range 4 (FR4) spectroradiometers and has
been used in a wide variety of remote sensing applica-
tions [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], all of which also incorporate Spectralon
measurements for converting radiance data into reflectance
products. In field settings, the two spectrometer fields-of-view
(FOV) are co-aligned along a common axis. One spectrometer
records downwelling radiance, and the other records scattered
radiance from the surface or sample of interest. In laboratory
settings, normally just the downward-looking spectrometer is
used since the light source is directional and there is no
diffuse light present. Following a user-defined scan pattern in
its control software, GRIT-T’s motorized carriage, arm, and
head orient the FOV of the fiber optics of the ASD FR4
spectrometers.

For the downward-looking spectrometer, the system tracks
a common measurement point on the surface using a rotating
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head on the end of the rotating arm to ensure a common
measurement area regardless of surface configuration. This
is enabled by a laser distance measurement from the nadir
direction at the start of the measurement cycle, which allows
the system to minimize parallax errors as the rotating arm,
combined with the head rotation, determines the zenith angle
of the fore-optic. The carriage translates the arm and head
assembly in azimuth to allow full coverage of the observation
hemisphere. GRIT-T appears in our laboratory configuration in
Fig. 1 with the pristine Spectralon panel (model: SRT-99-180)
used in our study. A 3◦ fore-optic with an optical scrambler
was used for all Spectralon panel measurements. The plot in
Fig. 2 shows the 1σ uncertainty in the BRF measurements
as percentages. The uncertainty was calculated by computing
the standard deviations of the repeated nadir measurements
of the Spectralon at each incidence angle. Although there is
increased uncertainty near 1000 nm and for longer wavelengths
in the SWIR, the uncertainty is <1% across all wavelengths.
For oblique viewing geometries, the measurement circle elon-
gates into an ellipse. At the largest view and incident zenith
angles, both at 70◦, the difference in the irradiance onto
the panel is the largest between the front and back ends
of the measurement spot, which are −2.3 and +2.3 cm from
the measurement origin, respectively. The relative difference
in nadir-viewing radiance measurements between the front
and back of the elliptical measurement spot with respect to
the origin is −4% and +4%, respectively. Within the ellipse,
we measured a linear relationship between the radiance as a
function of measurement position on the panel; therefore, the
effects of differences in irradiance due to oblique illumination
and viewing geometries are largely averaged out. As described
previously, the second ASD FR4 spectrometer can be used for
sky radiance measurements in the field but was not used in
the laboratory setting. The spectral range of the ASDs is 350–
2500 nm in 1 nm steps with 3 nm spectral resolution in the
VNIR and 8 nm in the SWIR.

The illumination source is an unpolarized broadband QTH
lamp attached to an external motorized arm. The QTH lamp
is also connected to an RA Series SCR preregulated linear
power supply from Mid-Eastern Industries that provides stable
dc power to our lamp. As a standard procedure, we use a
1 h warm-up period for our illumination source and ASD
spectrometers onboard GRIT-T to ensure instrument stability.
The external arm is affixed to the same optical table as GRIT-T
and rotates to provide any desired incident zenith angle along
the principal scattering plane. The orientation of the lamp
illumination is aligned with the center of the sample area of
GRIT-T’s FOV.

III. BRF DATA OF SPECTRALON

Fig. 3 shows an array of polar colormaps of a spectral
subset of the Spectralon panel BRF data measured by GRIT-T.
The color axis denotes the BRF values of the panel in the
observing hemisphere. Over the observing hemisphere, the
data scan pattern provided measurements in 10◦ steps in
azimuth and 5◦ steps in view zenith from 0◦ to 70◦ for a total
of 504 spectral radiance measurements. The same scan pattern
was used in each of the BRF measurement scans for seven

Fig. 2. 1σ uncertainty derived from repeated nadir BRF measurements of
the Spectralon panel for each of the seven incidence angles.

incident zenith angles ranging from 10◦ to 70◦ in 10◦ steps for
a total of 3528 spectral radiance measurements, each covering
the spectral range from 350–2500 nm in 1 nm increments.
A scan pattern of equal degree increments was used instead
of points with equal increments in cosine space; by default,
the control software designates scan patterns in equal degree
increments, which is what was initially used. The repeated
nadir measurements along different lines in azimuth are also
used to correct for any radiometric drift during each scan.
Points in the backscattering region that were self-shaded by
the goniometer head (the black circles in Fig. 3) were not used
in our analysis. The measured spectra were initially recorded
in raw digital counts, which were calibrated to radiance using
standard procedures in ViewSpecPro with the most recent ASD
system calibration. At each incident zenith angle, all point
measurements were divided by the nadir measurement and
converted to BRF values using the procedure described in
Section IV.

