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Abstract— The derivation of ice water path (IWP) from
microwave (MW) radiometer measurements is challenging. This
study presents a deep learning framework for global retrieval
of IWP using observations from the Microwave Humidity
Sounder-II (MWHS-II) aboard the FengYun-3D (FY-3D) satel-
lites. Two deep learning models, deep forest (DF21) and quantile
regression neural network (QRNN), are constructed to detect
ice cloud flags and retrieve IWP. By collocating MWHS-II
observations with 2C-ICE, a joint product of CloudSat and
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tions (CALIPSO), deep learning models learn the characteristics
of IWP from MWHS-II brightness temperatures (BTs). The test
results show that the MWHS-II channels provide more informa-
tion on IWP than the MWHS channels, particularly the 89-GHz
channel and the 118-GHz channels with an offset of ≥0.8 GHz.
Combining the QRNN and DF21 models, the IWP retrieval
results in a root mean square error (RMSE) of 707.346 g/m2,
mean absolute percentage error (MAPE) of 65.122%, mean
bias error (MBE) of −104 g/m2, determination coefficient (R2)
of 0.683, and Pearson correlation coefficient (PCC) of 0.831.
Application of the models to MWHS-II observations of tropical
cyclone CILIDA shows better agreement with 2C-ICE. All the
datasets exhibit a similar feature on the monthly mean scale,
but the magnitudes of IWP differ. Compared with GMI-GPROF,
MODIS, and ERA5 IWP products, MWHS-II results are closest
to 2C-ICE. Similar results are also shown for the zonal mean
data. These results show that deep learning methods efficiently
and probabilistically retrieve IWP from long-term observation
data of MWHS/MWHS-II.
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I. INTRODUCTION

THE importance of ice clouds and their impact on the
Earth’s climate system and global energy budget have

already been emphasized [1], [2], [3]. Ice cloud measurement
is a difficult problem of great concern to atmospheric science
research for a long time. Since it is impractical to measure
ice clouds in situ globally and ground-based instruments
can only provide limited coverage data, spaceborne remote
sensing provides an efficient way to observe global-scale
ice clouds. Active radars provide better accuracy and higher
spatial resolution while passive instruments are far superior
in geographical coverage. In addition, the fact that different
frequencies are sensitive to different ice particle sizes makes
it possible for passive radiometers covering multiple frequency
bands (from millimeter to submillimeter) to better measure ice
clouds [4]. The Ice Cloud Imager (ICI) which will be launched
aboard Metop Second Generation (Metop-SG B) satellite of
the Earth Polar System Second Generation (EPS-SG) program
at the end of 2025 and the similar instruments are proven to
have comparable ice water path (IWP) accuracy to 94-GHz
radar, and they can be combined to improve measurement
capabilities [5], [6], [7], [8], [9].

To date, most passive microwave (MW) radiometers are
limited to frequencies below 200 GHz, and only TROP-
ICS Millimeter-wave Sounder (TMS) aboard Time-Resolved
Observations of Precipitation structure and storm Intensity
with a Constellation of Smallsats (TROPICS) launched in
2021 can provide measurement near 205 GHz which is more
sensitive to precipitation-sized ice particles [10], [11]. The
meteorological satellite Fengyun-3 (FY-3) is the second gen-
eration of polar-orbiting meteorological satellites in China,
and the MicroWave Humidity Sounder-II (MWHS-II) aboard
FengYun-3D (FY-3D) has similar channels from 89 to 190
GHz which are also sensitive to large ice particles (mostly
snow particles) [12]. Given the measurement characteristics
and global coverage provided by the instrument, robust algo-
rithms for deriving ice cloud properties from MWHS-II would
be highly desirable.

