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Abstract— Light detection and ranging (LiDAR) remote sens-
ing systems are deployed in various platforms including
satellites, airplanes, and drones—which, in essence, determines
the sampling characteristics of the underlying imaging system.
Low-altitude LiDARs provide high photon count and high spatial
resolution but only in very localized patches. Satellite LiDARs,
on the other hand, provide measurements at a global scale but
are limited by low photon count and their samples are sparsely
apart along swath line trajectories that are far in between.
This article describes a new class of satellite remote sensing
LiDARs, aimed at overcoming the limitations of current satellite
imaging systems. It exploits the principles of compressive sensing
and machine learning (ML) to compressively sense Earth from
hundreds of kilometers above Earth to then reconstruct the
3-D imagery with resolution and coverage, as if the data were
collected from airborne platforms at just hundreds of meters
in height. We introduce a novel representation of waveform
altimetry profiles, coined hyperheight data cubes (HHDCs),
which encompass rich information about the 3-D structure of
a scene. Canopy height models (CHMs), digital terrain models
(DTMs), and many other features of a scene that are embedded
in HHDC are easily extracted with simple statistical quantiles.
We introduce ML methods to reconstruct the compressive LiDAR
measurements so as to attain high-resolution, dense coverage,
and broad field-of-view per swath pass. ML training data are
attained from NASA’s G-LiHT imaging missions. Simulations
with various types of forests across the US illustrate the power
of the new LiDAR imaging systems.

Index Terms— Canopy height model (CHM), compressive sam-
pling, digital terrain model (DTM), light detection and ranging
(LiDAR), machine learning (ML).

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) systems provide
precise laser measurements of the distance between the

sensor and objects of interest [1]. In remote sensing, they
provide unique capabilities in collecting high-resolution ele-
vation data that are unmatched by any other remote sensing
technique [2]. Depending on the method for detecting the
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return signals, LiDARs provide three types of data. Digi-
tized waveforms of the received laser energy, point clouds
of discrete returns where the signal exceeds a threshold,
or photon-counting point clouds composed of individually
detected photons [3]. The resulting data products are used for
scientific discovery and applied mapping purposes. In forested
landscapes, for instance, they simultaneously measure ground
topography beneath vegetation cover and characterize forest
canopy structure including the spatial organization within
the canopy and its height [4], [5]. This vegetation structural
information is used for a variety of purposes, including esti-
mation of the above-ground stored carbon, establishing how
sunlight is intercepted by foliage, modeling the exchange of
carbon with the atmosphere and characterizing forest habitats
and their relationship to biodiversity, and the topography
data are also used for many purposes, including analysis of
landform evolution, hydrologic routing and flood modeling,
landslide forecasting, and characterization of surface-rupturing
earthquakes [3]. In glaciers, they measure sea ice thickness
distribution [6], and in coastal and beach areas they enable
bathymetry [7], [8], [9]. LiDARs are also used in computer
vision to create 3-D images of scenes in a wide variety of
applications such as autonomous driving [10], [11], [12] and
robotics [13], [14].

While the underlying principles of LiDARs used in all
these applications are similar, the return signals acquired differ
significantly depending on the range of the target data. Short-
range measurements collected by drones or unmanned aerial
systems (UAS) provide very high-resolution (cm-scale) 3-D
point cloud mapping [10], [11], [12]. Moderate resolution (m-
scale) is feasible for larger areas up to entire countries using
fixed-wing aircraft. NASA’s Goddard LiDAR, Hyperspectral,
Thermal (G-LiHT) mission is one such example where data
are collected at 300 m, providing submeter resolution point
clouds across a dozen regions of the US and Mexico spanning
over 6500 km2 [15]. For long-range remote sensing, NASA
has conducted global LiDAR Earth observations from space
in a series of missions with three waveform-recording systems,
the shuttle laser altimeter (SLA) [16], the Ice, Cloud, and Land
Elevation Satellite (ICESat) [17], and the Global Ecosystem
Dynamics Investigation (GEDI) hosted on the International
Space Station [18], and a photon-counting system, the second
ICESat mission (ICESat-2) [19].
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Fig. 1. Comparison of ICESat-2 (blue), GEDI (red), and CASALS (green)
laser footprints showing (a) ICESat-2 and GEDI 2-D profiling along an orbit
track compared with CASALS 3-D swath mapping, (b) overlapping CASALS
footprints configured to emulated GEDI, and (c) highest density CASALS
footprint configuration which achieves increased density along and across
track sampling compared with the GEDI and ICESat-2 profiles.

Although these spaceflight missions acquire measurements
at a global scale, thus providing a complete representation
of the planet Earth’s surface, the area covered is sparse. The
data are only acquired along 2-D profiles and the 3-D spatial
resolution is low for a variety of reasons. The number of
profiles is limited, with one for SLA and ICESat, multiple
laser beams forming six profiles for ICESat-2, and eight for
GEDI, and the cross-track spacing between profiles is large,
as illustrated in Fig. 1(a). The configuration of the ICESat-2
profiles is designed to determine ice sheet elevation change,
and the GEDI configuration is designed to uniformly sample
vegetation structure. The laser footprints are large (varying
between 100 m for SLA and 10 m for ICESat-2), and the sam-
pling along-track is discontinuous for the waveform systems
(varying between 700 m for SLA and 30 m for GEDI) because
high laser pulse energy is required for waveforms imposing
a low pulse rate due to limited spacecraft power. ICESat-2
using low-power micropulses has overlapping footprints with
0.7-m spacing but only several photons per pulse are detected
for vegetated landscapes requiring the combination of photons
over tens of meters to have data comparable to waveform
systems. Furthermore, unlike UAS and aircraft which can
repeatedly observe locations many times even within a single
day, spaceflight LiDAR temporal sampling is low limited by
the repeat cycle of the spacecraft which is typically on the
order of weeks or months.

Fig. 2 illustrates the vastly different 3-D imaging capabil-
ities provided by the ICESat-2 and G-LiHT missions. While
G-LiHT provides dense high-resolution and high-photon count
3-D imagery, ICESat-2 only offers low-resolution line profiles
with very low photon counts. The figure depicts the ICESat-
2 line profiles acquired over multiple swath paths of the
satellite in the period of months. In between the ICESat-2 line
profiles, vast amounts of landscape remain without sampling

illumination. It is clear that Earth science in general would
benefit greatly if satellite laser altimetry systems could provide
3-D imagery resolution and coverage comparable to that
offered by G-LiHT type systems. To this end, the National
Academies in the Earth Science Decadal Survey for future
laser altimetry recommended to drastically improve LiDAR
efficiency, enabling more coverage, higher resolution, with the
use of smaller, cost-effective satellite platforms [20].

