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Abstract— Object detection (OD) is an essential and fun-
damental task in computer vision (CV) and satellite image
processing. Existing deep learning methods have achieved
impressive performance thanks to the availability of large-
scale annotated datasets. Yet, in real-world applications, the
availability of labels is limited. In this article, few-shot OD
(FSOD) has emerged as a promising direction, which aims at
enabling the model to detect novel objects with only few of them
annotated. However, many existing FSOD algorithms overlook
a critical issue: when an input image contains multiple novel
objects and only a subset of them are annotated, the unlabeled
objects will be considered as background during training. This
can cause confusions and severely impact the model’s ability to
recall novel objects. To address this issue, we propose a self-
training-based FSOD (ST-FSOD) approach, which incorporates
the self-training mechanism into the few-shot fine-tuning process.
ST-FSOD aims to enable the discovery of novel objects that
are not annotated and take them into account during training.
On the one hand, we devise a two-branch region proposal
networks (RPNs) to separate the proposal extraction of base
and novel objects. On the another hand, we incorporate the
student-teacher mechanism into RPN and the region-of-interest
(RoI) head to include those highly confident yet unlabeled
targets as pseudolabels. Experimental results demonstrate that
our proposed method outperforms the state of the art in various
FSOD settings by a large margin. The codes will be publicly
available at: https://github.com/zhu-xlab/ST-FSOD.

Index Terms— Few-shot learning, object detection (OD),
remote sensing image processing, self-training.
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I. INTRODUCTION

OBJECT detection (OD) is a critical task in computer
vision (CV) as well as remote sensing image processing,

which enables the automatic identification and localization
of objects of interest within an image. With the rapid
development of deep learning techniques [2], [3], [4] and
the emergence of large-scale human-annotated data [5], [6],
the performance of the state-of-the-art OD approaches has
been pushed to a new stage. These approaches have achieved
remarkable success in detecting objects in various domains,
including remote sensing [7], [8], [9]. However, traditional OD
methods rely on a large amount of labeled data for training,
which can be challenging and time consuming to obtain in
remote sensing image processing, particularly in scenarios
where novel or rare objects are involved.

This results in the need for few-shot learning [10], [11],
[12], a paradigm that aims to overcome the data scarcity
issue by enabling models to generalize and detect objects
with only a limited number of labeled examples. Few-shot
learning achieves this by leveraging knowledge acquired from
previously seen categories to adapt and recognize novel objects
efficiently.

Concurrently with the achievements in few-shot classifi-
cation [13] and few-shot semantic segmentation [14], [15],
few-shot object detection (FSOD) [16], [17], [18] has emerged
as a compelling research area in recent years. In the
conventional FSOD framework, the model undergoes a two-
stage training process: first, it is trained on a large-scale labeled
dataset consisting of base objects, and subsequently, it is fine
tuned on a fine-tuning set with only a few labeled novel object
instances.

However, when there are multiple novel objects in a single
image, it is possible that only a part of them are provided
with labels during the fine-tuning stage. As a result, these
incomplete annotations can negatively impact the training
toward novel classes and hinder the discovery of novel objects.
This issue, illustrated in Fig. 1, can be referred as the
incompletely annotated novel objects (IANOs) issue.

While the challenge of IANO has been investigated in
the field of FSOD for natural images [19], [20], it still
remains unexplored in remote sensing. However, objects in the
remote sensing images are usually smaller, and scenes often
exhibit higher levels of congestion, particularly in contexts
with vehicles, planes, and ships. This phenomenon can be
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Fig. 1. Illustration of the IANOs issue. In the standard FSOD protocol, only a few bounding boxes for the novel object are provided for the few-shot
fine-tuning stage [1]. Let us consider a scenario where our goal is detecting the presence of a “plane” as the novel object, and we are provided with just one
bounding box annotation for a plane. As depicted in this figure, the challenge arises when multiple instances of planes are present within a single image.
In such cases, some of the planes within the image are left unannotated. This can mislead the detector since RPN loss and bounding box classification loss
are calculated based on these incomplete annotations.

readily observed from different OD datasets tailored for remote
sensing applications [21]. As a result, the IANO problem
takes on an even more formidable and pressing nature when
considered in the context of remote sensing.