Machine learning (ML) approaches can extract nonlinear
relationships between the measurements and parameters of
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interest without assumptions in physical models. It has indi-
cated the immense potential for solving complex inverse prob-
lems which is not easily solved by conventional physics-based
methods. The deep learning method is an alternative, efficient,
and easy-to-use approach that has already been widely used
in the area of meteorological element retrieval. There are
pros and cons in both the methods. Physics-based algorithms
have clearer physical mechanisms and processes to analyze
the sources of retrieval error and have been well used in
atmospheric temperature, humidity, and atmospheric compo-
sition products, but there is a problem of high computational
complexity and low accuracy in complex physical processes
such as ice clouds. On the contrary, deep learning has the
advantage of being computationally fast and relatively more
accurate in complex physics problems, but it has the disadvan-
tage of relying heavily on real data and the inability to trace
physical processes back to their source, so it is not suitable
for all problems. Numerous researches have been conducted
to use ML methods particularly neural network (NN) in IWP
retrieval from passive radiometers. By collocating the MWHS
aboard NOAA-18 with Cloud Profiling Radar (CPR) aboard
CloudSat, Holl et al. [13] trained an artificial NN to retrieve
IWP. They further present the Synergistic Passive Atmospheric
Retrieval Experiment-ICE (SPARE-ICE) IWP product using
combinations of the MHS MW observations and the Advanced
Very High Resolution Radiometer (AVHRR) infrared (IR)
observations [14]. Islam and Srivastava [15] also present a
work making use of combinations of AMSU-A (MW), MHS
(MW), and HIRS (IR) observations to directly retrieve IWP
and liquid water path (LWP). A simulation study was carried
out by Mastro et al. [16] to evaluate the IWP retrieval
performance using observations from the Infrared Atmospheric
Sounding Interferometer-New Generation (IASI-NG) and the
Microwave Sounder (MWS) aboard the Metop-SG A satel-
lite of the EPS-SG program which will be launched at the
beginning of 2025. They found the retrieval performance was
advantageous compared with that using IR or MW data only.
Amell et al. [17] used a convolutional NN (CNN) to obtain a
good IWP retrieval performance with only IR measurements
from the geostationary satellite Meteosat-9. Werner et al. [18]
introduced an improved cloud detection algorithm for the Aura
Microwave Limb Sounder (MLS) based on a feedforward
artificial neural network and gained an enhanced classification
performance compared with the current version of the “Level
2” MLS cloudiness flag. Liu et al. [19] proposed an inversion
method for the remote sensing of ice clouds at terahertz
wavelengths based on a genetic algorithm. Larosa et al. [20]
described a cloud detection algorithm based on an NN for
the MWSs aboard EPS and MetOp-SG. Dong et al. [21]
presented a retrieval methodology based on the Bayesian NN
(BNN) that inverts the IWP, mean mass-weighted diameter,
and cloud height of ice clouds from submillimeter radiometer
observations.

Collocating the high-accuracy active cloud radar and the
wide-coverage passive radiometer, more global ice cloud infor-
mation can be obtained using the existing satellite historical
observations. The IWP retrieval from FY-3B MWHS based
on deep NNs (DNNs) has been presented in [22]. The results
show good agreement in the global year map and zonal mean

with CloudSat and CALIPSO Ice Cloud Characterization prod-
uct (2C-ICE). However, there is still room for improvement,
especially in the Tibetan Plateau region in winter, where the
retrieval results show significantly high outliers. We discussed
this to be related to the specific environment of high altitude
and need more surface temperature and air temperature infor-
mation. In this study, observations from the 89- and 118-GHz
channels of FY-3D MWHS-II were additionally used. On the
training data, we replaced the scanning angle in the previous
paper with observation zenith and azimuth angles as the auxil-
iary parameters to reconstruct the observation geometry for the
deep learning models. On the retrieval model, although NN is a
general model, its performance is significantly affected by the
model hyperparameters, which need to be adjusted iteratively.
In this IWP retrieval framework, we adopt a tree-based model
and Bayesian-based NN model for the two different tasks of
binary classification and regression (corresponding to the two
objectives of ice cloud detection and IWP retrieval). Both
the models selected here are easy to use and insensitive to
hyperparameter tuning. The deep learning framework which
combines deep forest (DF21) [23] and quantile regression
NNs (QRNNs) [24] is adopted for IWP retrieval from MW
brightness temperatures (BTs). The DF21 has been used in
near-surface air pollutants’ estimation from satellite remote
sensing [25], [26] and the QRNN is the core of the NN-based
Goddard Profiling Algorithm (GPROF-NN) which has been
designed as a drop-in replacement for GPROF used in the
operational global precipitation measurement (GPM) process-
ing pipeline [27]. The objective of this article is to further
develop and validate the deep learning method in retrieving
IWP from the current MWHS-II sounder on-board the FY-3
C/D/E series (from 2013 onward).

This article is structured as follows. In Section II, we pro-
vide an overview of the reference IWP product, observations
from MWHS-II, and the collocation method. In Section III,
we describe the retrieval framework and implementation of
deep learning models. The performance of deep learning
models is analyzed and discussed in Section IV, including a
tropical cyclone case study and a comparison of global means.
In Section V, we present conclusions.

II. DATASET

The deep learning algorithms make use of the collocation
data from radar and radiometer products which serve as the
training database. This section provides an overview of the
retrieval database and the collocation strategy.

A. IWP Product

The 2C-ICE is the Level-2C official product of CloudSat
to provide cloud properties (IWP, ice water content, mean
mass height, mean mass size) with the horizontal and vertical
resolutions of 1.4 km and 240 m, respectively. Using the
combined inputs from the CPR on CloudSat and the Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) on
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tions (CALIPSO), the retrieval is more tight and can produce
more accurate results [28], [29], [30], [31], [32]. However,
CloudSat has worked in daylight-only operations mode since
April 2011.
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Fig. 1. IWP sensitivity of different channels of MWHS-II.

TABLE I
INSTRUMENT CHARACTERISTICS OF FY-3B/MWHS

TABLE II
INSTRUMENT CHARACTERISTICS OF FY-3D/MWHS-II

The combination of CPR and CALIOP provides a more
complete and accurate measurement of ice clouds than any
other current spaceborne measurements. Further study showed
that this combined retrieval method is less sensitive to the
changes in the assumed microphysical properties than CPR or
CALIOP single retrieval and leads to better agreement with
in situ data [33], [34]. The dataset used in this study (version
P1_R05) can be obtained from CloudSat DPC [32].