To address this need, new LiDAR imaging systems are
being proposed. One such sensor is the adaptive wavelength
scanning LiDAR (AWSL) [21] which is a part of the concur-
rent artificially intelligent spectrometry and adaptive LiDAR
system (CASALS) payload being developed at Goddard Space
Flight Center for a spaceflight mission [22]. CASALS will
provide measurements supporting scientific studies and soci-
etal applications related to the carbon cycle and ecosystems,
cryosphere response to climate change, natural hazards, and
atmospheric clouds and aerosols. The AWSL uses a novel
method to scan a beam to specified locations across 7 km using
a photonic integrated circuit seed laser, wavelength tuning
circuitry, a high-power fiber amplifier, and a wavelength-to-
angle dispersive grating. The method achieves beam scanning
with no mechanical parts, removing a risk for spaceflight
use. By rapidly changing the laser wavelength and pulse rate,
an essentially limitless pattern of laser footprint locations
and spacings can be produced. For example, the ICESat-2
and GEDI profile patterns can be created for data continuity
purposes or profiles can be closely spaced to map a swath.
For swath mapping, the AWSL footprints planned to be 10 m
could be spaced by 3 m along and across track to map a
1-km wide swath [bright green swath in Fig. 1(a)]. They
can even be further concentrated in overlapping footprints for
detailed mapping in a swath as wide as 200 m, or they can
be distributed in a sparse pattern covering a much broader
area [light green swath in Fig. 1(a)]. Fig. 1(b) and (c)
shows a dense sampling of overlapping footprints planned for
the CASALS LiDAR in comparison to GEDI and ICESat-2
footprints, respectively. The AWSL receiver uses a detector
array to image the swath which has single-photon sensitivity
and analog output which will be digitized at high speed
to provide waveforms. Approximately 20 detected photons
are expected per laser pulse for vegetation, ∼10× that of
ICESat-2. CASALS will include high-resolution multispectral
imaging to characterize the composition, physical state, and
biophysical properties of the locations being targeted for
fusion with the LiDAR to enhance the science and applications
utility of the observations.

The adaptive capability of the CASALS LiDAR makes it
very well suited to use sparse sampling patterns optimized for
the topographic and vegetation cover attributes of a landscape
and for the objective for which the data are being acquired.
A fundamental constraint will be the power provided by
the spacecraft to CASALS which imposes a limit on the
maximum achievable laser pulse rate. Therefore, a key goal
is to establish how sparsely a landscape can be sampled
while still providing the information necessary to achieve the
mission objectives. By doing so, wider areas can be mapped
within the power provided. The LiDAR sensing mechanism
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Fig. 2. LiDAR sampling strategies: dense coverage and high-resolution
low-altitude G-LiHT, line profiles of ICESat-2, and wide field-of-view com-
pressive sampling.

can thus be posed as a compressive sensing problem, and in
this study, we explore sampling pattern designs and develop
an inverse imaging approach based on machine learning (ML)
to assess the accuracy with which forest structures can be
reconstructed at resolutions higher than the sparse footprint
sampling. The focus is on forest structure because it is one
of the most challenging landscapes in which to achieve 3-D
swath mapping at resolutions necessary for ecologic studies.
Fig. 2 illustrates the underlying objective of this work where
the Earth’s landscape is compressively sampled from high
satellite altitudes using wide field-of-view beam-steering. The
compressive samples are then used to reconstruct a 3-D image
representation of the scene as if we had imaged it with LiDAR
sensors used from only a few hundred meters above Earth
(G-LiHT in Fig. 2). The sensing profiles of ICESat-2 are
also shown in Fig. 2 as a reference. The sensing and inverse
problem mechanisms needed to accomplish these objectives
are formulated in Sections IV and V.

Currently, a variety of strategies are available for tack-
ling the inverse problem that arises in compressed sensing
scenarios. While there are optimization-based methods that
can address this problem without requiring data, this study
focuses on solutions that leverage deep learning techniques.
This choice is primarily motivated by the remarkable perfor-
mance deep learning has exhibited across multiple disciplines,
making it a logical step to extend these approaches to new
applications. Artificial intelligence is not a new concept in the
field of remote sensing however. Neural networks, for instance,
have been widely used for tasks such as hyperspectral image
segmentation and classification [23], [24], detecting anomalous
events in satellite imagery [25], recognizing targets using syn-
thetic aperture radar (SAR) sensors [26], classifying LiDAR
point clouds [27], and even fusing data from multiple sensors
in multimodal systems [28]. While artificial intelligence has
been successfully used for reconstructing RGB images and
LiDAR point clouds, its application in the context of satellite
LiDAR, especially with sparse measurements, is relatively
unexplored. Although there have been notable studies such as
those referenced in [29] and [30] focusing on reconstructing
images in forested areas using airborne systems, to the best
of our knowledge, there is no prior work addressing the
significant challenge of enhancing the resolution of satellite
LiDAR data to improve operational efficiency.

To characterize LiDAR systems capable of 3-D swath
mapping in preparation for sending them into orbit, we first

synthesize and emulate the underlying sensing mechanisms.
The source data for the synthesis are the G-LiHT airborne
sensor suite which acquires very high-density discrete-return
point clouds [15], along with hyperspectral and thermal imag-
ing. The G-LiHT LiDAR typical acquires long, 100-m wide
swaths, along many locations across North America. The
points are processed to synthesize an array of large circular
footprints to represent 3-D waveform scenes. This way of pre-
senting the output of a 3-D LiDAR as a volumetric waveform
product is coined here as a hyperheight data cube (HHDC)
due to its resemblance with a hyperspectral data cube.

The main contributions of this article are as follows.
1) We introduced a novel tensor-based representation

coined HHDC for LIDAR systems, encompassing com-
prehensive 3-D information pertinent to ecological
studies, including canopy profiles, digital terrain models
(DTMs), etc. This representation exhibits the requisite
flexibility to facilitate signal processing and ML appli-
cations.

2) We demonstrated the compressibility of this innova-
tive representation through a wavelet study, thereby
paving the way for the potential implementation of
compressed sensing systems using artificial intelligence
methodologies.

3) We presented a comprehensive methodology, enabling
the derivation of all the traditional ecological represen-
tations via statistical analyses of the proposed tensor.
This endeavor serves to bridge the gap between prior
studies and the novel products to be delivered through
satellite LiDAR systems.

4) We illustrated the solution of the inverse problem
associated with HHDC, aiming to bridge the disparity
between satellite measurements and airborne representa-
tions through the utilization of deep learning techniques.

5) We illustrated the influence of distinct sampling patterns
on the quality of neural network reconstructions, both
when the sampling percentage remains constant and
when it changes.

The rest of this article is organized as follows: Section II
presents the methodology for synthesizing large footprint
LiDAR measurements acquired by waveform recording detec-
tors. Section III introduces HHDCs and presents different
ways of interpreting them. Section IV describes the physical
attenuation characteristics of the photons as they travel from
low altitudes to heights of satellite orbits. Section V casts
the satellite LiDAR imaging system as a compressive sensing
problem. Section VI presents the use of ML techniques to
reconstruct high-resolution LiDAR HHDC from sparsely sam-
pled data. Section VII presents the results of the ML system
and their implication for satellite LiDAR systems. Finally,
Section VIII presents the concluding remarks.