To tackle this issue, it is necessary to establish a mechanism
capable of identifying and subsequently excluding potential
unannotated novel objects during the background sampling
process. A promising solution that emerges for mitigating
this concern is self-training, a well-established technique in
the field of domain adaptation [22], [23], [24] and semi-
supervised learning [9], [25]. This type of methods first
generate pseudolabels on unlabeled data using a pretrained
model and then fine tune the model using these pseudolabels.
The underlying philosophy of generating pseudolabels and
leveraging the unlabeled data aligns with our objective of
identifying potential unannotated novel objects, as they are
hidden in the background and remain unannotated. Therefore,
we propose using self-training as a feasible approach to tackle
this issue in remote sensing imagery.

We build our self-training-based FSOD (ST-FSOD) method
based on a popular OD framework: faster region-based
convolutional neural networks (R-CNN) [2], which consists
of two stages. In the first stage, a region proposal network
(RPN) is used to generate a set of candidate object proposals,
each with a corresponding objectness score and a bounding
box regression score. In the second stage, the candidate object
proposals are refined and classified using a fully connected
layer network, also known as a region-of-interest (RoI) pooling
layer [26].

We incorporate the self-training mechanism into the RPN
and the bounding box head (BBH) of the RoI layer, and
devise a self-training RPN (ST-RPN) and a self-training
BBH (ST-BBH) modules accordingly. In these two modules,
a momentum-based teacher-student modeling strategy [27]
is used to filter out highly confident potential novel
objects and refine the loss calculation. More specifically,
the ST-RPN module uses the teacher–student modeling
strategy to filter out highly confident proposals for potential

novel classes. Meanwhile, the ST-BBH module filters out
highly confident novel bounding boxes. Both modules
refine the loss calculation to improve the accuracy of the
detection model. Our contributions can be summarized as
follows.

1) Our study highlights and examines the challenge of the
IANO issue in FSOD for remote sensing imagery. To the
best of the authors’ knowledge, this is the first work that
discusses and tackles the issue in the field of remote
sensing, which is neglected in many existing FSOD
methods for remote sensing imagery and needs to be
addressed to advance the field.

2) To handle the IANO issue in OD, we propose to
apply self-training technique. To this end, ST-RPN and
ST-BBH modules are devised to identify proposals or
bounding boxes that are likely to include a novel object,
even in the absence of novel annotations.

3) We conduct extensive experiments on three publicly
available datasets and evaluate our proposed method
under various FSOD settings. Experimental results
demonstrate that our approach outperforms the state-of-
the-art methods by a significant margin.

II. RELATED WORKS

A. OD

OD refers to identifying and localizing objects within
an image, which has been one of the main research
tasks in CV. Traditional OD techniques are based on, e.g.,
feature extraction [28], object recognition, and template
matching [29]. State-of-the-art OD techniques are mostly
based on deep learning, due to its overwhelming performance
on large-scale OD benchmarks. Deep learning-based OD
methods utilize convolutional neural networks (CNNs) to
perform OD directly from raw image pixels, without the
need for hand-crafted feature engineering. They can be
categorized into two-stage and single-stage detectors. While
two-stage detectors aim to first generate object proposals and
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Fig. 2. Overall architecture of the proposed method. The FPN following the backbone is not illustrated in the figures for the sake of simplicity.

then classify them, single-stage detectors perform both tasks
simultaneously. A typical example of two-stage detectors is
faster R-CNN [2], which generates a set of region proposals
and then extracts features from each proposal using an RoI
pooling layer before classifying the object within the proposal.
One well-known single-stage detector is you only look once
(YOLO) [3], which applies a CNN to the entire image to
simultaneously predict bounding boxes and class probabilities
for each object without any proposal generation step.

B. FSOD in Computer Vision

FSOD aims at recognizing novel or unseen object classes
based only on a few examples of them, by fine tuning
on a model trained on many labeled examples of base
classes. FSOD methods can be roughly categorized into
fine-tuning-based methods, meta-learning-based methods, and
metric-learning-based methods.

1) Fine-Tuning-Based Methods: Fine-tuning-based methods
are popular for FSOD, which first train on a large number of
base class examples and then perform few-shot fine tuning on
a smaller support set that includes both base and novel classes.

One such method, low-shot transfer detector (LSTD) [16],
uses a flexible deep architecture that integrates the advantages
of both single shot multibox detector (SSD) and faster
R-CNN in a unified deep framework. It also introduces

transfer knowledge (TK) and background depression (BD)
regularizations to leverage object knowledge from source and
target domains during the fine-tuning stage.

Another fine-tuning-based method, two-stage fine-tuning
approach (TFA) [17], indicates that even a simple fine
tuning of only the last layer of a faster R-CNN detector
to novel classes can achieve better performance compared
with the previous meta-learning-based methods. In addition,
TFA replaces the fully connected classification heads of faster
R-CNN with cosine similarities. The aim is to reduce intraclass
variances and preserve performance in base classes through
this feature normalization technique.