B. Passive Microwave Measurement
The MWHS on FY-3B satellite launched in November 5,

2011 and its successor MWHS-II on FY-3D satellite launched
in November 15, 2017 is the main payload for atmospheric
water vapor measurement. The MWHS-II on FY-3C was
not considered since its equatorial crossing time (ECT) is
in the morning. The instrumental parameters are listed in
Tables I and II [35], [36]. MWHS contains two 150 GHz
with different polarizations and three channels around the

183.31-GHz water vapor line. Compared with MWHS,
MWHS-II uses an 89-GHz channel in the atmospheric trans-
parent window instead of the horizontal polarization channel
at 150 GHz and also includes eight oxygen sounding channels
at 118.75 GHz. In addition, MWHS-II has two more additional
channels at 183.3 to complement the three channels of MWHS.
As shown in previous studies, the main effect of ice clouds on
the MW band is scattering which will lower the observed BT.
It is the most pronounced effect in the window channels and
the far-wing channels, which means that MWHS-II will have
more information about ice clouds than MWHS. The Level-1B
BT products of FY-3B/MWHS and FY-3D/MWHS-II are used
in this study.

The sensitivity of MWHS-II to different IWP is shown in
Fig. 1. The 1BTs are the brightness temperature difference
between simulations in the clear-sky and cloudy conditions at
a nadir observation view versus IWPs for different channels
calculated by the Atmospheric Radiative Transfer Simulator
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(ARTS) with 5000 cloud profiles from the European Centre
for Medium-Range Weather Forecasts (ECMWF) 91-level
short-range forecasts [37], [38]. The 89-GHz window chan-
nel demonstrates sensitivity only when the IWP is above
103 g/m2 due to its large transmittance. The BT sensitivity
of the 150-GHz window channel is notable even when the
IWP is below 103 g/m2, the largest 1BT difference could be
up to 45 K under our reference cloud scenes. The 118-GHz
channels with an offset of ≥0.8 GHz show similar sensitivity
to the 89-GHz channel, while the 118-GHz channels with
an offset of ≥2.5 GHz have the larger 1BT. This is not
surprising since the 118-GHz channels are primarily used to
measure temperature profiles and the channels with an offset
of ≤0.8 GHz are sensitive to O2 from 100 to 30 hPa which
is usually higher than where the ice clouds exist. For the
183-GHz channels which are designed for sensing water vapor
profiles, all the channels have the sensitivity and the biggest
1BT is up to 50 K. Thus, the 150- and 183-GHz channels
are the main channels that make the radiometer capable of
sensing ice clouds as used in the previous research. However,
the 89- and 118-GHz channels are also expected to play a role
in retrieval since they are sensitive to different atmospheric
background variables (surface and temperature profile) beyond
ice clouds. In addition, all the channels show little sensitivity
when the IWP is below 102 g/m2, and it is therefore selected
as the clear-sky IWP threshold in this study.

C. Collocation
The collocation method has been described in the previous

study [22]. A time window of 15 min and a spatial distance
filter of 7.5 km are applied in collocation since the ECT
of FY-3D and CloudSat/CALIPSO is 14:00 and 13:45 asc,
respectively, and the space resolution of MWHS-II is 15 km
at 150/183 GHz and 30 km at 89/118 GHz. It is a compromise
between closer collocating atmospheric scenes and obtaining
enough collocations. According to this collocation strategy,
multiple 2C-ICE pixels will be included in one MWHS-II
pixel and the 2C-ICE pixels will be averaged to obtain the
representative value for each collocation. Being MWHS-II a
cross-track scanner, IWP is retrieved from different observa-
tion view angles and CloudSat IWP is vertically integrated,
and such a collocation will undoubtedly introduce additional
errors from mixed pixels and radiative transfer paths. It is
difficult to avoid. Therefore, we choose scenes with a uniform
distribution of IWPs as much as possible. Since the collocated
radar pixels can only cover 15% of the area of one MWHS-II
pixel (i.e., ≤15 pixels), the minimum number of radar pixels
(≥10 pixels) and the coefficient of variation (≤0.6) which
describe the ice cloud homogeneity were used to further filter
the data.

Since 2C-ICE is only available during A-Train or
C-Train epochs and CloudSat has suffered reaction wheel
anomaly in 2018, 2C-ICE products from January 2018 to
September 2018 and after July 10, 2019 are currently vacant
(data from July 11, 2019 to August 26, 2020 will be
released in the future). Therefore, collocations can only be
obtained for almost 12 months. MWHS-II observations from

November 2017 to July 2019 were used in the collocation.
Finally, in total about 5 × 106 pixels of MWHS-II with
reference IWP data were randomly split into a training dataset,
validation dataset, and testing dataset of 70%, 15%, and
15%, respectively. Due to the requirements of further analysis,
an independent monthly dataset (about 8 × 105 collocated
pixels in December 2018, not in the datasets above) was
extracted. Based on the IWP threshold for MWHS-II discussed
above, about 18% samples have flagged with ice clouds.
In addition, the collocations of FY-3B/MWHS and 2C-ICE
in 2013 and 2014 were also retrained using the same training
strategy for further comparison.