II. WAVEFORM LIDARS

NASA has conducted several LiDAR missions, including
GEDI and ICESat-2, using waveform and photon-counting
LiDARs in which the sensors do not record 3-D atomized
point clouds but rather they record large illuminated areas
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Fig. 3. (a) Collection of point clouds in individual 25-m footprints arranged as a swath. (b) Side view of a single footprint so the individual photons can be
identified. (c) Histogram height distribution of the points of the footprint (red) and the cumulative distribution (blue) where five key percentiles can be seen.
Note that the z-axis represents the height above sea level.

and generate a continuous or discrete waveform that describes
the structure underneath. This contrasts with the traditional
way of interpreting LiDAR images as creating a 3-D repre-
sentation of the environment as seen in the scanning LiDARs
of automobiles. To better understand the sensing phenomena
in waveform LiDARs, consider the point cloud presented in
Fig. 3(a). This point cloud was acquired in a forested area
in Maine using NASA’s airborne G-LiHT system using a
scanning LiDAR and it shows the point clouds inside multiple
25-m-diameter cylinder footprints of a forest in Maine, USA.
From this figure, the structure of trees in the scene can be seen
as the resolution inside the volume of a 25-m footprint offers
thousands of individual points (photons) in the point cloud.
To understand the output of a discrete waveform LiDAR,
it is needful to describe the height distribution of the points
found within a single illuminated area. Fig. 3(b) shows a side
view of the point cloud inside of a single 25-m footprint so
that every photon is clearly visible within the tree structure,
and in Fig. 3(c), the equivalent height distribution histogram
is created using the heights of the individual points seen in
the side view. Even though the individual photon location is
lost while creating the histogram, all the key features used
for the canopy study are still retained. Alongside the height
histogram, some key percentiles are shown; these percentiles
carry important information about the topographical struc-
ture, the health of the forest, ecological variables, among
others. This height distribution is equivalent to the output
of a photon-counting LiDAR illuminating the same 25-m
region.

The phenomenon that is not modeled directly by simply
constructing the histogram of heights is the Gaussian nature of
the pulses sent by the laser in both time and space. To account
for this, we leverage the way full-waveform LiDARs are
emulated to then perform a discretization of the resulting
signal. Following [18], the waveform returned to the detector
can be modeled by summing the convolutions between the
intensity of each point in the footprint and the Gaussian signal
produced by the laser. Let the pulse p emitted by the laser be

given by

p(z − zi ) =
1

σp
√

2π
e
−

(z−zi )
2

2σ2
p (1)

where σp is given by the Gaussian shape of the laser signal.
The collected waveform is then described by

I (z) =

N∑
i

Iw,i ∗ p(z − zi ) (2)

where N represents the total number of points in the footprint,
Iw represents the intensity of the points, and p represents
the Gaussian signal of the laser. It is important to note that
the intensity of the points decays in a Gaussian manner with
respect to the center of the footprint according to

Iw,i =
1

σ f
√

2π
e
−

(xi −x0)
2
+(yi −y0)

2

2σ2
f (3)

where σ f is determined by the size of the footprint, x0 and
y0 are the coordinates of the center of the footprint, and xi

and yi are the coordinates of point i . Equation (2) describes
the full-waveform LiDAR which can be discretized to provide
a photon-counting LiDAR as

Id(z) = I (z)
∑
k∈Z

δ(z − k1z) (4)

where 1z is the vertical resolution of the emulated photon-
counting LiDAR. The parameter 1z is partially dependent on
the physics of the selected laser, as can be determined by
the duration of the pulse (1), and is also dependent on the
hardware specifications of the used detector [31]. This is due to
the fact that it is not feasible to attain arbitrary resolution given
that the detector needs a certain amount of time to process
each sample, thus rendering it impossible to differentiate
photons that arrive at arbitrarily small time intervals. Fig. 4
shows a comparison between the raw height histogram and the
waveform obtained by modeling the Gaussian phenomenon of
the laser pulse.
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Fig. 4. Comparison between the height histogram and the continuous
waveform created by the convolution of the points and the signal of the laser.

The model in (1) and (4) provides a relationship that can
be used to emulate the output of a waveform LiDAR. If a
small footprint LiDAR is available over a specific region, it is
possible to approximate the output of a waveform LiDAR by
studying the distribution of the heights of individual points
within a small patch of a specific region. In this manner,
footprint waveforms can be synthesized from a discrete size
25 m to match the image system under study, but this is a
parameter that can be modified and helps represent in a general
way the size of the footprint of the waveform LiDAR.

A. Canopy Height Profile (CHP) and HHDCs

It is common to represent a series of waveforms (his-
tograms) concatenated side by side to study the characteristics
of an entire region. For example, Fig. 3(a) depicts many
25-m-diameter areas that have been arranged together as a
swath so that, as shown in Fig. 5, histograms of individual
illuminated areas can be analyzed holistically. In Fig. 5, the
x-axis represents the movement along the swath created in
Fig. 3(a), and the grayscale represents the concentration of
photons at a given height of the histogram; hence, it is easier
to interpret attributes such as the structure of the topography
(described by the lower part of the waveforms), or the points
where the forest is the densest (described by areas where the
graph has darker shades of gray). The representation shown
in Fig. 5 is often referred to as a CHP [32] and is the
traditional way of displaying data from NASA missions that
implement waveform LiDARs. As mentioned before, some key
percentiles are shown over the CHP. Particularly, the 25%,
50%, 75%, and 98% percentiles are shown in Fig. 5 since that
they can be used for understanding how biomass behaves in
the forest [33], [34].

Even though this way of analyzing the terrain using multiple
histograms is quite useful, it lacks the ability to study not
only along the length of the terrain, i.e., along the swath, but
also across the width of the terrain, i.e., across the swath.
To present a complete representation of the geographical area

Fig. 5. CHP constructed by concatenating multiple height histograms over a
swath path alongside key percentiles that allow studying ecological variables.
The 98% (blue), 50% (green), and 25% (red) percentiles are shown along the
CHP.

of interest, it would be necessary to show illuminated areas
that are parallel to those shown in Fig. 3, so that more area
is covered. Fig. 6(a) shows a G-LiHT point cloud of a forest
along with the footprint array overlaid on top of it. The set of
illuminated regions that will show waveforms along and across
the swath. Of course, if one has this configuration of illumi-
nated areas, the joint histogram representation is no longer
a single 2-D image but rather multiple images placed next to
each other that can be represented as a 3-D cube with complete
terrain information. Fig. 6(b) depicts such representation by
showing the terrain along and across the swath, as well as the
height of the histograms and their intensity. Notably, this 3-D
representation resembles a hyperspectral data cube in which
multiple bands of the electromagnetic spectrum are plotted as
a cube, and thus, we coin the height distributions of the canopy
as an HHDC. Although the HHDC is a natural evolution of
the CHP, it is more descriptive due to the fact that it has
information on both the length and width of the swath.