IV. BRF MODEL OF SPECTRALON

We adopted the general form of the empirical BRF model
developed by Lévesque and Dissanksa [13], [14], which
consists of four physically motivated scattering terms, the
Spectralon reflectance spectrum, and a normalization function.
We expand on their framework by including the azimuthal
dimension, 1φ, in the model

BRF(1φ, θe, θi , λ) =
[
D(1φ, θe, θi , λ) + F(1φ, θe, θi , λ)

+ S(1φ, θe, θi , λ) + B(1φ, θe, θi )
]

× C(λ)/A(θi , λ) (3)

where D(1φ, θe, θi , λ) is the diffuse component,
F(1φ, θe, θi , λ) is the forward-scattering component,
S(1φ, θe, θi , λ) is the specular component, B(1φ, θe, θi ) is
the backscattering component, C(λ) is the 8◦/hemispherical
spectral reflectance of the Spectralon panel measured by
Labsphere that is provided with each Spectralon panel,
and A(θi , λ) is a normalization coefficient dependent on
the incident zenith angle and wavelength to scale our
measurements to BRF values. Building on the earlier
principal-plane model of Lévesque and Dissanska [13],
[14], our model components in (3) are explicit functions of
the relative azimuth angle between sensor and illumination
azimuth angles 1φ. Our model and theirs still share
dependencies on the view zenith angle θe, the incident zenith
angle θi , and the wavelength of light λ.
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Fig. 3. Unpolarized BRF data of the Spectralon panel shown in an array of polar colormaps. Within each circle, the polar angle with respect to the north
denotes the relative azimuthal angle 1φ from 0◦ to 360◦. The radius denotes the sensor view zenith angle θe from 0◦ to 70◦ where each concentric light gray
circle is a 20◦ step. Distances between contour lines denote a change in reflectance of 2%, and the black circle masks the self-shaded backscattering region.
The color axis ranges from 0.80 to 1.20, although the actual BRF values exceed the upper range for forward-scattering regions at larger incident zenith angles.
(Rows: top to bottom) BRF data ordered by incident zenith angle θi . (Columns: left to right) BRF data ordered by example wavelength λ.

In the original Lévesque–Dissanska model, the diffuse com-
ponent depends on low order powers of the view and incident
zenith angles θe and θi (Table I). During the initial stages of
development for our panel model, we attempted to construct
a natural extension of the Lévesque–Dissanska model; how-
ever, their principal-plane model is defined from negative to
positive view zenith angles. Because our BRF data are defined
using only positive view zenith angle coordinates around the
hemisphere, the different angular coordinate systems could not

be merged without discontinuities in the BRFs, particularly
for the diffuse scattering term. In our version of the model,
therefore, the diffuse component was developed independently
and is a sum of two terms: diffuse-power DP and diffuse-
forward DF . These have the form

D(1φ, θe, θi , λ) = DP(θe) + DF (1φ, θe, θi , λ) (4)

where
DP(θe) = 1 − αD1eγD1 (5)
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DF (1φ, θe, θi , λ) = DFs(1φ, θe) DFs(1φ, θi ) R(λ)

DFs(1φ, θ) =
(
αD2 + βD2θ

)γD2 (6)

× exp
[

−

( 1φ − π(
αD3 + βD3θ

)γD3

)2]
(7)

R(λ) =
(
αR1 + βR1λ

)γR1 (8)

with two free parameters αD1 and γD1 associated with Dp, five
free parameters αD2, βD2, γD2, αD3, βD3, and γD3 associated
with DF , and three free parameters αR1, βR1, and γR1 asso-
ciated with the wavelength-dependent reddening factor R(λ),
which differs in form from the one originally developed by
Lévesque and Dissanska, as described later. The diffuse-power
term is a consistent inverted bowl-shaped function, and the
diffuse-forward term is a Gaussian with increasing scale factor,
depending on the zenith angle and obeying a power law. The
width of the Gaussian also increases according to a power law
as a function of the input zenith angle. The reddening factor
R(λ) in this expression accounts for more specular reflection
and forward scattering at longer wavelengths [13].

We modeled forward scattering as a product of two unnor-
malized t-distributions and the reddening factor from (8).
The t-distributions are functions of the relative azimuth angle
and are centered on the forward part of the principal plane.
For consistency in form, the heights and widths of the
t-distributions also vary according to power laws as a function
of the incident or view zenith angle, similar to the Gaussians
in our diffuse-forward component. Our forward scattering term
takes the form

F(1φ, θe, θi , λ) = Fs(1φ, θe) Fs(1φ, θi ) R(λ) (9)

where

Fs(1φ, θ)

=
(
αF1 + βF1θ

)γF1
[
1 +

(1φ − π)2(
αF2 + βF2θ

)γF2

][−

(
αF2+βF2θ

)γF2
+1

2

]
(10)

with five free parameters αF1, βF1, αF2, βF2, and γF2.
Although the exponential function used in the model of
Lèvesque and Dissanska (Table I) is simpler in form than
our model, we found that numerical convergence was difficult
to obtain when applying an exponential function to data that
includes an azimuthal dimension. The alternative Gaussian
function that they recommend for data obtained at view zenith
angles exceeding 70◦ showed reasonable fits, but we found that
a peaked function with a higher kurtosis was more appropriate.
Because our diffuse model component differs substantially
from that of Lévesque and Dissanska, this necessitated a differ-
ent functional form. Therefore, in our model, we incorporated
unnormalized t-distributions as the functional form to better
model the full distribution of observations in azimuth and
zenith.