III. METHODOLOGY

A. Retrieval Framework
Fig. 2 shows the overall framework of IWP retrieval. First,

the 2C-ICE data and MWHS-II observations are preprocessed
to control the data quality and collocated to build the retrieval
database. Then the collocated observations and the correspond-
ing auxiliary parameters derived from L1B data consisting of
observation geometry (zenith, azimuth), geolocation (longi-
tude, latitude), landcover, land–sea mask, and DEM served
as retrieval inputs. The deep learning retrieval framework
includes two parallel parts, i.e., IWP retrieval and ice cloud
detection. IWP retrieval is a regression problem that is solved
by the QRNN model. The output of the QRNN model is
the values for different quantiles and the mean value is used
in our study. For ice cloud detection, DF21 is implemented
as the classifier. The outputs of the two parts are filtered
to produce the final results. The output of the DF21 model
for classification is the binary values (i.e., 0 for false and
1 for true) used as the ice cloud flag. These two models were
trained independently, where the QRNN model was trained
using only data with an IWP ≥ 102 g/m2, while the DF21
model used all the training data, with >102 g/m2 being 1 and
≤102 g/m2 being 0. For final filtering, we used the false
values (i.e., 0) from the DF21 model output to replace the
corresponding positions of the QRNN output to produce the
final results. This is done to ensure that IWP retrieval is
not affected by ice cloud misidentification and to facilitate
classification model training since the tree-based algorithms
are insensitive to feature scaling.

B. Deep Learning Models

1) QRNN for IWP Retrieval: The regression model QRNN
is a flexible nonlinear approach for fitting statistical rela-
tionships to quantile functions of conditional probability
distributions and is used to estimate the posterior distribution
of Bayesian retrievals; it has been applied to remote sensing
of variables with mixed discrete-continuous distributions [24],
[39]. For remote sensing of atmospheric variables such as
precipitation, cloud water path, or IWP that mainly rely on
the Bayesian method, the traditional regression NNs using
mean squared error (mse) as loss function cannot provide
the probabilistic output, while the QRNN can model aleatoric
uncertainty and produce a robust regression performance [17].
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Fig. 2. Overall retrieval framework, including data collocation, training dataset preparation, and structure of deep learning.

Fig. 3. NN architecture used in IWP regression. The network consists of several hidden layers. Each hidden layer consists of a fully connected layer,
batchnorm layer, ReLU activation function, and dropout layer.

The expectation with respect to x of the quantile loss func-
tion [40] is defined as follows:

Lτ (xτ , x) =

{
τ |x − xτ |, xτ ≤ x
(1 − τ)|x − xτ |, otherwise

(1)

xτ = inf{x : F(x) ≥ τ } (2)

L(x) =
1
N

N∑
i=0

Lτ i (x̂i , x) (3)

where x is the target variable, xτ is the τ th quantile, F(x) is
the cumulative distribution function, and x̂i is the predicted
quantile.

QRNN is a universal method that enables different NN
architectures. Here it is based on a multilayer perceptron
(MLP) which is illustrated in Fig. 3. The MLP has several
hidden blocks consisting of a fully connected layer followed
by batch normalization (BN) [41] and rectified linear units

(ReLU) [42] activation functions. Dropout was also used to
prevent model overfitting and improve generalization [43]. The
numbers of hidden blocks and neurons in each hidden layer
have been experimented and only a little impact on the retrieval
performance was found. Finally, we selected a configuration
with six hidden layers and 128 neurons. The training is
performed over 150 epochs using the Adam optimizer [44]
with a base learning rate of 5 × 10−4 a cosine-annealing
learning rate schedule. In the training, IWP is transferred to
logarithmic space with a base of 10.

2) DF21 for Ice Cloud Detection: In the part of ice cloud
detection, the deep forest model DF21 is adopted as the
cloud classifier. It is a cascade of random forests which
contain numerous decision trees in each forest. DF21 uses the
gcForest (multigrained cascade forest) approach to construct a
non-NN-style deep model. The model enables representation
learning by forest and it uses multigrained scanning which
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Fig. 4. Deep forest architecture used in ice cloud detection. The deep forest consists of several forests and each forest consists of several trees.

is like the “convolution kernel” in CNNs to enhance its
representational learning ability. The cascade levels in DF21
are automatically determined which enables gcForest to work
well with small-scale data. Another advantage of DF21 is the
fewer hyperparameters than the DNN, and its performance is
quite robust to hyperparameter settings.

The DF21 architecture is shown in Fig. 4. The cascade
forests include several layers of parallel forests, and the
individual forest can use a certain ensemble algorithm (e.g.,
random forest [45], XGBoost [46], and Lightgbm [47]). In this
study, XGBoost is selected as the predictor. The number of
deep layers is adaptively regulated by comparing the k-Folder
cross-validation accuracy of the current layer with the previous
one and the early stopping will be performed if there is no
accuracy improvement. In normal random forest models, the
final prediction is performed by aggregating predictions of
decision trees assigned with the same weight. The prediction
of the deep forest model is achieved by aggregating predictions
of random forests which combines the advantages of decision
tree models and DNNs.