Yang et al. [30] introduce a pretrain-transfer framework
(PTF) that utilizes a knowledge inheritance approach to
initialize the weights for the box classifier. In addition,
they develop an adaptive length rescaling strategy to ensure
consistency of the dimensions of the pretrained weights for
both the base and novel classes. This helps to improve the
efficiency and effectiveness of the fine-tuning process.

2) Metric-Learning-Based Methods: Metric-learning-based
methods aim to reduce the dimensionality of each sample
and learn a feature representation such that similar samples
are closer to each other, while dissimilar ones are easier to
discriminate.

RepMet [31] is a metric-learning approach suitable for both
few-shot classification and OD. It uses a collection of Gaussian
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mixture models, each with multiple modes, to describe the
base and novel classes. During base training, an embedding
loss is employed to ensure a margin between the distance
of each query feature and its respective class representative,
as well as the distance to the nearest representative of an
incorrect class.

Fan et al. [32] introduce an attention-based RPN (attention-
RPN) that uses support features to enhance the proposal
generation process and eliminate nonmatching or background
proposals. In addition, the authors develop a multirelation
detector for feature representation learning that measures the
similarity between the RoI features of query and support
objects.

3) Meta-Learning-Based Methods: Meta-learning-based
methods are designed to learn quickly from a few examples,
using a meta-learner that has been trained on a diverse set
of tasks. During the base training stage, the meta-learner is
trained on a meta-dataset composed of various tasks. Once
trained, the meta-learner can quickly adapt to new tasks or
generate a learner that is customized to the target task.

One example of meta-learning-based methods is Meta-
YOLO [33], which improves the query feature of a model
by using a set of weighting coefficients generated during
the meta-learning phase. These coefficients are based on the
support samples and allow the model to effectively learn the
intrinsic importance of features for detecting objects. This
enables the reweighting coefficients of novel classes to be
learned with only a few support examples.

Another approach is FsDetView [34], where a novel
technique for aggregating query and support features is
introduced. Instead of feature reweighting, this technique
involves performing element-wise multiplication, subtraction,
and concatenation between the two sets of features. This
approach has shown promising results in FSOD tasks.

C. FSOD in Remote Sensing

Remote sensing images have unique characteristics that
distinguish them from natural scene images, such as complex
backgrounds, objects with multiple orientations, and dense
and small objects. Thus, designing an FSOD algorithm that
accounts for these distinct features is crucial.

In shared attention module (SAM) and Balanced Fine-
tuning Strategy (BFS), Huang et al. [35] propose a shared
attention module that leverages class-agnostic prior knowledge
gained during the base training stage to aid in detecting
novel objects with significant size variations. In DH-FSDet,
Wolf et al. [36] suggest using a balanced sampling strategy
(BSS) between base and novel samples, taking all the
base samples into consideration. In addition, they propose
separating the classification and regression heads in the RoI
layer according to base and novel classes for better balance
in detection. Zhang et al. [37] introduce the generalized
FSOD task to remote sensing. On one hand, they propose
a metric-based discriminative loss to reduce the intraclass
diversity and increase the interclass separability of the base
and novel objects. On the other hand, they replace the RoI
feature extractor with a representation compensation module
to prevent the model from catastrophic forgetting.

More recently, researchers have explored integrating
text data into the visual learning pipeline to improve
FSOD performance. Models such as text-modal knowledge
(TEMO) [38] and text semantic fusion relation graph
reasoning (TSF-RGR) [39] leverage TEMO extractors to
provide prior knowledge on the relationship between base and
novel classes, resulting in improved FSOD performance.

D. Self-Training

Self-training [40], [41], [42], [43] is a widely used approach
for domain adaptation [44] and semi-supervised learning [25].
This technique involves generating pseudolabels for the target
domain or unlabeled data and then using them to fine-tune
the network. Self-training has shown promising results in
various tasks, including semi-supervised classification [45] and
semantic segmentation [46].

In semi-supervised classification, FixMatch [47] is a popular
approach for self-training. It generates pseudolabels by using
a model’s predictions on weakly augmented and unlabeled
images. These pseudolabels are then used to supervise the
model’s predictions on a strongly augmented view of the same
image. This approach has been shown to achieve state-of-the-
art performance on several benchmark datasets.

For semantic segmentation tasks, self-supervised augmen-
tation consistency (SAC) [27] is a self-training approach
that employs a momentum network as the teacher network.
The teacher network generates pseudolabels on the weakly
augmented images, which are used to supervise the student
network that receives the strongly augmented images. The
momentum network is updated based on the exponential
moving average of the student network. This approach has
also shown promising results on several benchmark datasets.