The HHDC characterizes a 3-D space, and thus, it can be
naturally represented as a three-order tensor X ∈ Rn×m×c

where n and m are the number of footprints across and along
the swath, respectively, and c is the number of histogram bins
associated with each footprint (see Fig. 7). Each waveform
associated with a footprint is referred to as a tube scalar x ∈ Rc

[Fig. 7(b)]. The (i, j, k) entry of the tensor represents the
number of photons found in the i th footprint location across
the swath, the j th footprint location along the swath, and at
the 1z k height, where 1z is the chosen vertical resolution.
Vertical slices of HHDC, along the swath, produce canopy
height planes as depicted in Fig. 5. Vertical slices along the
perpendicular direction of the HHDC lead to similar across the
swath canopy height planes. These multiple cuts will aid in
the interpretation of the information embedded in the HHDC.

As Fig. 6(b) illustrates, HHDCs in general have well-defined
structure across the spatial and height dimensions. In fact,
the 3-D wavelet representation of HHDCs of natural forests
and vegetation is highly sparse. Fig. 6(c) depicts the sorted
magnitude and log-magnitude coefficients of a 3-D Symlets
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Fig. 6. (a) G-LiHT point cloud of a forest and the footprint array overlaid on top where a single swath line is highlighted. (b) Volumetric HHDC created
from the array of waveform footprints. (c) Magnitude and log-magnitude of the HHDC that illustrate its sparsity in a 3-D Symlets 4 wavelet representation.

4 wavelet representation of the HHDC in Fig. 6(b). It can
be seen that less than 5% of the coefficients are significant.
Forests in other regions of the US such as Florida exhibit
even higher sparsity. Sparsity indicates that HHDCs found in
natural forestry can be concisely represented in some basis
with just a very small number of coefficients since natural
HHDCs exhibit correlation among adjacent pixels and also
across height bins. This property is important as it opens the
opportunity to design compressive sensing protocols capable
of capturing the essential information content in HHDCs with
just a small number of compressive measurements that sketch
the 3-D information embedded in the HHDCs. The HHDCs of
interest could then be accurately reconstructed from the small
number of compressive measurements as it will be described
shortly.

III. HHDC INTERPRETATION

To describe the virtues of an HHDC and what it represents,
consider again the high-resolution G-LiHT point cloud of a
forest region shown in Fig. 6(a). From this point cloud, it is
possible to construct an HHDC with 10-m footprints for which
the laser shots have a separation across the swath of 6 m
and along the swath of 3 m, and a vertical resolution of
the histograms of 0.5 m. The HHDC tensor for this forest
is shown in Fig. 6(b). Even though the information embedded
in the HHDC is rich, it can be complicated to interpret. In this
section, some subviews of the cube are presented to facilitate
its interpretation, namely, view along the swath, view across
the swath, DTM, and canopy height model (CHM).

A. View Along the Swath

A direct way to visualize an HHDC is by looking at it as
a set of 2-D measurements over different lines of the terrain.
For this case, what is being seen is a slice on the yz-axis of
the HHDC generating a CHP, as shown in Fig. 7(c). Fig. 11(a)
shows this view extracted directly from the HHDC cube.

B. Across the Swath

Given an HHDC, it is also possible to analyze what happens
in the direction perpendicular to the direction of the moving
detector platform. This type of visualization seeks to under-
stand what happens in an xz slice of the cube, as shown in

Fig. 7. (a) HHDC tensor representation divided into (b) tubes representing
the information of each footprint, (c) along the swath slices, and (d) across
the swath slices.

Fig. 11(c). It is important to note that this representation is
similar to the one shown in Fig. 11(a) since both come from
the same geographical region.

C. Digital Terrain Model

One of the traditional ways to study the output of a point
cloud is to extract the well-known DTM. The DTM provides
relevant information about the topography of the geographical
area being studied. Remembering that the HHDC is con-
structed from the height distributions, it is possible to generate
percentiles associated with the height distributions, which seek
to analyze how the horizontal slices of the cube change. For
example, in the case of DTM, the height at which all the
distributions exceed a value above the noise floor (usually
a value close to 2%–5%) is studied, and this information
is condensed on a 2-D image. Fig. 8 (bottom) shows the
construction of the DTM for the HHDC. It is important to
highlight how this representation provides full information on
how the topographic information of this forested region of
Maine is changing simply using satellite emulations. Math-
ematically, given the histogram height distribution along the
z-axis of the (x th, yth) footprint of the HHDC, X ∈ Rm×n×c,
a sample probability density function on z can be obtained as

Px,y,z(z) =
Xx,y,z∑c

k=1 Xx,y,k
(5)

for ∀z ∈ Z . Note that the denominator of this equation
exists to ensure a valid probability density function. Then, the
cumulative distribution function along the z axis of the (x th,
yth) footprint of the HHDC, X , is obtained as

Fx,y,z =

z∑
k=1

Px,y,k . (6)
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Fig. 8. (Top) CHM of the HHDC. (Middle) 50% percentile as it is typically used for biomass studies. (Bottom) DTM of the HHDC.

It is important to understand that this cumulative distribution
is only performed along the z-axis which is where the heights
in the HHDC are confined. Given F , the DTM of an HHDC,
denoted as FDTM, can be described as

FDTM = inf
{

z|Fx,y,z ≥ θ : ∀z ∈ Z
}

(7)

where Z represents all the possible values for heights and
θ represents the threshold that exceeds a minimum noise
level before being considered as terrain. In general, the set
Z is all real numbers, but clearly, when considering heights,
it is possible to reduce this range significantly for the forests
being studied, e.g., a forest might only have heights in the
range 0–30 m.

D. Canopy Height Model

Finally, the fourth proposed visualization of the HHDC
is the well-known CHM. This type of visualization is very
similar to the DTM, with the difference that what is intended
is to study the height of the trees with respect to the floor on
which they are located. To do this, it is necessary to know
the height of the trees at the waveform level, and, as with the
DTM, it is sufficient to determine at what height the waveform
reaches a maximum value (usually, the 98th percentile is
assumed and not the 100th percentile to avoid noisy signals),
and subtract it with the DTM mentioned above. An example
of the CHM for the study forest is shown in Fig. 8 (top).
It is important to note that this representation helps establish
important properties of the forest, such as its maximum and
average heights. Having mathematically defined the DTM,
it is easy to describe the CHM (denoted here as FCHM) as
follows:

FCHM = FDEM − FDTM (8)

Fig. 9. CASALS LiDAR sampling patterns over the same region using
overlapping footprints. (Left) Full sampling (for this case a total of 400 shots).
(Middle) Bayer subsampling covering the same area with only 100 footprints.
(Right) Blue noise subsampling with 100 footprints. Subsampling in space and
photon count results in a compression ratio of 800:1.

where FDEM (known as the digital elevation model) is defined
as

FDEM = inf
{

z |Fx,y,z ≥ 0.98 : ∀z ∈ Z
}
. (9)

A critical point to highlight is the flexibility of studying
satellite measurements when represented as a hyperheight
cube. All the visualizations mentioned have been used to study
canopy for several decades. The cubic representation only
retains these notions in such a way that all the tools used
so far are still valid. However, it is essential to note that the
HHDC can display all the visualizations simultaneously and
consistently.