C. Evaluation Metrics
To evaluate the retrieval results, we used several statistical

metrics to assess model performance by comparing the pre-
dicted variable with the corresponding true measurements in
the test dataset.

For IWP retrieval, the used evaluation metrics for regression
problems include root mean square error (RMSE), mean
absolute percentage error (MAPE), mean bias error (MBE),
determination coefficient (R2), and Pearson correlation coeffi-
cients (PCCs). R2 and PCC reflect the model fitting capability

RMSE =

√√√√ 1
N

N∑
i=1

(ypred,i − ytrue,i )2 (4)

MAPE =
1
N

N∑
i=1

|ypred,i − ytrue,i |

ytrue,i
× 100% (5)

MBE =
1
N

N∑
i=1

(ypred,i − ytrue,i ) (6)

R2
= 1 −

∑N
i=1(ypred,i − ytrue,i )

2∑N
i=1(ypred,i − ytrue)2

(7)

PCC =

1
N

∑N
i=1(ypred,i − ypred)

∑N
i=1(ytrue,i − ytrue)

σpredσtrue
. (8)

The performance scores used for cloud detection used
binary classification metrics based on a confusion matrix for
the two cases (i.e., clear-sky and cloudy) which is defined as

M =

[
TP FP
FN TN

]
. (9)

TP and TN are the number of true positives and true negatives,
respectively. FP and FN are the number of false positives and
false negatives, respectively.

The used evaluation metrics include accuracy (Acc), false
alarm ratio (FAR), precision, recall (also called probability of
detection, POD), F1 score, and critical success index (CSI).
The accuracy describes the percentage of accurate model
predictions, but since the ice cloud samples are a relatively
small percentage of the total data, this metric does not reflect
the detection capability of the model well. Therefore, the
following indicators are needed. The FAR describes the pro-
portion of model error detection of ice clouds. Precision is the
fraction of correctly detected ice cloud pixels of all the pixels
predicted to be with ice clouds, and recall is the fraction of all
the true ice cloud pixels that are correctly detected. The pursuit
of low FAR alone will result in lower POD and failure to
detect ice clouds, and vice versa. Therefore, several indicators
need to be considered together. F1 assigns more relevance to
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TABLE III
DIFFERENT INPUT COMBINATIONS USED IN THE TRAINING

false predictions and is more suitable for imbalanced classes,
where the respective data sizes vary significantly. CSI which
combines FAR and POD is a more comprehensive indicator
that is commonly used in precipitation retrieval [48]. Combin-
ing these metrics can better evaluate the classification results
when the positive and negative samples are not homogeneous

ACC =
TP + TN

TP + TN + FN + FP
(10)

FAR =
FP

TP + FP
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 × (Precision × Recall)

Precision + Recall
(14)

CSI =
TP

TP + FN + FP
. (15)

IV. RESULTS

This section presents the results of ice cloud retrieval using
the deep learning framework. Sections IV-A and IV-B evaluate
the performance of IWP retrieval and ice cloud detection using
a separate test dataset. Section IV-C evaluates the complete
retrievals combining the two models. The remainder of this
section presents a case study of IWP retrievals from a tropical
cyclone and is followed by an analysis of global/zonal monthly
mean results.

A. IWP Retrieval Performance
In the previous study [22], the IWP retrieval perfor-

mance of different channels and auxiliaries of FY-3B/MWHS
was analyzed. The 150- and 183-GHz channels of MWHS
show a good performance in IWP retrieval using DNNs.
Here, we further compare the performance of QRNN with
DNN and evaluate the impacts of new channels in FY-3D/
MWHS-II. The different input combinations in the training
evaluation are defined in Table III. For channel selec-
tion, MWHS-II4 represents the same channel as MWHS
and MWHS-II5 will represent the impact of the 89-GHz
channel. MWHS-II7 is used to evaluate the improvement of
the new 183-GHz channels and MWHS-II12 shows the impact
of the 118-GHz channels which have obvious responses to ice
cloud. MWHS-II15 indicates that IWPs are estimated from all
the channels. The subscript “aux” represents the addition of

observation auxiliary information, which has been proven to
be effective in previous studies.

The corresponding evaluation metrics are shown in
Table IV. It was shown that the inclusion of the 89-GHz
channel (MWHS-II5 with respect to MWHS-II4) provides a
significant improvement with RMSE and MBE decreased from
920.953 to 811.941 g/m2 and −100.93 to −69.491 g/m2,
respectively. MAPE decreased from 94.138% to 78.545%.
R2 increased from 0.484 to 0.591, and PCC increased from
0.702 to 0.778. Although the 89-GHz channel is not very
sensitive to the changes in IWP, it provides information about
the surface background of the observation. It is very helpful
since the MW radiometer obtains ice cloud information by
observing changes in BT which will also be affected by
the surface. The 118-GHz channels with offset larger than
0.8 GHz (i.e., MWHS-II12) also show large performance
enhancement with RMSE, and MBE decreased to 737.558 and
−60.856 g/m2, MAPE decreased to 59.896%, R2 increased to
0.669, and PCC increased to 0.822. However, the contribution
of two new 183-GHz channels (i.e., MWHS-II7) and the first
three 118-GHz channels (i.e., MWHS-II15) is relatively small.
This is expected since the 118-GHz channels are near the
peak to the oxygen line, and the two additional channels at
183.3 GHz provide information on ice particles that is much
correlated to the information from the other channels.