E. IANOs Issue

Li et al. [48] are the first to identify the IANO issue in
their work, pointing out that the base set images might contain
unlabeled novel objects, leading to false positives. They
address this challenge by introducing a distractor utilization
loss. More specifically, for each annotated bounding box,
a cropped image centered at the object will be fed into a few-
shot correction network. This network generate corresponding
pseudolabels, which are subsequently used to identify potential
novel objects and adjust the loss calculation with respect to the
RoI head. On a similar note, Qiao et al. [19] emphasize that
the IANO issue also exists when multiple novel objects were
present within a single image. To resolve this concern, they
propose a label calibration method. This method recalibrated
the predicted targets of background objects based on their
predicted confidence. As a result, unannotated novel objects
are assigned with lower weights during the loss calculation,
mitigating their negative impact.

Despite these valuable contributions, it is worth noting
that the aforementioned approaches primarily addressed the
impact of unannotated objects on bounding box classification,
neglecting their influence on the training of RPNs for a two-
stage object detector. Specifically, when calculating the RPN
loss, the incompleteness of novel object annotations could
cause the RPN to mistakenly predict unannotated novel objects
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as background, thereby reducing the overall performance.
In our method, we propose a comprehensive approach to
mitigate the IANO issue. We apply advanced self-training
techniques not only to the bounding box classification head
but also to the RPN. By doing so, we extend our efforts to
tackle this challenge on a broader scale, addressing the impact
of unannotated objects throughout the entire OD pipeline.

III. METHODS

In this section, we introduce the proposed ST-FSOD
method, which consists of two major components: the ST-
RPN and the self-training bounding box head (ST-BBH).
The overall architecture is illustrated in Fig. 2. The ST-
RPN module takes the multilevel features extracted from the
backbone and feature pyramid networks (FPNs) head [49] as
input and generates two sets of object proposals, namely, the
base and novel proposals, corresponding to the base and novel
categories, respectively. These proposals are merged and fed
into the ROI pooling and feature extraction layers to obtain
the ROI features. The ST-BBH module takes the ROI features
as input and produces the final detection results. Specifically,
it detects potential unannotated novel class objects and uses
them as pseudolabels to recall more novel class objects,
thereby improving the model’s performance.

A. Problem Formulation

In this section, we present the formulation of the standard
FSOD setting. We assume that we have access to a base
set containing base class annotations denoted by Dbase =

{(Ii ,Bbase
i )} and a novel set containing novel class annotations

denoted by Dnov = {(Ii ,Bnov
i )}, where Ii represents an image

and Bi = {(x, y, h, w, c)} represents a set of object bounding
boxes within the image. Here, x, y, w, and h denote the
locations of the bounding box and c denotes the class label.

Furthermore, let Cbase and Cnov be the label set of
Bbase and Bnov, respectively, and they satisfy the condition
Cbase ∩ Cnov = ∅, indicating that there are no common classes
between the base and novel classes.

Our proposed ST-FSOD method is established on the classic
TFA [17]. In the first stage of TFA, a base detector is trained
using the base set Dbase, following the same procedure as
in a regular object detector. In the second stage, a few-shot
object detector is initialized using the weights obtained in the
first stage and fine-tuned on a K -shot fine-tuning set denoted
by Dft = (Ii ,Bbase

i ,Bnov
i ), where the number of novel object

bounding boxes for each novel class is K . More formally, for
each novel class cnov ∈ Cnov, we have

∀cnov ∈ Cnov,∑
Ii ,Bbase

i ,Bnov
i ∈Dft

|{(x, y, h, w, c) ∈ Bnov
i | c = cnov}| = K . (1)

Here, | · | denotes the number of elements of the set.

B. Balanced Sampling Strategy

One of the key questions in constructing the few-shot fine-
tuning set Dft is how many base class objects to sample.
In the original TFA, [17] proposed sampling exactly K shots

of base objects for each base class to maintain a better balance
between base and novel classes. However, recent studies have
shown that this strategy may not be the optimal for remote
sensing images [35], [36]. For example, Wolf et al. [36] found
that using more base objects and oversampling the few-shot
novel objects can improve the overall performance.