While the specular component in our model incorporates
a Gaussian function dependent on the relative zenith angle
like that in Lévesque and Dissanska’s model, our model also
incorporates a second Gaussian distribution in the azimuthal
dimension. The amplitude of our specular component varies

according to a power law as a function of the incident zenith
angle rather than the cosine dependence found in Lévesque
and Dissanska’s model; the Gaussian widths, however, are
optimized constants for both models. We also include our
reddening factor within our specular term. Our specular term
takes the form

S(1φ, θe, θi , λ) =
(
αS1 + βS1 θi

)γS1

× exp
[

−

(1φ − π

αS2

)2]
× exp

[
−

(θe − θi

αS3

)2]
R(λ) (11)

with four free fitting parameters αS1, βS1, αS2, and αS3 for
our model. Like our forward-scattering term, we center the
specular component on the forward part of the principal plane.

Finally, the backscatter component has a functional form
that is similar to our specular component but without the
reddening factor

B(1φ, θe, θi ) =
(
αB1 + βB1 θi

)γB1

× exp
[

−

(1φ

αB2

)2]
× exp

[
−

(θe − θi

αB3

)2]
(12)

where αB1, βB1, γB1, αB2, and αB3 are free parameters.

A. BRF Model Comparison With the Lévesque–Dissanska
Model

In Table I, we compare the explicit forms of D, F , S,
B, and R used in our BRF model and that of Lévesque
and Dissanska, and we also provide the optimized numerical
parameters of our model and their units. For the scattering
functions developed by Lévesque and Dissanska [13], [14]
we also have provided their numerical parameters within the
equations. We note, however, that the units of the input angles
for the functions in the Lévesque and Dissanska model are in
degrees, while our model uses radians, so the units of their
model parameters are also different. We have also revised the
nomenclature developed for several scattering components by
Lévesque and Dissanska. We rename their “deep” scattering
to be “diffuse” scattering for our analysis, a term that seman-
tically incorporates both single and multiple scattering as part
of the diffuse reflectance. We also rename their “forward”
scattering to be “specular” scattering and their “subsurface”
scattering to be “forward” scattering for our analysis.

The diffuse and forward-scattering terms are functionally
similar between the two models, although we note differences
in behavior for the specular and backscattering components,
which likely stem from differences in the development of
our models. Specifically, for our model, the specular and
backscattering components both increase in amplitude with
respect to the incident zenith angle. In contrast, the specular
and backscattering components from Lévesque and Dissanska
decrease and remain constant, respectively. We also note
that our reddening function is a multiplicative factor in
forward-scattering terms, whereas their reddening function
is an additive function with an explicit dependence on the
polarization angle.
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TABLE I
SPECTRALON BRF MODEL COMPONENTS AND FREE PARAMETERS

B. Fitting the BRF Model

Because the Spectralon panel serves as both the sample
and its reflectance conversion target in our analysis, additional
steps were required to convert the panel measurements into
radiometrically accurate BRFs. At each incident zenith angle,
all panel radiance measurements in the observing hemisphere
were divided by each scan’s nadir measurement

r0,data(1φ, θe, θi , λ) =
Lr (1φ, θe, θi , λ)

Lr (0◦, 0◦, θi , λ)
(13)

to obtain a nadir-normalized reflectance r0,data for panel radi-
ance Lr (1φ, θe, θi , λ) at each position on the observation
hemisphere. The BRF is calculated using the nadir-normalized
reflectance according to the following relationship

BRF(1φ, θe, θi , λ) =
r0(1φ, θe, θi , λ)

A(θi , λ)
C(λ) (14)

where the normalization coefficient A(θi , λ) is the same one
appearing in (3). However, A(θi , λ) is not known a priori
because the reflectance model is required to estimate the
normalization coefficient. Therefore, we fit our reflectance
model comprised of D, F , S, B, R, and C , but without
the normalization coefficient A, to r0,data by minimizing the

chi-squared χ2 over all four variables 1φ, θe, θi , and λ

χ2
=

∑
1φ,θe,θi ,λ

(
r0,data − r0,model

)2

σ 2 (15)

where σ = σ(1φ, θe, θi , λ) is the estimated radiometric
measurement uncertainty, that varies with all four variables
at each point in the scan, and r0,model is the nadir-normalized
reflectance model that is mathematically equivalent to BRF ×

A(θi , λ). The χ2 was minimized by using the adaptive
Nelder–Mead simplex procedure [36] implemented in Python’s
SciPy library to vary the 27 free parameters used in the
BRF model. We provide the values of the optimized val-
ues of the free parameters in Table I. We determined
initial guesses for the free parameters in the optimization
step by manually varying the free parameters and approxi-
mately matching the form of the initial model to the data
through visual inspection of successive residuals in juxtaposed
plots.