The addition of auxiliaries has a significant improvement on
the MWHS model, while the improvement on the MWHS-II
model is minimal. This indicates that the information content
in MWHS channels is far from enough and needs to be
supplemented by auxiliaries, while MWHS-II has enough
channel information content. Nevertheless, adding inputs does
not have a negative effect, and thus, the final model uses all
the inputs. It should be mentioned that we found no additional
improvement when adding scan angles in the previous study
and then we believe that the zenith and azimuth angles are all
needed to construct the complete geometry, which is evidenced
in this study. Comparing the results of the QRNN model and
the DNN model, QRNN is better in most metrics. As discussed
in the previous study, MAPE and MBE are contradictory
metrics. DNN using mse loss function will produce a larger
bias but the relative error will be smaller, while QRNN
uses quantile loss to balance MAPE and MBE, making the
overall model superior. Both MWHS and MWHS-II demon-
strate similar findings. In addition, for MWHS retrieval, one
and two years of collocated datasets were used for model
training, respectively, marked as MWHS5,aux (one-years) and



4101714 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

TABLE IV
EVALUATION METRICS IN IWP RETRIEVAL USING DIFFERENT CHANNELS AND AUXILIARIES

TABLE V
EVALUATION METRICS IN ICE CLOUD DETECTION USING DIFFERENT CHANNELS AND AUXILIARIES

MWHS5,aux (two-years). However, there is no difference in the
results, indicating that one year of collocation data is sufficient
for the model to learn the features of the data.

B. Cloud Detection Performance

Ice cloud detection is a binary classification problem, and
the DF21 model and the DNN model with sigmoid func-
tion are compared in this section. Concerning the detection
metrics shown in Table V, the performances for different
input combinations are mostly consistent with the results of
IWP retrieval shown above. However, there still exist some
differences. The 89-GHz channel mainly decreases FAR from
0.269 to 0.230 but increases recall little, from 0.602 to 0.611.
The new 183-GHz channels perform the opposite to decrease
FAR from 0.230 to 0.224 and increase recall from 0.611 to
0.631. Both the F1 score and CSI are improved. ACC and
precision are also enhanced. The 118-GHz channels give a
large improvement in cloud detection, especially the important
metrics FAR and recall are decreased to 0.164 and increased
to 0.708, respectively. F1 score and CSI are increased to
0.766 and 0.621, respectively. Compared with IWP retrieval,
the first three channels of 118 GHz are more effective in ice
cloud detection, probably because the formation of ice clouds
is closely related to the atmospheric temperature.

The auxiliary information also show a great contribution to
cloud detection since the collocation method has certain limits.
CPR is a nadir observation sensor, while MWHS/MWHS-II is
a cross-track scanning sounder, which leads to the problem of
inconsistent observation paths in the collocation. The inputs
of observation geometry can alleviate this problem to some

extent. In addition, MWHS/MWHS-II uses the observed 1BT
due to ice particle scattering to detect ice clouds, which
will also be affected by the local atmospheric temperature,
for example, in the Tibetan plateau or polar regions. There-
fore, observational geographic information can contribute. For
MWHS retrieval, the auxiliary information reduces the FAR
to 0.179 and increases precision, recall, F1, and CSI to 0.821,
0.727, 0.771, and 0.627, respectively. In contrast, MHWS-II
has more channels for the detection of ice clouds, so the
role of auxiliary information becomes small in the results.
Comparing the results of the DF21 model and DNN model,
DF21 is superior to DNN in all the metrics and has good
robustness of model training, while DNN is more sensitive to
hyperparameters. As with IWP retrieval, the MHWS retrieval
result for the two-year training dataset does not exhibit higher
performance than MWHS for the one-year training dataset.

C. Final Test Results

The final selected models are MWHS-II15,aux input combi-
nation based on QRNN and DF21. The test results are shown
in Table VI with different surface types. For all the surfaces,
MAPE and MBE are increasing a little from 54.385% to
65.122% and −73.683 to −104.232 g/m2 due to misdetection
of ice clouds and the other metrics are similar. For different
surface types, the metrics of ocean surface are significantly
better than that of land. This is because the ocean surface and
the atmospheric environment are more stable as a background
for observation than land, making it easier to detect and
measure ice clouds. Forests and snow and ice are the regions
with poor retrieval accuracy. RMSE and MBE of forest surface
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TABLE VI

EVALUATION METRICS IN THE COMPLETE RETRIEVAL FOR ALL IWP ≥ 100 g/m2 IN 2C-ICE

Fig. 5. Comparison between 2C-ICE and deep learning retrieved IWP from MWHS-II observations.

increase to 1138.430 and −209.593 g/m2, respectively. Most of
the evaluation metrics for snow and ice surface are considered
satisfactory, except for a low R2, which is likely due to the
small sample size and the lower IWP in the polar region.
Fig. 5 shows the scatter comparison between 2C-ICE and
MWHS-II IWP, and the mean IWPs for different quantiles
in the retrieval. The result shows relative agreement, and
the mean IWPs’ line is closer to the identity line. However,
it still overestimates the IWPs around 102 g/m2 due to the
lack of sensitivity of the MW channels to thin ice clouds.
It also underestimates the IWPs around 104 g/m2, and this
may be because there are fewer IWP cases of this magnitude
in the collocation database leading to insufficient training.
The 0.05 and 0.95 quantile mean IWPs’ lines show the
extremal quantile levels which indicate the predicted value
limits.