Inspired by these findings, we propose a BSS as follows.
First, we randomly sample the K -shot novel objects as usual.
Next, we include all base class images and annotations in
Dbase into the fine-tuning set Dft. Finally, when sampling
images for fine tuning, we increase the probability of sampling
images Ii with a corresponding nonempty Bnov

i to ensure
they are sampled with the same probability as images that
do not contain any novel annotations. By adopting the BSS,
we achieve a more balanced fine-tuning set between base and
novel classes, while also making full use of all the available
base annotations.

C. Self-Training-Based RPNs

In the faster R-CNN network architecture, the RPN is
utilized to generate a set of proposals P = {p =

(tx , ty, tw, th, o)} for each input image I using multiscale
features extracted from I . The parameters tx , ty , tw, and
th represent the coordinates of each proposal, and o is an
objectness score that indicates the probability of the proposal
containing an object. Fig. 2 illustrates the architecture of ST-
RPN, which consists of three submodules: base RPN, teacher
RPN, and student RPN. All of these submodules follow the
original RPN architecture. ST-RPN generates two sets of
proposals, Pbase and Pnov, which are obtained as follows.

1) The base RPN is responsible for extracting base
proposals Pbase from the input image I. For fine-tuning
the base RPN module, only base annotations Bbase are
used to calculate the RPN loss

Lbase
rpn (Pbase,Bbase) =

∑
pi ∈Pbase

L(pi , p∗

i ) (2)

where p∗
i is the regression and classification targets

achieved by matching Pbase with Bbase according to the
intersection over union (IoU) between each pair of the
proposal and the ground-truth bounding box [2].

2) The teacher RPN generates a set of ignored proposals
P ign, which includes output proposals from this module
that have an objectness score o greater than a given
threshold τrpn. Please refer to Section IV-B for the
selection of τrpn.

3) The student RPN receives the extracted features from
the backbone and the FPN head [49] with dropout [50]
applied and outputs a set of novel proposals Pnov. This
module is trainable and is supervised only by the few-
shot novel annotations Bnov. During the calculation of
the regression and classification target of each output
proposal, those with a high overlap with the ignored
proposals in P ign are excluded from the loss calculation.
The loss function for the student RPN can be formulated
as follows:

Lnov
rpn (Pnov,P ign,Bnov) =

∑
pi ∈Pnov

wi L(pi , p∗

i ). (3)
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Here, p∗
i is the box targets achieved by assigning Pnov to

Bnov. wi is a weighting coefficient that is used to ignore
the highly confident proposals that might contain novel
objects

wi =

{
0, if ∃ p j ∈ P ign, IoU(p j , pi ) > 0.7,

1, otherwise.
(4)

Here, IoU(·, ·) denotes the IoU value of the two
proposals.

The separation of base and novel proposals has two benefits.
First, during fine tuning, the pretrained weights obtained from
the base training stage could be negatively affected, which can
impact the quality of the extracted base proposals. Separating
proposal extraction prevents the fine tuning toward novel
objects from biasing the extraction of base proposals. Second,
previous FSOD works in remote sensing [35] have found
that the RPN module achieved from the base training stage
often fails to recall novel objects successfully. Thus, training
an additional RPN module from scratch can lead to a better
network state in terms of novel OD.

During the extraction of novel proposals Pnov, using a
student–teacher-based self-training mechanism and introduc-
ing ignored proposals into the loss calculation can prevent
potential unannotated novel objects from being misclassified
as background. This helps the RPN module to recall more
novel objects and improves detection performance.

It is worth noting that there could be cases where a positive
novel proposal, which is associated with a ground-truth
bounding box, ends up being excluded according to (4) during
the few-shot fine-tuning stage. However, in practice, we have
observed that this does not significantly impact the generation
of novel proposals. This is because the ignored proposals in
P ign are already of very high confidence, indicating that the
learning process toward that specific ground-truth bounding
box has already reached saturation.

D. Self-Training-Based Bounding Box Head

In the proposed framework, the extracted base and novel
proposals are merged and passed through an RoI pooling layer
and an RoI feature extraction layer to obtain the corresponding
RoI features. These features are then forwarded to the ST-
BBH for achieving the final detection results. The ST-BBH
consists of a teacher and a student BBHs. Each BBH contains
a bounding box classifier and a regressor, following the same
architecture as the one proposed in faster R-CNN [26]. While
processing each RoI, the feature is input to both the teacher
and student classifier heads. In order to improve the robustness,
the student’s head receives the feature with dropout [50]
applied as the input. Let ustu and utch be the output probability
of the student and teacher BBH and v be the corresponding
ground-truth label. The student classifier’s classification loss
is calculated using the following equation:

Lbbh(ustu, utch, v) ={
Lcls(ustu, ûtch), if v = 0 and max(utch) > τbbox

Lcls(ustu, v), otherwise.
(5)

Here, ûtch represents the class index with the highest value
in utch. The assigned ground-truth class label of the RoI is
denoted by v, with v = 0 indicating that the RoI is considered
as background. The threshold τbbox is used to determine when
to use the prediction from the teacher BBH as the pseudolabel.
Please refer to Section IV-B for the selection of τbbox.