C. Estimating the Normalization Coefficient A(θi , λ)

Once we had determined the best-fit free parameters
for the nadir-normalized reflectance model r0,model, we then
used the model to estimate the normalization coefficient
A(θi , λ) to convert both r0,data and r0,model into true BRF
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values, shown in Figs. 3 and 4, according to (14) using the
relationship

A(θi , λ) =

∫∫
2π

r0,model(1φ, θe, θi , λ) d�∫∫
2π

d�
(16)

where the differential solid angle is d� = sin (θe) d1φdθe.
In other words, the normalization coefficient A(θi , λ) is the
hemispherical average of r0,model. However, r0,model is an
interpolative model, defined only within the range of view
zenith angles measured and used to develop the model (θe ∈

[0◦, 70◦
]). Because (16) requires view zenith angles up to 90◦,

the BRF model, therefore, was extrapolated linearly for the
larger view zenith angles from 70◦ to 90◦ instead of using val-
ues from the BRF model itself. Various orders of polynomials
were fit to subsets of the data as a function of the view zenith
angle, and reasonable fits produced values of A(θi , λ) all
within 0.5% of the coefficient values found in the linear extrap-
olation. Given these small differences, we chose the simpler
linear extrapolation to avoid overfitting in estimating A(θi , λ).
In other words, to calculate the hemispherical average of the
reflectance model, the model itself was used for view zenith
angles from 0◦ to 70◦, while the linear extrapolation of the
model was used for view zenith angles from 70◦ to 90◦.

D. Considerations for Model Fitting

Developing an empirical model for the panel BRF enables
a user to calibrate the model to their specific panel using
fewer measurements. To ensure the accuracy of the model
fitting with fewer points, we recommend concentrating more
measurements in areas where the gradient of the BRF, i.e.,
change with respect to viewing angles, is higher for a given
sample and illumination geometry. For our analysis, several
measures were taken to ensure numerical convergence of the
χ2 minimization to a physically reasonable model. We found
that the Nelder–Mead simplex algorithm implemented by
SciPy performed more reliably for our model when the range
of adjustable free parameters was of a similar order of magni-
tude, as the procedure initially constructs the smallest possible
simplex. To achieve this, we converted all input angles to radi-
ans and wavelengths to microns, and we imposed bounds on
the free parameters to ensure that the model returned realistic,
physical values. We developed various iterations of our model,
and, during this process, we eliminated some free parameters
and variables to simplify our model. To ensure the convergence
of our procedure to a global minimum, we perturbed the initial
guesses for our parameters and ran the optimization procedure
numerous times; all instances converged to effectively produce
the same form of the model. We also note that the first
specular intercept term αS1 converged to a lower bound of 0.0,
suggesting that this parameter could be eliminated, although
we still present it in Table I to indicate that it was varied
as a free parameter. For ease of use, on GitHub [19] we
have provided our Python implementation of our model that
also includes a lookup table of the optimized normalization
coefficients that we obtained.

V. RESULTS

The BRF panel model, a subset of data for comparison,
and the various scattering components of the model appear
in Fig. 4 for an example wavelength (750 nm) represented in
an array of polar colormaps. The first four columns show
the optimized model components, which are described in
Section IV and summarized in Table I, obtained at each of
the illumination angles. The fifth column shows the resulting
BRF model, and the sixth column illustrates the measured BRF
data for which the model was optimized.

A. BRF Residuals

Fig. 5 shows the residuals of the BRF model in an array of
polar colormaps in the same layout as Fig. 3. The residuals
were calculated by subtracting the panel model BRFs from
the measured BRF panel data. Distances between the dashed
contour lines in Fig. 5 denote a change in reflectance of 0.01.
Within most of the observing hemisphere for all incident zenith
angles and wavelengths, the residuals show that the model
is accurate to within 1%–2% reflectance, although we note
residuals larger in magnitude at θi = 70◦ in the forward-most
scattering regions. There, the model over-predicts the forward
scattering on the left hemisphere at shorter wavelengths by
about 5%, while the model under-predicts the forward scatter-
ing on the right hemisphere at more intermediate wavelengths
by about 3%. At these large incident and view zenith angles,
the panel BRF changes more rapidly with respect to view
geometry compared to changes at smaller incident angles.
Therefore, radiance uncertainty or pointing error has a more
pronounced effect on model accuracy in these regions.

B. Errors From Adjacency Effects

We identify two potential sources of adjacency effects in our
data that represent some small sources of error and uncertainty
as revealed in the residual plots: 1) GRIT-T’s moving carriage,
arm, and head as it scans the sample; and 2) the backboard
on GRIT-T that shields the ASD FR4 units from the scanning
area, shown in Fig. 1. Although GRIT-T and the laboratory
room were designed to be minimally reflective, the Spectralon
panel itself intensifies all adjacency effects due to its high
reflectivity. GRIT-T’s movement during the scanning process
might cause asymmetry in the panel BRFs, which may then
manifest as small asymmetry in the residuals. This asymmetry,
for example, can be seen at θi = 20◦ and θi = 30◦ in Fig. 5.
Small regions of higher residuals of about 1% reflectance are
seen on the left side (1φ ∼ 270◦) of the hemisphere, which
are not present on the right side (1φ ∼ 90◦). To compensate
for the potential of these types of adjacency effects from
GRIT-T’s movement, we scale all nadir measurements at each
scan in azimuth to the same radiance level, along with the other
measurements within the same azimuthal scan as the nadir
measurement with the same scale factor. In addition, GRIT-T’s
backboard is coated with 3% reflectance Avian Black to
minimize secondary scatter; however, a small amount of stray
light may still be reflected back onto the sample area, primarily
into the backscattering direction. The solid angle subtended by
the backboard for a sample at a typical measurement height
is approximately 0.19 sr, which is 0.19 sr/2π sr ≈ 3% of the
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Fig. 4. (Columns: left to right) Spectralon panel BRF model components DP , DF , F , and S + B, the combined model, and the corresponding subset of
measured BRF data used to optimize the model at 750 nm. The reddening factor is not applied to the two forward-scattering components, F and DF , in this
figure. (Rows: top to bottom) The BRF model components and data are ordered by incident zenith angle θi as in Fig. 3. The scales of the BRF model
components are depicted by their respective color axes at the bottom of each column. The full BRF model and data share the long color axes on the right
side, which is identical to the one in Fig. 3.