IV. SATELLITE HYPERHEIGHT DATA CUBES

The aforementioned HHDCs (Fig. 6) were derived from
high-density point clouds acquired by low-altitude LiDARs
such as those provided by G-LiHT. If one were to sense the
same area depicted in Fig. 6, but instead of using G-LiHT
one would use a satellite LiDAR system such as CASALS,
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Fig. 10. (a) Photons returned from a 10-m footprint to G-LiHT (blue)
and the compressive measurement of photons returned to CASALS (red).
(b) Corresponding histogram waveforms. The histograms are normalized to
their maximum value for sake of comparison.

what would the HHDC look like? To answer this question,
one must consider the scale difference that exists between the
traditional airborne measurements, such as G-LiHT, and the
measurements acquired in a satellite system such as ICESat-2
or AWSL in CASALS. G-LiHT measurements are taken from
an altitude of about 335 m above ground so that each footprint
will have a very high photon density per footprint (∼1000
on a 10-m-diameter footprint), and hence they can have
high-photon count resolution. However, ICESat-2’s orbit is
about 500 km above ground so that each illuminated footprint
will return significantly fewer photons (∼100 photons per
footprint). Satellite LiDAR HHDC’s thus represents a noisy
sketch of airborne LiDAR HHDC’s, where the satellite-derived
waveforms are poorly defined and quite noisy as illustrated in
Fig. 10. Notably, two different effects cause substantial loss
of photons: on one hand, there is attenuation caused by the
distance of the laser, which, as is well-known, quickly drops
with a factor of z2, where z is the distance to the target [35].
This is amplified by the fact that the LiDAR instrument mainly
operates on nonperfect reflective surfaces, e.g., tree canopies,
so few photons reach the target reflect in unwanted directions
or will not even reflect back. On the other hand, there is the
physical phenomenon of atmospheric loss of photons as they
travel to the satellite detector, which acts as a compressive
projection of the underlying signals. The laser beam attenua-
tion as it propagates through the atmosphere is mainly due to
molecular absorption and particle scattering. Both the effects
are dependent on the operating wavelength. The Beer–Lambert
law is the fundamental model that determines the overall
transmittance τ and is given by τ = exp−γ z where z is the
propagation distance, and γ is the attenuation coefficient [36],
[37]. Resolved over a single path length, the transmittance
becomes τ = exp−

∫ z
0 γ (z, f )dz where the attenuation coefficient

γ (z, f ) is defined by the absorption and scattering properties
of the medium and the wavelength of the laser beam. For
cases where γ (z, f ) is not constant along the path length,
a more general expression of transmittance can be modeled as
described in [37]. Fig. 10(a) depicts a side view rendition of
a point cloud inside the 10-m footprint obtained with G-LiHT
(blue points) and the attenuated compressive measurements
obtained from a satellite LiDAR (red points). Note how the

point density in the satellite system is substantially reduced
to such an extent that there are only 20 photons in the whole
footprint. A comparison of the shape of the waveforms of both
the systems shows the challenge of working with footprints
measured from orbit, as shown in Fig. 10(b) (for ease of
comparison, the waveforms are normalized to their maximum
value).

A. Overlapping Footprints

Several alternatives can be used to overcome the limited
number of photons returning to the sensor onboard the satel-
lite. On one hand, the GEDI strategy could be used in which
large footprints (diameter of 25 m) are used to capture a
larger number of photons. This, however, significantly reduces
the spatial resolution, as shown in Fig. 1. Note how each
footprint associated with GEDI covers large portions of the
terrain, but there is a significant separation between them.
For this reason, systems such as ICESat-2 choose to use
smaller footprints (13-m diameter), which, while collecting
fewer photons, can be captured successively so that there is
overlap between contiguous footprints. This way, the lack of
photons per footprint can be overcome by capturing many
consecutive footprints, as shown in Fig. 1. The state-of-the-art
systems, such as CASALS, aim to overcome the limitation on
spatial sampling resolution using even smaller footprints (10-m
diameter) and guaranteeing an overlap both along the direction
of the satellite motion and across the trajectory, as shown at
the left of Fig. 9. The waveform sampling pattern in this case
thus exhibits footprint overlap along and across the swath.

To better understand the difference between HHDCs
obtained from low-altitude high-density photon measurements
such as G-LiHT and those attained with CASALs. Fig. 11(a)
depicts the high-density photon count CHP for a swath of
approximately 1.8 km long. In contrast, Fig. 11(b) shows
the same swath but considering footprints with 20 photons
(CASALs) including the mentioned footprint overlap. Note
how, regardless of the lack of photons in the CASAL’s
footprints, the main features of the CHP are still there. For
example, features such as terrain structure or tree density
are still present. As will be shown later, it is possible to
use measurements such as those presented in Fig. 11(b)
and reconstruct the CHP presented in Fig. 11(a) using ML
techniques.

V. COMPRESSIVE FOOTPRINT SENSING

CASALS uses novel nonmechanically scanning LiDARs
that uses wavelength tuning and a high-resolution grating to
achieve high-speed and accurate cross-track beam-steering.
In a swath path, CASALS can thus acquire the densely
sampled waveform patterns shown in Fig. 9(a) where the
footprints exhibit some overlap in both, along the swath and
across the swath directions. Sensing of such a large amount of
spatial information across hundreds of height bins, however,
requires significant laser power and data storage resources.
Notably, wavelength tuning in tunable lasers is not just capable
of raster scans but can hop arbitrarily from any wavelength in
the wavelength range to any other wavelength in the tunable
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Fig. 11. (a) CHP using all the available photons. (b) CHP created using a
limited amount of photons per footprint. Note how the CHP is not well-defined
due to reduced photon resolution. CHP across the swath view using (c) full
photon counts and (d) limited photon counts.

range, enabling arbitrary LiDAR scan patterns. This capabil-
ity naturally enables the application of compressive sensing
protocols to sense the HHDC data cube with fewer foot-
print measurements per area. Note that footprint subsampling
imposes subsampling not only in the spatial axes of the scene
but also on the photon count as these travel from the surface
of Earth to the satellite’s orbit. Data compression in CASALS
will thus be attained directly, at the sensor, via footprint
compressive sampling. The need for digital compression of the
acquired footprints can be reduced or discarded altogether. The
compressive measurements in CASALS are then realized first
by beam-steering footprint sampling in the spatial dimension,
followed by atmosphere extinction of the photons in each
footprint that are attenuated as a function of distance.

The sensing mechanism model is illustrated in Fig. 12,
where the high-resolution G-LiHT data cube XG ∈ Rn×m×c

is projected onto the compressed CASALS data cube XC ∈

Rn2×m2×c2 having much fewer footprint measurements and
height bins, i.e., n2 < n, m2 < m, and c2 < c. CS dictates
that one can recover the high-resolution G-LiHT HHDC XG

of interest from the fewer measurements available in the
CASALS HHDC XC . To make this possible, CS relies on
two principles: sparsity, which characterizes the hyperheight
scenes of interest, and incoherence, which shapes the footprint
sensing structure. Sparsity requires that HHDCs found in
nature can be concisely represented in some basis with just
a small number of coefficients. As shown in Fig. 6(c), this
is indeed the case with HHDCs where natural scenes exhibit
correlation among adjacent tubes and also across height bins.