Overall, ST-RPN and ST-BBH share the same self-training
philosophy with a momentum network, represented in our
context as the teacher module. This teacher module maintains
a slowly updated copy of the original module, ensuring
stable yet recent targets (or pseudolabels) for model updates,
as discussed in [27]. However, it is important to note that
ST-RPN and ST-BBH are technically distinct: ST-RPN is
employed to extract class-agnostic proposals, while ST-BBH
is specifically designed for the classification and regression
of class-specific bounding boxes. Furthermore, we emphasize
that in ST-RPN, we explicitly separate the extraction of base
and novel proposals, whereas, in ST-BBH, the classification
and regression heads for both base and novel classes share the
same ROI features.

E. Weights Initialization and Update

As depicted in Fig. 2, different trainable and fixed modules
have been highlighted in different colors. Among these
modules, the backbone, FPN head, base RPN, and RoI feature
extraction layer will be initialized by the pretrained weights
obtained from the base training stage. For the classifier and
regressor of both student and teacher BBH, the entries of
their weight matrices corresponding to the base classes will
be initialized based on the pretrained weights, while entries
for the novel classes will be randomly initialized. The student
and teacher RPN module of the ST-RPN will be randomly
initialized.

It is worth noting that the weights for the teacher RPN and
teacher BBH are not trainable. Instead, they will be updated by
the corresponding student module’s weights using exponential
moving average [27]

θ
(t)
T = αθ

(t−1)
T + (1 − α)θ

(t)
S . (6)

Here, θ
(t)
T and θ

(t)
S denote the weights of the teacher networks

and their corresponding student networks at time step t during
the training stage, respectively. α is a decay weight that is set
to 0.999 following [27].

IV. EXPERIMENTS

In this section, we will present the experimental results of
our proposed method on various benchmarks for FSOD in
remote sensing.

A. Experimental Settings

We evaluate the proposed method on three large-scale public
OD datasets in remote sensing, including NWPU-VHR10 v2
[51], DIOR [52], and instance segmentation in serial images
dataset (iSAID) [21]. NWPU-VHR10 v2 dataset comprises a
total of 1172 images, each with dimension 400 × 400 and are
divided into ten categories. Following the previous works [53],
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three categories “airplane,” “baseball diamond,” and “tennis
court” are adopted as novel classes, while the others are as the
base classes. In line with previous researches, we employ the
training and validation sets to fine tune the model and report
the performance on the test set, which contains 293 images.

The DIOR dataset contains 23 463 images and over
190 000 instances, with an image size of 800×800. All objects
are categorized into 20 classes. In the previous literature,
two commonly used settings are adopted. The first setting,
proposed by Li et al. [20], uses five categories (i.e., “plane,”
“baseball field,” “tennis court,” “train station,” and “wind
mill”) as the novel categories and the remaining as the base
categories. In this setting, the training set is used for base
training and few-shot fine tuning, while the validation set is
used for evaluation. The second setting, proposed in [54],
includes a total of four base-novel class splits, each containing
five novel categories and 15 base categories. In this setting,
both the training and validation sets are used for base training
and fine-tuning, and the test set is used for evaluation.

iSAID is a large-scale instance segmentation dataset for
remote sensing. It is built on the same image set as DOTA [55],
but provides the instance-level mask annotations, and also
finer bounding box annotations. iSAID contains 2806 images,
whose sizes range from 800×800 to 20 000×20 000. In total,
there are 655 451 annotated objects, which are classified
into 15 categories. We follow the official data preprocessing
pipeline to crop the images into 800 × 800 patches, with an
overlap of 25%. We follow the FSOD setting of [36], which
uses three different base-novel class splits, and sets the number
of shots for each split to 10, 50, and 100.

To make a fair comparison with the previous works, we
adopt the mean average precision (mAP) with an IoU threshold
at 0.5 as the evaluation metric following the common practices.