solid angle of the observing hemisphere. Therefore, at most,
only about 3% × 3% = 0.09% of the source irradiance could
be reflected back onto the measurement area for a Lambertian
sample, which would be a systematic but small source of
secondary scatter.

C. Retrieving the Filling Factor of Spectralon

The microscopic structure of Spectralon is similar to that of
densely compact sediment; therefore, in addition to developing

our empirical model, we applied Hapke’s radiative transfer
model for semi-infinite granular media [37] to our BRF data.
Using Hapke’s model, we retrieved the filling factor (ϕ) [38]
of our Spectralon panel. The filling factor is a parameter in the
radiative transfer solutions that defines the fractional amount
of volume occupied by a particle in any given volume of the
medium. Hapke [37], [38] examined the effects of porosity
on the extinction characteristics of a medium, showing that
a nonlinear porosity function is a natural scale variable that
appears in closed-form solutions to the radiative transfer
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Fig. 5. Polar colormaps of the BRF residuals in the same layout as Fig. 3. (Rows: top to bottom) BRF residuals ordered by incident zenith angle θi to
be consistent. (Columns: left to right) BRF residuals are ordered by example wavelength λ. Residuals were calculated by subtracting the BRF model from
measured BRF data. The color axis ranges between ±0.05, although some residual regions where θi = 70◦ exceed these values. Distances between dashed
contour lines denote a change in residual reflectance of 0.01.

equation. He found that this porosity function, K (ϕ), has the
approximate form [37], [38]

K (ϕ) ≈ −
log(1 − 1.209 ϕ2/3)

1.209 ϕ2/3 . (17)

We used a modified procedure that inverted Hapke’s
solutions for our panel at two selected incident angles,
following an approach previously used by us to retrieve
porosity from multiangular remote hyperspectral data
and imagery [24], [39], [40]. The procedure imposes

similarity conditions, among many, such as constraining
the retrieval to converge to the same phase function for
both incident angles. Using a subset of our BRF data
at θi = 30◦ and θi = 60◦, we retrieved a filling factor
of ϕ ≈ 0.6147 for our Spectralon panel. In comparison,
sediment samples from the northern ends of the Algodones
Dunes, CA, USA, with a range of densities from
∼1.45 – 1.69 g cm−3, had retrieved filling factors of
∼ 0.49 – 0.57 [39]. Datasheets from Labsphere state densities
of 1.25 – 1.5 g cm−3 for Spectralon [41].
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VI. FIELD APPLICATION OF THE SPECTRALON MODEL

For notational brevity in this section, we represent a given
state of the three angles of 1φ, θe, and θi with �e,i herein.
Similarly, �e represents the two angles of 1φ and θe, while
�i represents the two angles of 1φ and θi . If the Spectralon
reference target is approximated as a Lambertian reflector, the
reflectance spectrum rmn of pixel (m, n) in a hyperspectral
image (HSI) can be calculated as

rmn(�e,i , λ) =
Lmn(�e,i , λ)

L p(λ)
C(λ) (18)

for pixel radiance spectrum Lmn(λ), panel radiance spec-
trum L p(λ), and the 8◦/h spectrum of the panel C(λ).
Alternatively, a more complete panel model P(�e,i , λ) can
be substituted for C(λ) to more accurately calculate the
hemispherical-directional reflectance factor HDRFmn(�e,i , λ).
The HDRF of pixel (m, n) can be computed using

HDRFmn(�e,i , λ) =
Lmn(�e,i , λ)

L p(�e,i , λ)
P(�e,i , λ) (19)

where

P(�e,i , λ) = a BRF(�e,i , λ) + b DDRF(λ). (20)

BRF(�e,i , λ) is the panel BRF model from Section IV,
DDRF(λ) is the diffuse-directional reflectance factor of the
panel, and a and b are their respective scaling coefficients.
We approximate the DDRF as Lambertian due to the diffuse
illumination; that is, the DDRF is approximated to be inde-
pendent of the view angle.