D. Case Study: Tropical Cyclone
The results described above were based on the test dataset

extracted from the collocation database and have the same
statistics. Therefore, it is necessary to validate and analyze
other representative cases. Tropical cyclone CILIDA in the
Southern Indian Ocean on December 24, 2018, observed by
FY3B/MWHS, FY3D/MWHS-II, and CloudSat with a little
time delay (the time difference of MWHS-II and 2C-ICE is

approximately 19 min; the time difference of MWHS and
2C-ICE is approximately 105 min), was selected for this
testing target. Fig. 6 shows the retrieval results and collocation
comparison with 2C-ICE from MWHS, MWHS-II, and ERA5.
The ERA5 IWPs were combined from the total column snow
water (CSW) and cloud ice water (CIW). It should be noted
that although in the ECMWF model convective rain and
snowfall exist as prognostic variables, these two classes are not
part of ERA5’s set of variables. The comparison with ERA5
is limited in case of the presence of convection. The retrieved
IWPs from MWHS/MWHS-II in the cyclone region are similar
to a distinct cyclonic structure, while IWPs from ERA5 are
only a vague shape. Since 2C-ICE has only a very narrow
spacial coverage, the results cannot be compared in terms
of cyclone structure. Thus, a collocation was done between
MWHS, MWHS-II, ERA5, and 2C-ICE to evaluate the results.
From the scatter plot, both MWHS and MWHS-II retrievals
are closer to the identity line while ERA5 significantly under-
estimates the IWPs when they are larger than 103 g/m2.
Compared with the MWHS-II results, the MWHS results
are more discrete on both sides of the identity line, while
the MWHS-II results converge more, but with an inclination
angle. However, they both overestimate the true value when
IWPs are smaller than 103 g/m2 and underestimate when it
is larger. This feature matches the results of the test dataset
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Fig. 6. Comparison of IWPs from MWHS and MWHS-II retrieval, 2C-ICE and ERA5 in a case study of tropical cyclone. UTC time is used.

Fig. 7. Global mean IWP maps for December 2018 from MWHS and MWHS-II retrieval, 2C-ICE, GMI-GPROF, MODIS, and ERA5. 2C-ICE is gridded
on a 5◦ grid, while the other products are gridded on a 1◦ grid.

(see Fig. 5). Table VII shows the specific metrics of cyclone
retrievals. MWHS-II shows much better retrieval performance
than MWHS, especially R2 of MWHS-II is 0.901 while that
of MWHS is only 0.582.

E. Comparison Results in Global/Zonal Monthly Mean Data

Fig. 7 shows a gridded map for different IWP products
for December 2018, and this dataset is independent of the

training dataset. MWHS and MWHS-II IWPs were retrieved
using the models discussed above. For comparison, GMI
Level 3A monthly IWP product (GPM_3GPROFGPMGMI,
[49]), MODIS Cloud Properties Level 3 monthly IWP product
(MCD06COSP_M3, [50]), and ERA5 reanalysis monthly IWP
product [51] were also shown. All the IWPs were sorted into
1◦

× 1◦ bins (2C-ICE was into 5◦
× 5◦), and the mean IWP

was calculated for each bin.
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Fig. 8. Zonal means of IWPs for December 2018 from MWHS and MWHS-II retrieval, 2C-ICE, GMI-GPROF, MODIS, and ERA5. 2C-ICE is gridded on
a 5◦ grid, while the other products are gridded on a 1◦ grid.

TABLE VII
EVALUATION METRICS IN THE CASE OF A TROPICAL CYCLONE

All the data share some common IWP characteristics, such
as quite high IWP in the intertropical convergence zone, the
Pacific warm pool, and quite low IWP in the Sahara and
Arabian deserts. Using 2C-ICE IWPs as the reference, there
is no doubt that the results from MWHS-II are the closest to
the true value and only underestimate IWP in the Antarctic
region. The MWHS IWPs show significant overestimation for
the northern hemisphere mid and high latitudes, especially in
the Siberian region and the Tibetan Plateau. The IWPs of
GMI-GPROF are the lowest in these datasets because GMI
is mainly used for precipitation observations, and although
it contains channels similar to MWHS, the algorithm mainly
targets ice particles with significant precipitation conditions.
The MODIS IWPs are large in most regions but are small
in equatorial convective regions. The IWPs of ERA5 are
relatively low overall, but the distribution characteristics are
close to 2C-ICE. The zonal means of IWPs shown in Fig. 8
provide a more quantitative comparison of cloud ice estimates
from different sensors. MWHS greatly overestimates the IWPs
above 30 ◦N, but is very close to 2C-ICE between 30 ◦N and
20 ◦S. The IWPs are also underestimated between 20 ◦S and
50 ◦S and overestimated thereafter. Compared with MWHS,
MWHS-II IWPs are closer to 2C-ICE, with a clear overes-
timation of IWPs between 40 ◦S and 70 ◦S, and a slight
overestimation near the equator. For GMI, MODIS, and ERA5,
the overall differences with 2C-ICE are relatively large. The
above results show that IWPs based on MWHS-II observations
and deep learning models can provide ice cloud information

close to 2C-ICE but with greater spatial coverage and time
resolution.