B. Implementation Details

The proposed method uses the faster R-CNN architec-
ture [2] with an ResNet101 [56] backbone that is pretrained
on the ImageNet dataset. An FPNs [49] is used to generate
multiscale features. The AdamW optimizer [57] with a weight
decay of 0.01 and a learning rate of 1e − 4 is used to train
the model on all settings. The base training stage of NWPU-
VHR10 v2, DIOR and iSAID datasets lasts for 10 000, 40 000,
and 80 000 iterations, respectively. Learning rate decay with
a factor of 0.1 is applied at 5000 and 8000 for the NWPU-
VHR10 v2 dataset, 24 000 and 32 000 iterations for the DIOR
dataset, and 40 000 and 60 000 for iSAID dataset. The few-shot
fine-tuning lasts for 2000 iterations for the NWPU-VHR10 v2
dataset and 10 000 iterations for the other settings.

For data preprocessing and augmentation, image patches
are randomly cropped to sizes of 400 × 400 for NWPU-
VHR10 v2 dataset and 608 × 608 for the others. Multiscale
training with a range from 0.5 to 2.0, random flipping, and
random rotation with degrees of 90, 180, and 270 are applied.
The batch size is set to 16 for base training and 8 for fine
tuning.

The momentum parameter is set to α = 0.999 when
updating the networks’ weights by exponential moving

TABLE I
AVERAGE PRECISION (AP) (IN %) AT AN IOU THRESHOLD OF 0.5 OF

DIFFERENT METHODS ON NWPU-VHR V2 DATASET, WHERE THE
BASE-NOVEL CLASS SPLIT FOLLOWS [53]. AVERAGED RESULTS

AND STANDARD DEVIATIONS OF THREE DIFFERENT RUNS ARE
REPORTED FOR THE PROPOSED METHODS

TABLE II
AP (IN %) AT AN IOU THRESHOLD OF 0.5 OF DIFFERENT METHODS

ON DIOR DATASET, WHERE THE BASE-NOVEL CLASS SPLIT FOL-
LOWS [20]. AVERAGED RESULTS AND THE STANDARD DEVIATIONS

OF THREE DIFFERENT RUNS ARE REPORTED FOR THE
PROPOSED METHODS

average [27]. The thresholds τrpn and τbbh used in ST-ROI and
ST-BBH are set to 0.8. In Section IV-F, sensitivity analyses
to these hyperparameters are provided. Our codes are based
on PyTorch, EarthNets [58], and MMDetection [59] platform.
For more information, please refer to our published codes.

C. Quantitative Results

The quantitative results for the NWPU-VHR10 v2, DIOR,
and iSAID datasets are presented in Tables I–IV, respectively.
Overall, our proposed method achieves superior or comparable
performance across all datasets and various settings related to
novel objects.

On the NWPU-VHR10 v2 dataset, our method attains
state-of-the-art performance in both 3- and 20-shot settings,
surpassing the second-best results by a notable margin
ranging from 3% to 7%. In addition, it performs compa-
rably to state-of-the-art models in the five- and ten-shot
settings.

Regarding the DIOR dataset, as shown in Table II, our
method consistently outperforms the second-best approach by
a substantial margin of 5%–7%. In Table III, our method
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TABLE III
AP (IN %) AT AN IOU THRESHOLD OF 0.5 OF DIFFERENT METHODS ON DIOR DATASET, WHERE THE FOUR BASE-NOVEL CLASS SPLITS FOLLOW [54].

AVERAGED RESULTS AND THE STANDARD DEVIATIONS OF THREE DIFFERENT RUNS ARE REPORTED FOR THE PROPOSED METHODS. THE
RESULTS ON THE BASE CLASSES ARE ALSO REPORTED

TABLE IV
AP (IN %) AT AN IOU THRESHOLD OF 0.5 OF DIFFERENT METHODS ON ISAID DATASET, WHERE THE THREE BASE-NOVEL CLASS SPLITS

FOLLOWS [36]. AVERAGED RESULTS AND THE STANDARD DEVIATIONS OF THREE DIFFERENT RUNS ARE REPORTED FOR THE PROPOSED
METHODS. RESULTS OF FSDETVIEW AND TFA ARE CITED FROM [36]. THE RESULTS ON THE BASE CLASSES ARE ALSO REPORTED

excels in all settings except for the 20-shot setting of split 3.
Remarkably, our results in split 1 demonstrate improvements
exceeding 10%.

On the iSAID dataset, our proposed method delivers
significant enhancements, ranging from 5% to over 10%.
These improvements remain consistent across various splits
and different numbers of shots.

These results not only demonstrate the effectiveness of
our proposed method but also underscore the significance
of addressing the issue of IANOs. It is worth noting that
performance variance tends to be higher in cases with
fewer shots, suggesting that FSOD performance is somewhat
sensitive to the sampling of annotated novel objects, especially
when the available shots are limited.