Fig. 12. Compressive sensing of the low-altitude G-LiHT HHDC
XG ∈ Rnmc by the sensing matrix A leading to CASALS’ compressed HHDC
XC ∈ Rn2m2c2 with photon extinction, where n2 < n, m2 < m, and c2 ≪ c.

Incoherence refers to the structure of the sampling waveforms
used in CS that unlike the signals of interest have a dense rep-
resentation in the basis of signal representation. In CASALS,
the sampling waveforms are limited to sparse ON-OFF laser-
coded illumination and also by the random loss of photons
as they transverse from the illuminated footprint areas to
the detector at high altitude on board of the satellite. Both
these operations are incoherent with the basis representation
of HHDCs.

Let xg ∈ Rnmc and xc ∈ Rn2m2c be the reindexed 3-D
vector representations of XG and XC , respectively. The signal
acquisition can then be written as an underdetermined system
of equations xc = A9(xg) + n where A(·) is a nonlinear
function that characterizes the sensing phenomena and 9

is a matrix determining the sampling illumination pattern,
which together characterize the forward imaging problem. n
represents the observation noise. The overarching objective
in compressive LiDAR is thus to compressively sense Earth
from hundreds of kilometers above Earth to then reconstruct
the 3-D imagery with resolution and coverage, as if the data
were collected from airborne platforms at just hundreds of
meters in height. The CS inverse problem reduces to solving
an underdetermined nonlinear system of equations to recover
θ such that the cost function

arg min
xg

∥∥xc −A9

(
xg

)∥∥2
+ λR

(
xg

)
(10)

is minimized where R(·) is a regularizer function and λ is a
regularization constant. CS specifically deals with characteriz-
ing the “goodness” of the scanning pattern [38], [39]. Random
on–off patterns are commonly used is CS but random patterns
that maximize the mutual distance among “on” samples, i.e.,
blue noise (BN), have been shown to have optimal properties
in CS in a number of applications [39], [40], [41]. Fig. 9(b)
and (c) depicts Bayer and blue noise sampling patterns, respec-
tively [42], [43], [44]. Since the tunable laser is limited in the
number of wavelength hops per unit of time, the advantage of
CS in CASALS is thus enabling a much wider field-of-view
swath sparse scanning, allowing the capacity of measuring
Earth much faster, with fewer swath paths, and at high-photon
count resolution. The sampling patterns in Fig. 9(b) and (c),
for instance, sample the HHDC with 25% density thus making
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Fig. 13. Proposed 3-D Autoencoder architecture. This neural network allows
to take HHDCs with incomplete and poorly defined features and create
high-resolution HHDCs that could be used in environmental studies. This
neural network uses 3-D convolutions and Gaussian error linear unit (GELU)
nonlinear activation functions to perform the task.

it possible to cover the Earth’s surface four times faster. For
a 25% footprint sampling, the HHDC compressive sampling
gives a compression ratio of 800:1.

VI. RECONSTRUCTION ALGORITHM

Given the compressive sampled footprints along the spa-
tial and height (photon count) dimensions, the goal is then
to reconstruct the high-resolution HHDC in all its dimen-
sions including the photon counts. Several numerical and
iterative optimization-based algorithms are available to solve
the inverse CS problem. Typical computations performed by
these algorithms include matrix pseudoinverses, sparse basis
transformations, and vector–matrix multiplications. Given that
the underlying signals in HHDCs are high dimensional,
these calculations require a large number of floating point
operations. Reconstructions of HHDC of large scenes are
indeed overwhelming since they can take hours in desktop
architectures [38], [39], [45], [46]. To avoid the computa-
tional bottleneck in the inverse problem, this work uses a
learning-based algorithm trained with a large dataset of known
HHDCs to reconstruct new unknown HHDCs. Currently, there
are a great variety of algorithms that allow to perform similar
tasks to that of reconstructing HHDCs, but it is important to
highlight the two most important particularities of the problem
under study: it is required, on one hand, to fill the inputs
that were not taken by the laser, and on the other hand, it is
required to increase the photon-level resolution of the HHDC.
Considering these constraints, it is proposed to use a 3-D Con-
volutional Autoencoder as shown in Fig. 13. This architecture
has been shown to be adequate for matrix completion and
super-resolution tasks, because the latent spaces it generates
within it are able to extract the important features of cubes and
images, largely ignoring information that may be lost during
the selected sampling.

To this end, it is necessary to consider some particularities
from the proposed architecture shown in Fig. 13. First, it is
imperative to consider the dimensions of the inputs and outputs
of the system. Understanding that an HHDC is described by
the offsets along and across the swath, as well as by the
vertical resolution, it suffices only to assume a subset of cubes
such that their dimensions are confined in dimensions that a
neural network can understand. For this purpose, it is assumed
that the HHDC is stored as a tensor X ∈ Rn×m×c to be
reconstructed by the Autoencoder. Therefore, it is clear that
the dimensions for the input and output of the network are n

× m × c. In the actual application, the dimensions n and m
represent the number of samples along and across the swath,
respectively, and the dimension c represents the number of bins
chosen to represent the histograms of the cube. In principle, n
could be very large since it would be given by the continuous
line of samples taken as the satellite moves during its succes-
sive orbits; however, it is necessary to restrict the 3-D so that
the input tensor is meaningful for the network. Therefore, it is
proposed to restrict the HHDC reconstruction to tensors with
dimensions X ∈ R32×32×100. It may seem somewhat small
dimensions for the terrestrial scale; however, if we consider
offset along and across the swath of 3 and 6 m, using a vertical
resolution of 0.5 m, it can be stated that during each recon-
struction, the algorithm would be evaluating a ground surface
of approximately 100 × 200 m for which the trees can be up
to 50 m high. This is possible since the Autoencoder is mak-
ing nonlinear transformation g(X ):R32×32×100

→ R32×32×100,
which seeks to take an incomplete and ill-defined input tensor
X ∈ R32×32×100 that has many missing inputs and has low pho-
ton counts and produces a high-resolution output tensor Y ∈

R32×32×100 with complete information and full photon count.
Describing the architecture shown in Fig. 13, four funda-

mental blocks can be identified: 3-D convolutions, nonlinear
activations, layer normalizations, and 3-D transpose convo-
lutions. These blocks are specifically designed for the CLS
application and were chosen based on the expected perfor-
mance. It is important to highlight that the Autoencoder
does not have explicit max pooling layers, and therefore, the
bottleneck scheme is achieved solely and exclusively with the
convolutions.

A. Input Refeature Block

One of the most important characteristics of working
with convolutional layers, apart from the fact that they
extract spatial information, is that they allow to increase
the hyperdimensions of the input signals and create deep
feature maps on which much more can be learned. The
proposed Autoencoder uses convolutional layers but must
start its structure with a block called Input Refeature
used for transforming the input data into something more
amenable for a convolutional layer. This block seeks to
create pseudo-HHDCs from the original incomplete cube so
that subsequent layers can more easily complete it. After
passing through the Input Refeature Block, 32 cubes will be
created from the original cube, but the spatial dimensions
will not be reduced. That is, this block can be viewed as a
transformation g1(X ):R32×32×100×1

→ R32×32×100×32 where
the feature maps are obtained from convolutions performed
with cubic kernels K1

i of dimension R3×3×3 with nonlinear
activation functions of Gaussian error linear unit (GeLU) type
defined as X1i = σ(X ∗ K1

i ), where σ is the GeLU function
described by σ(x) = x P(X ≤ x) = x8(x) where 8(x) is
the Gaussian cumulative distribution function.