Just as the BRF is a theoretical, idealized quantity, the
HDRF is likewise an idealized quantity; HDRF measurements
are more precisely described by the hemispherical-conical
reflectance factor (HCRF) [21]. We, however, use the generic
terminology HDRF, applying the same convention to the
DDRF. Equation (20) approximately models the skylight as
isotropic illumination that is dependent only on the wavelength
λ and assumes that the DDRF of the reference panel has been
measured using an integrating sphere. The scaling coefficients
a and b are field-dependent quantities

a =
L p(�e,i , λ) − Lsh(�e, λ)

L p(�e,i , λ)
, b =

Lsh(�e, λ)

L p(�e,i , λ)
(21)

for the same panel radiance spectrum L p(�e,i , λ) from (18)
and (19) and a shadowed panel measurement Lsh(�e, λ).
The scaling coefficient a represents the reflected radiance
contribution from the direct sunlight component relative to the
full hemispherical illumination, where a = 1 − b. Therefore,
in addition to the panel BRF model and panel radiance
spectrum L p(�e,i , λ), the panel DDRF(λ) and a shadowed
panel measurement Lsh(�e, λ) are required to calculate the
HDRF in this manner. Ideally, shaded and unshaded reference
panels are placed within the scene of interest and present in
the imagery to acquire radiance measurements of L p and Lsh ;
this ensures simultaneous and similar measurement geometries
for targets and reference panels. A single panel could also be
shaded halfway, so both L p and Lsh can be acquired from
one panel, provided that the imagery has sufficient spatial
resolution. If L p and Lsh are measured from a different

geometry than that of the imagery, such as with a separate
spectrometer, the panel BRF model can also be applied to L p

and Lsh . We note that the HDRF, while a reflectance factor,
depends on not only the reflectance properties of a target but
also the illumination conditions of a given site; the HDRF is
a field-dependent quantity.

If the angular distribution of the sky radiance Lsky(�i , λ)

is known, we can replace the integrating sphere measurement
of DDRF with a more accurate estimate of the skylight com-
ponent modeled with respect to view angles; measurements of
Lsky(�i , λ) can be acquired, for example, by GRIT-T using
the second onboard spectrometer [22], although for the dataset
described in this work, these measurements were not taken.
In this case, also incorporating the panel BRF, the DDRF can
be calculated explicitly with respect to sensor view angles as

DDRF(�e, λ) =

∫∫
2π

Lsky(�
′
i , λ)

Lsh(�e, λ)
BRF(�e,i ′ , λ) dω′ (22)

where dω′
= sin θ ′

i d1φ′ dθ ′
i such that d1φ′ is integrated

over 1φ′
→ 1φ′

+ 2π and dθ ′
i is integrated over 0 → π/2.

The primed variable �′
i represents 1φ′ and θ ′

i , whereas �e,i ′

represents 1φ′ and θ ′
i , but θe. Since the panel BRF model

is limited to incident zenith angles between 10◦ and 70◦, the
BRF for incident angles between 0◦–10◦ and 70◦–90◦ can be
estimated in a manner similar to the approach that we used to
extrapolate the normalization coefficient A(θi , λ) for our panel
model.

In addition to the HDRF, the BRF of a specific HSI pixel
at (m, n) can be computed as

BRFmn(�e,i , λ) =
Lmn(�e,i , λ) − Lmn,sh(�e, λ)

L p(�e,iλ) − Lsh(�e, λ)

× BRFp(�e,i , λ) (23)

where BRFp is the panel BRF, and Lmn,sh(�e, λ) is a shad-
owed radiance measurement of the target pixel or that of a
shadowed pixel of the same composition and illumination as
the target. The numerator of (23) can be expressed as

Lmn(�e,i , λ) − Lmn,sh(�e, λ) = Lmn(�e,i , λ)(1 − bmn) (24)

where bmn = Lmn,sh(�e, λ)/Lmn(�e,i , λ). We note the simi-
larity in the form of bmn with that of b from (21); they are
both ratios of shadowed and unshadowed measurements of the
target and panel, respectively. If the shadowed target radiance
Lmn,sh(�e, λ) is not acquired, bmn can be estimated as

bmn ≈ b DDRFs(λ) (25)

where b is from (21), and DDRFs(λ) is the diffuse-directional
reflectance factor of a sample specimen that accurately rep-
resents the diffuse scattering within a target pixel. The
DDRFs(λ) can be measured with an integrating sphere in a
laboratory, for example, and used under the further approxi-
mation of isotropic sky illumination. Thus, we can estimate
the shadowed target radiance as

Lmn,sh(�e, λ) ≈ b DDRFs(λ) Lmn(�e,i , λ). (26)
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Fig. 6. BRF data of the pristine panel and two field panels, the BRF differences between pristine and field panels, and BRF residuals computed from fitting
our Spectralon model to the field panel BRFs for θi = 50◦. (Top left columns) Polar BRF plots of the pristine Spectralon panel and the two field panels
imaged in Fig. 7 within the indicated columns. Distances between contours denote a change of 2% in the BRF. (Top right columns) Percentage differences
in the BRFs between the pristine panel and the two field panels. Distances between dotted contours denote a change of 1% in the BRF differences. (Bottom
plots) BRF residuals from fitting our BRF model to the field panel BRFs in the same color axis as that of Fig. 5.