V. SUMMARY AND CONCLUSION

This study presents a deep-learning-based implementation
of the IWP retrieval algorithm for the MWHS-II instrument
aboard FY-3D and other meteorological satellites. The per-
formance of the algorithm is evaluated by comparing it with
common satellite products and reanalysis data. By combining
the observed BT from MWHS/MWHS-II with the CloudSat
product 2C-ICE, and using deep learning models to establish
the nonlinear relationship between them, it is possible to
obtain IWPs with accuracy that is partially comparable to
the radar product. This approach allows for the retention
of the wide scanning and high coverage advantages offered
by the radiometer. A deep learning framework was used,
combining the deep forest model for ice cloud detection and
the QRNN model for IWP estimation. Compared with the
DNN model, the DF model yields better classification metrics,
while the QRNN model provides better constraints on the
bias of IWP estimation. The combination of DF21 and QRNN
deep learning algorithms demonstrates robustness in retrieving
IWP without the need for excessive hyperparameter tuning.
By comparing the different model inputs, it is found that the
89-GHz channel and the last five channels of 118 GHz give
a significant improvement in the evaluation metrics, which is
consistent with the sensitivity analysis. We also found that the
influence of the auxiliaries is significant for MWHS channel
retrieval, while the influence is relatively small for MWHS-II
channel retrieval. In addition, the performance of the model
was compared using one and two years of MWHS collocations
as training datasets. The results indicate that the model’s
performance did not improve with two years of training data.
This means that even with just one year of training data,
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almost full performance can be achieved. This is beneficial
for MWHS-II because CloudSat was no longer in conjunction
with CALIPSO after August 2020, and the new MWHS-II
cannot be collocated with 2C-ICE. The models trained in this
study can be applied to MWHS-II on other satellites.

The evaluation of the deep learning algorithm for
MWHS/MWHS-II showed that the retrieved IWPs can be
more accurately approximated to 2C-ICE. This is particularly
true when using the measurements from MWHS-II as inputs,
resulting in a mean MAPE of 65%, and R2 and PCC of
0.68 and 0.83, respectively. The analysis of a tropical cyclone
case shows that the near-instantaneous retrieval results of
MWHS-II are in strong agreement with 2C-ICE under extreme
conditions, with R2 and PCC both exceeding 0.9. The compar-
ison of monthly IWP products on a larger time scale indicates
that the results from MWHS-II provide a reasonable estimate
and are most similar to those from 2C-ICE, when compared
with MODIS, GMI, and ERA5.

Despite the favorable retrieval performance, there are still
limitations that need to be considered. First, it is important to
note that there are differences in observation paths and pixel
sizes between MWHS/MWHS-II and CPR. These differences
cannot be ignored and result in inevitable errors, although
we have taken steps to minimize these errors using more
than 10 CPR pixels to calculate the mean IWP and filtering
using their coefficients of variation. In addition, we have
included observation geometry in the training input param-
eters. To address this issue, we can limit the scan angle
of the MWHS/MWHS-II measurements used for collocation.
However, this tradeoff step will decrease the number of
collocations and restrict them to a specific range, which
could potentially hinder global retrieval. MW channels have
limited detection capability for thin clouds, resulting in a
relatively high FAR compared with IR channels. Although
we set the threshold value for the IWP at 100 g/m2, it is
evident that there is a significant deviation from this value.
This highlights the need for submillimeter-wave channels
in the future. This study demonstrates that deep learn-
ing models partially learn to represent 2C-ICE IWPs from
MWHS/MWHS-II observations. However, the predicted IWPs
do not represent the true atmospheric state. Since the models
were trained on the collocated 2C-ICE IWPs, they follow that
they, at best, will replicate the respective 2C-ICE results. The
results also inherit and amplify the uncertainties and biases
of 2C-ICE. Moreover, since CloudSat only works during the
daytime, there may be a negative impact on nighttime IWP
estimates.

The current observations of MWHS-II are mainly applied
to data assimilation without a separate IWP product, but it
is also difficult to assimilate the atmospheric scene where ice
clouds exist. While the upcoming launch of ICI can improve
detection accuracy, it does not address past climate conditions.
The use of deep learning methods for retrieving IWP is ben-
eficial. Using over ten years of observations from MWHS-II
(FY-3C/D/E), we can provide data support for analyzing the
impact of ice clouds on the Earth system from a climatological
perspective.
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