To improve the training and performance of the neural
network, it is always recommended to consider normalization
layers. For the design of the Autoencoder, it is proposed to
use layer normalization because it is well-known that these
types of normalizations are independent of the chosen batch
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size and still guarantee stability in the hidden layers of the
network. The normalizations must be performed considering
the tensor nature of the inputs, and therefore, the output of the
layer normalization is given by

LN(XN ) = γ

 XN − µ(XN )(√
σ(XN )2

+ ϵ
)

 + β (11)

where γ and β are the parameters to be learned during training,
ϵ is a hyperparameter for algorithmic stability, and µ and
σ 2 are, respectively, the mean and variance per channel N
described as

µ(XN ) =
1

nmc

n∑
i=1

m∑
j=1

c∑
k=1

XNi jk, and

σ 2(XN ) =
1

nmc

n∑
i=1

m∑
j=1

c∑
k=1

(
XNi jk − µ(XN )

)2
.

B. Encoder

The encoder follows a datapath similar to what was men-
tioned in the previous block, with the particularity that now
it seeks to reduce the spatial dimensions of the cube to
reach a latent representation that manages to capture as much
information of the incomplete cube as possible. Evaluating the
three steps shown in the encoder of Fig. 13, it can be under-
stood that this is a set of transformations g2:R32×32×100×32

→

R16×16×100×64
→ R14×14×100×128

→ R12×12×100×128, where the
reduction in the dimensions of the HHDCs, within the Autoen-
coder latent space, is associated with the selected strides and
paddings. Considering that the layers are the same as in the
previous block (3-D convolutions, nonlinear activations, and
layer normalizations), no details are necessary on how they
are mathematically described; it is only mentioned that the
encoder receives a tensor X1 and generates a latent tensor Xl .

C. Decoder

Once the latent tensor Xl is obtained, the spatial dimensions
of which were decreased from the input tensor X , but widely
expanded a number in feature maps, it can be attempted to
recover the original signal by means of a decoder block as
shown in Fig. 13. Note that the decoder performs the inverse
operations to the encoder (as expected) and therefore can
be viewed as a set of transformations g3:R12×12×100×128

→

R14×14×100×128
→ R16×16×100×64

→ R32×32×100×32, where
what is done is to increase the number of the spatial dimen-
sions and decrease the hyperdimensions of the feature maps.
However, it is key to consider that for the encoder 3-D
convolutions are used while in the decoder 3-D transposed
convolutions are implemented so that each pseudo-HHDC of
the decoder can be expressed as

Xi = σ
(
Xl ⊛K j

i

)
(12)

where ⊛ represents a transposed convolution and K j
i repre-

sents the kernel of the j th transposed convolution.

D. Output Refeature Block

After the latent tensor Xl is processed by the decoder,
a decoded tensor Xd ∈ R32×32×100×32 is obtained. Nonetheless,
the output tensor is not a tensor composed of 32 HHDCs but
only one. For this reason, a final layer is needed to assemble
the 32 cubes and generate a representation containing the
high-resolution HHDC. In brief, the Output Refeature simply
reverses the operation performed by the Input Refeature so it
is a transformation g4(Xd):R32×32×100×32

→ R32×32×100×1.

E. Error Metrics

To measure the accuracy of the reconstructions made by
the neural network, it is necessary to propose metrics that
allow measuring the differences between two HHDCs. For
this purpose, six metrics are presented to help perform this
task. Of course, only one of them is required when training
the network, but the other five will help have a quantitative
notion of how well the reconstruction task is being done.
As it is widely accepted, to perform the training of the
network, it is proposed to use an rms-type measure between
the reconstructed HHDC X̂ and the desired HHDC Y as
rms = 1/(nmc)(

∑
n,m,c(X̂ i, j,k −Yi, j,k)

2)1/2. This metric gives
a per photon difference between two HHDC, and thus, it gives
the ability to tell how similar the footprint information is
going to be. Having an rms like error could be misleading
in some scenarios, and for that reason, an MAE-type error is
also proposed as MAE = 1/(nmc)

∑
n,m,c |X̂ i, j,k − Yi, j,k | for

comparing two HHDC. This metric gives a broad overview
of the raw differences between two histograms by looking
at the whole cube at once. Even though having footprint
difference information is enough for training the model, it is
also beneficial to have metrics that allow to compare the most
important subviews of the cube, i.e., the CHM and the DTM.
For that regard, rms and MAE are calculated for both the CHM
and the DTM. It is critical to highlight that since the CHM
and the DTM provide height information, these errors are no
longer in units of photon counts but rather in meters.

F. Summary of the Neural Network

The 3-D convolutions in the Input Refeature block have a
kernel size of 3 × 3 × 3, a stride of 1 on every dimension,
and a padding such that the input and output HHDCs have
the same size. The 3-D convolutions of the encoder block also
have a kernel size of 3 × 3 × 3. The first 3-D convolutions
on the encoder block have a stride of 2 on both x and y
such that the dimensions of the HHDC are reduced by half
on these axes, so no reduction is performed with padding.
On the second and third 3-D convolutions of the encoder
block, the bottleneck of the Autoencoder is achieved by
doing convolutions with no padding and slowly reducing the
dimensions of the HHDCs. All 3-D transpose convolutions on
the decoder block have a kernel size of 2 × 2 × 2; this is so
that more high-frequency components can be recovered. The
stride of the first two 3-D transpose convolutions is one on
each dimension, but the output HHDC is padded with zeros
so that the dimensions are slowly increased. The third 3-D
transposed convolution of the decoder block has a stride of
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Fig. 14. CHM for the Oregon Willamette National Forest. (a) CHM of
the CASALS input HHDC. (b) CHM for the ground truth. (c) CHM for the
NN reconstructed HHDC. (d) Difference between the reconstruction and the
ground truth.