A. Measuring the BRFs for Field-Worn Panels
The reflectances of Spectralon panels used in the field

degrade over time. Fig. 6 shows the BRF data of our pris-
tine panel and two of our field panels for four wavelengths
measured at θi = 50◦, which is close to the solar zenith
angle at the time of our field experiment. The differences in
the BRFs between the pristine panel and the field panels are
also computed and shown. Distances between contours in the
BRFs denote a change in reflectance of 2%, whereas distances

between dotted contours in the difference maps denote a
change in reflectance of 1%. These field panels have been
used in numerous field experiments over many years [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], altering
their reflective properties. We therefore sought to use panel
models applied separately for the field panels by replicating the
procedures used for the pristine panel. The residuals computed
from the field panel BRF data and models are also shown in
Fig. 6 in the same color axes as Fig. 5. Although the majority
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Fig. 7. RGB images derived from the HSI imagery of a mudflat at the RIT Tait Preserve (43◦8′29.53′′N, 77◦30′8.50′′W) during the field experiment
using three mast heights from the mast-mounted hyperspectral imaging system [42] and the georectified drone hyperspectral imagery (HSI). The latitude and
longitude of the drone frame corners are provided, and panels are identified with their geometries labeled. The colored labels of the panels correspond to the
colored spectra in Fig. 8.

of the BRFs within the observing hemisphere are similar,
we measured a significantly larger forward-scattering peak
that is common to both field panels. Particulates in various
field settings inevitably accumulate onto the panels over time,
reducing the diffuseness of their reflectances. In Section VI-B,
for the application of our model to the HSI acquired during
our field experiment, we used the panel models derived for
the field panels.

B. Applying Panel Models to HSI in a Field Setting

We acquired HSI under a clear sky from the mast- and
drone-mounted imaging spectrometers on a mudflat during
a field experiment at the Rochester Institute of Technol-
ogy (RIT) Tait Preserve, Penfield, NY, USA, on October 5,
2022. The mast-based hyperspectral images were collected
with a Headwall Micro-High Efficiency VNIR hyperspectral
imaging spectrometer mounted on a General Dynamics pan-
tilt unit [42]. This imaging spectrometer was affixed to a
BlueSky Mast system, which can elevate the spectrometer
platform to various heights [40], [42], [43]. Drone images
were acquired with a Headwall Nano VNIR hyperspectral
imaging spectrometer within a multisensor imaging payload

mounted on a DJI Matrice 600 Pro drone platform [30],
[32], [44], [45]. Both unshadowed and shadowed hyperspectral
measurements of Spectralon panels were acquired onsite with
an ASD FR4 field spectrometer, while DDRF measurements
of the various field panels were acquired in our laboratory with
a small Labsphere integrating sphere configured with an ASD
spectrometer. Fig. 7 shows RGB frames derived from VNIR
hyperspectral images that were used to evaluate our application
of the Spectralon BRF panel model to field imagery. Before
imagery was acquired, each panel was leveled using two-axis
levels and cleaned using dust blowers. These RGB frames
were derived from a subset of HSI imagery consisting of
images collected from three different mast heights with the
mast-mounted hyperspectral imaging system [42] and an air-
borne drone hyperspectral image acquired from the RIT drone
imaging platforms [30], [44].

The plots in Fig. 8 compare the panel models P(�e,i , λ) and
their respective panel calibration coefficients C(λ) from 400 to
900 nm. The effects of applying the different models to the
measured panel radiances are also shown. The results for
panel 1 appear in the left column plots, while the results
for panel 2 appear in the right column. The first row shows
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Fig. 8. Spectra for the Spectralon panel models and their corresponding measured radiances for the three heights of the mast-mounted hyperspectral imaging
system and the drone hyperspectral image. (First row) Labsphere’s provided calibration coefficients of the Spectralon panels C(λ) and complete panel models
P(1φ, θe, θi , λ) for comparison. (Second row) Comparison of measured radiances of the two field Spectralon panels scaled by their pristine coefficients C
(dashed lines) and P (solid lines) for each panel. (Third row) Error budget analysis comparing the difference of scaled panel radiances 1L p = (L p/C)−(L p/P)

with the uncertainty δL p given by (27) across the spectrum from 400 to 900 nm. The gray area indicates where 1L p/δL p < 3.

the values of C and P on an absolute scale, and the second
row shows the changes in measured panel radiances when
applying the panel coefficients C (dashed lines) and the panel
model P (solid lines) to the measured radiance spectra of the
panels. The third row compares the differences in scaled panel
radiances, 1L p = (L p/C)−(L p/P), to the uncertainty of the
scaled panel radiances. The total uncertainties of the scaled
panel radiances are given as

δL p =

√[
δ
( L p

P

)]2
+

[
δ
( L p

C

)]2
(27)

where

δ
( L p

P

)
=

L p

P

√(δL p

L p

)2
+

(δP
P

)2
(28)

and

δ
( L p

C

)
=

L p

C

√(δL p

L p

)2
+

(δC
C

)2
. (29)

All quantities are spectral. L p and δL p are the measured panel
radiances and their radiometric uncertainties, respectively;
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P and δP are the panel model from (20) and its radiometric
uncertainty. The spectra acquired from the drone HSI data
were saturated in the wavelengths not presented in the figure
because the exposure time for the 12-bit Headwall Nano
spectrometer had been optimized to a 50% reflectance target.
In contrast, the Headwall Micro HE mast-based imaging spec-
trometer is a 16-bit system and acquires spectra of both highly
and minimally reflective targets. As a result, data from the
mast-mounted Micro HE imaging spectrometer are depicted
as full VNIR spectra in red, green, and blue lines in the third
and fourth rows of Fig. 8. In the same plots, orange lines
indicate partial VNIR spectra from the drone Nano imaging
spectrometer where the system was not saturated over the
white Spectralon panel.

Fig. 8 shows that the percentage differences between
P and C range from −5% to 0% for geometries associ-
ated with panel 1, while differences range oppositely from
0% to almost 5% for geometries associated with panel 2.
Equations (18), (19), and (23) show that the panel scaling
coefficients and the panel models being applied are directly
proportional to the reflectance quantity being calculated.
In other words, errors would directly propagate into and have
a systematic impact on reflectance calculations if the more
complete panel reflectance models were not applied. Due to
the proportionality, the magnitudes of these systematic errors
would be scaled by the ratio of radiances between target and
panel pixels. Brighter target pixels would be subject to these
larger systematic errors, while dimmer panel pixels would
cause larger uncertainty in the reflectance calculations. The
bottom row of plots in Fig. 8 shows that the differences
between scaled radiances using Labsphere’s calibration coef-
ficients and our panel model are greater than the radiometric
uncertainty.

To better understand the sources of error, we note that (20)
approximates the sky radiance as isotropic illumination. Due
to scattering in the atmosphere, the sky radiance distribution
is not only anisotropic but also polarized and significantly
brighter in blue wavelengths [46], [47], [48]. Incorporat-
ing better models for the sky radiance distribution and the
polarimetry of the illumination and scene would likely improve
harmonization of the various scaled radiances L p; however,
this also would require a polarized BRF model of Spectralon
with full view coverage in the observing hemisphere. More
accurate measurements of the diffuse sky radiance would also
reduce sources of error in our experiment. For example, a rotat-
ing shadowband radiometer would more precisely measure Lsh

as opposed to our less precise manually staged shadowband
measurements. In addition, the relative polarization biases of
the Headwall Micro HE and Headwall Nano systems were not
accounted for in this experiment, and importantly, the view
geometries of the two systems were significantly different.
Skylight radiance is not only polarized but increases in blue
wavelengths due to Rayleigh scattering in the atmosphere.
The discrepancy in scaled radiance measurements between
the mast and drone imaging spectrometers is highest in the
shorter wavelengths in Fig. 8. This is likely due to the
differences in polarization biases affecting measurements at
these wavelengths.

VII. CONCLUSION

We presented an empirical unpolarized comprehensive BRF
model of a pristine optical-grade Spectralon panel with full
azimuthal coverage

(
1φ ∈ [0◦, 360◦

]
)
, a wide range of sensor

view zenith angles
(
θe ∈ [0◦, 70◦

]
)
, and a wide range of illu-

mination incident zenith angles
(
θi ∈ [10◦, 70◦

]
)
, covering the

UV-VNIR-SWIR
(
λ ∈ [350 , 2500 nm]

)
. We measured hyper-

spectral BRF data with the GRIT-T hyperspectral goniometer
system [22], [23], which incorporates ASD FR4 spectrom-
eters, and in this experiment, with a 3◦ fore-optic and
an optical scrambler. We developed an improved empirical
model consisting of various scattering terms and scaling func-
tions, inspired by the Lévesque and Dissanska principal-plane
model [13] and fit the model to measured hyperspectral BRF
data of the pristine Spectralon panel.

Our improved model extends the earlier model [13] by
explicitly characterizing the azimuthal dependence of the
panel BRF and incorporating more sophisticated forms for the
diffuse term D, forward-scattering term F , specular reflection
term S, backward-scattering term B, a reddening factor R,
and a normalization coefficient A that is dependent on the
illumination geometry. We summarized the explicit forms of
the terms and the free parameters of our model in Table I.
We have also provided a Python implementation of the BRF
model and a lookup table of the coefficients A(i, λ) on
GitHub [19].

Residual plots show that our model replicates our mea-
surements to within 1%–2% reflectance within most of the
observing hemisphere. We outlined cases for how the Spec-
tralon panel BRF model can be used to estimate the HDRF
or BRF of a target pixel within HSI, and we demonstrated
an application of the panel BRF model to HSI acquired
during a field experiment at the RIT Tait Preserve. We also
measured the BRFs of our field-worn panels and compared the
differences in BRFs between our pristine panel and our field
panels, using the BRFs of the field panels in our application
to the field HSI.

The field panels were observed to have stronger forward-
scattering peaks. Mast- and drone-based HSI data acquired
from four different view geometries for each of the two field
Spectralon panels were used to evaluate the effectiveness of
our panel model in a field setting. The differences in scaled
radiances (1L p) for the Spectralon panel when normalizing by
the panel model P versus the diffuse calibration coefficients
C were significantly greater than the radiometric uncertainty
(δL p) for our measurement geometries in the field setting.
Although these effects were significant, additional modeling
that incorporates polarization effects [2] and the skylight
distribution is required for more accurate modeling of the
panel radiometry in future work.
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