2 on both x and y such that the dimensions of the HHDC are
doubled on these axes. Finally, to fully recover the HHDC, the
Output Refeature block combines all the representations within
the decoder as a single cube by doing 3-D convolutions with
a kernel of 3 × 3 × 3. All the nonlinear activations on the
neural network are GELU functions and the numerical stability
parameter of all the layer normalizations is 1 × 10−5. The
complete implementation of this neural network has around
30 million parameters and was trained with dual NVIDIA
Quadro RTX5000 GPUs. As mentioned in Section VII, the
training was performed on two specific geographical regions,
and thus, it was performed twice. It should be pointed out
that the neural network architecture is not changed regardless
of the chosen region, i.e., only the weights are changed during
training. During training, the ADAM algorithm with a learning
rate of 0.001 was used, and performing cross-validation and
optimizing an rms type cost function over the 32 × 32 × n
cubes was implemented. The batch size was 128 HHDCs. This
hyperparamenters were selected using a binary search over the
first epochs of the training until the required performance was
achieved. Understanding time-related complexity is crucial,
and it can be approached from two angles: training and
inference. It is important to differentiate between these, as they
lead to different strategies. One involves performing inference
on the ground, while the other does so directly in orbit.
When it comes to training, the neural network was trained
for 100 epochs, taking around 100 epochs to reach its best
performance. To prevent overfitting, a stopping system with

Fig. 15. CHM for the Florida Everglades National Park. (a) CHM of the
CASALS input HHDC. (b) CHM for the ground truth (G-LiHT). (c) CHM for
the HHDC reconstructed using the proposed neural network. (d) Difference
between the reconstruction and the ground truth.

a validation set was used. On the inference side, it is worth
noting that these experiments used powerful GPUs, resulting
in reconstruction times of less than a second. However, when
considering a full satellite implementation, factors such as
hardware and onboard power constraints in orbit need to be
taken into account.

VII. RESULTS AND DISCUSSION

To test the power of the proposed methodology, two forested
areas in the United States that are more than 4000 km apart
and are part of the G-LiHT collections were used. The two
areas chosen were the Everglades Natural Park in the state
of Florida and the Willamette National Forest in the state of
Oregon. All the tests consider footprints of 10 m in diameter
with 3 m along the swath and 6 m across the swath. In addition,
it is considered that the number of photons returning to orbit
is around 20 photons per footprint and that the downsampling
pattern used by the satellite to complete the CLS is a blue
noise pattern with a sampling rate of 25%, as shown at the
bottom of Fig. 9. This implies that the compression level,
considering there may be an initial number of photons of
more than 1000 per footprint, is close to 800:1. To compare
the efficiency of the reconstruction algorithm, it is suggested
to analyze the four views of the cube proposed above, i.e.,
CHM, DTM, along the swath, and across the swath.

Figs. 14 and 15 show the CHMs for both Florida and Oregon
HHDCs. In both the figures, the top image corresponds to
the input, the middle corresponds to the ground truth (Gt),
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TABLE I
METRICS

Fig. 16. DTM for the Florida Everglades National Park. (a) DTM of the
input CASALS HHDC. (b) DTM for the ground truth (G-LiHT). (c) DTM for
the HHDC reconstructed using the proposed neural network. (d) Difference
between the reconstruction and the ground truth.

and the bottom corresponds to the reconstruction. Looking at
the CHMs, it is clear that the algorithm is able to recover
the most important features of the HHDC such as the tree
crowns and the rivers. Figs. 16 and 17 show the DTMs for both
Florida and Oregon HHDCs. As in the previous figure, the
order of the images is input, Gt, and reconstruction. As with
the CHM, the algorithm is able to recover all relevant features
of the DTM. Figs. 18–21 show the profiles along and across
the swath for Florida and Oregon. It is interesting to note
that both the representations are very similar given that they
show the same geographical location; however, it is important
to show both the representations as the footprint separation is
different between the two and this could result in potential loss

Fig. 17. DTM for the Oregon Willamette National Forest. (a) DTM of the
CASALS input HHDC. (b) DTM for the ground truth (G-LiHT). (c) DTM
for the NN reconstructed HHDC. (d) Difference between the reconstruction
and the ground truth.

of quality in the across the swath reconstruction. Finally, it is
essential to note that although the neural network is the same
for both the cases, i.e., Florida and Oregon, it was trained with
the data according to the reconstructed location.

From these results, it can be understood how powerful learn-
ing algorithms are when implementing CLS problems. From
several of the input figures, it is clear that many cube features
disappear when photons or footprints are removed. This is
particularly notable in the along and across the swath figures.
However, after performing the corresponding reconstructions,
features such as the tree canopies in the CHM or the roughness
profile in the along the swath are recovered well enough to
perform any ecological or environmental study. To conclude
the study, it is crucial to show quantitative samples of the
system performance. In Table I, the results of the six proposed
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Fig. 18. Along the Swath view for the Florida Everglades National Park.
(Top) Along the swath view of the CASALS input HHDC. (Middle) Along
the swath view for the ground truth (G-LiHT). (Bottom) Along the swath
view for the NN reconstructed HHDC.

Fig. 19. Along the swath view of the Oregon Willamette National Forest
using (Left) CASALS HHDC and (middle) ground truth (G-LiHT) HHDC.
(Right) Reconstructed HHDC using the proposed neural network.

Fig. 20. Across the swath views for the Florida Everglades National Park.
(Left) Across the swath view of CASALS HHDC. (Middle) Across the swath
view for the ground truth (G-LiHT). (Right) Across the swath view for the
NN reconstructed HHDC. Note how the neural network is able to reconstruct
the profile using adjacent profiles sampled from the blue noise.

metrics are summarized. It is necessary to understand what the
differences between the metrics represent and why they are not
the same between the two locations. To begin with, if the DTM
and CHM metrics are examined for both the locations, it can
be seen that in Oregon, they are always higher. This is because
the trees are taller there, and consequently, the metric will
always yield a higher value. However, if reconstructions are
graphically evaluated, it can be seen that they are of the same
quality. To complement the study, different sampling patterns
and ratios are also provided, e.g., blue noise with 10%, but

Fig. 21. Across the swath views for the Oregon Willamette National Forest.
(Left) Across the swath view of CASALS HHDC. (Middle) Across the swath
view for the ground truth (G-LiHT). (Right) Across the swath view for the
NN reconstructed HHDC.

the proposed downsampling method outperforms every other
scheme in most metrics.

VIII. CONCLUSION

This work has presented a complete methodology to per-
form the emulation of new satellite LiDAR technologies,
as well as a methodology to expand the capabilities of these
new systems through compressed sensing techniques. A new
way to model the outputs of LiDAR systems has also been
proposed. All the information measured by a satellite is
condensed into a 3-D representation known as an HHDC.
Through this new cubic representation, it is possible to obtain
all the visualizations typically used in the literature to study
the canopy while knowing that all of them can be used
simultaneously. In addition, this work has addressed a machine
learning study that allows taking incomplete HHDCs given the
characteristics of satellite LiDAR and generating cubes that
have airborne LiDAR systems’ features. The main result is
the ability of the proposed neural network to not only recover
the footprints lost due to compressed sensing strategies but
also how it is able to generate representations that are very
dense at the photon level.

Several paths are being followed to continue this research.
On one hand, a detailed study of how changing the footprint
loss system affects the learning algorithm can be carried out.
Furthermore, techniques can be explored to determine the best
footprint configuration according to the region being sensed,
for example, how to change the sampling pattern if a very
dense forest or a desert is being measured. Another possible
way to continue this work is to generate algorithms to increase
the resolution of each footprint so that somehow the proposed
overlaps are eliminated, and thus, a super-resolution system
can be obtained. Finally, it is possible to further improve the
performance of the reconstructions by implementing different
neural networks such as generative adversarial networks and
vision transformer networks.
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