D. Qualitative Results
We present the visualization results on NWPU-VHR10 v2,

DIOR, and iSAID datasets in Figs. 3–5. Some observations
and conclusions can be made from the results as follows.

1) The proposed method plays a crucial role in alleviating
the challenge posed by IANOs. This issue becomes
particularly pronounced in scenarios featuring multiple
small objects within a single image. For instance, in the
first column of Fig. 4, ships can be easily mistaken as
part of the background by a few-shot object detector.
This occurs because, during the few-shot fine-tuning
stage, a significant number of ship annotations will
be missing, as depicted in Fig. 1. In contrast to this,
our detection results show demonstrate that our method
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Fig. 3. Visualized FSOD results of the proposed methods under K = 20 shots setting on NWPU-VHR10 v2 dataset. The base-novel class split follows [53].

Fig. 4. Visualized FSOD results of the proposed methods under K = 20 shots setting on DIOR dataset. The base-novel class split follows the split 2 in [54].

excels in recalling many ship objects. This verifies the
effectiveness of employing self-training techniques to
solve the IANO issue.

2) By separating the proposals for base- and novel-
class objects, our approach effectively preserves the
performance of the few-shot detector on the base class.
As elaborated in Section III-C, this separation of region
proposals serves to prevent the few-shot fine-tuning
process from negatively influencing the detection of base
class objects. As evidenced by the results depicted in the
fifth column of Fig. 4 and the third column of Fig. 5,
our method is able to detect challenging, small base class
objects such as storage tanks and vehicles.

E. Ablation Studies

We conduct ablation studies on the first split of the iSAID
dataset to better understand the effect of all the components

used in the proposed method. The results are presented in
Table V and Fig. 6 for quantitative and qualitative analyses,
respectively. The following observations can be made from the
results.

1) The naive fine-tuning strategy introduced in [17] has a
detrimental effect on the detection of base class objects.
A noticeable performance decline becomes evident when
comparing the results in the first row to those in the
second row, according to Table V. This decline in
performance stems from the fact that this particular
strategy employs only a limited subset of base class
annotations for model fine tuning, leading to incomplete
annotations for the base class.

2) BSS proves to be highly effective in preserving the
base class performance after the few-shot fine-tuning
process, at the cost of a slight trade-off in novel class
performance. This highlights the critical importance of
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Fig. 5. Visualized FSOD results of the proposed methods under K = 100 shots setting on iSAID dataset. The base-novel class split follows the split 2 in [36].

Fig. 6. Visualized FSOD results of the proposed methods under different ablations on the iSAID dataset. The number of novel shots is set to K = 100. The
base-novel class split is the split 1 in [36].

fine tuning with a complete base annotation set for
the maintenance of base class performance in satellite
image-based FSOD.

3) Applying the proposed ST-RPN module does not
influence the base class performance, due to the
separation of the extraction of base and novel proposals.
In addition, applying the proposed ST-RPN module
is beneficial in improving the performance on novel
classes.

4) After applying the proposed ST-BBH module, there is
a slight performance decay on the base classes. One
possible reason is that since the base and novel classes
share the same BBH, the fine tuning on novel objects
affects the general feature extraction within BBH and
further affects the detection of base classes. However,
there is a consistent improvement in the novel classes
after applying ST-BBH, ranging from 3% to even 10%,
at different numbers of shots.
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TABLE V
ABLATION STUDY RESULTS ON SPLIT 1 OF THE ISAID BENCHMARK. THE SAME SEED FOR IMAGE SAMPLING AND OTHER RANDOMIZED PROCESS IS

USED TO MAKE A FAIR COMPARISON.“W/ FT” DENOTES WHETHER THE FEW-SHOT FINE-TUNING APPROACH PROPOSED IN [17] IS APPLIED.
“BSS” DENOTES THE BALANCED SAMPLING STRATEGY AS DESCRIBED IN SECTION III-B

TABLE VI
SENSITIVITY ANALYSES OF THE HYPERPARAMETERS ON SPLIT 1 OF THE ISAID BENCHMARK

5) By combining all the modules, the highest novel class
accuracy is achieved, with a margin of 6% to nearly
20% compared with the Naı̈ve fine-tuning strategy. This
verifies the effectiveness of the proposed ST-RPN and
ST-BBH modules in solving the IANO issue.

Fig. 6 shows the visualized results for different ablated
models. The second row shows that using the ST-RPN module
helps to recall more large vehicle objects. However, using
ST-RPN alone without ST-BBH may lead to a higher false
positive rate, as can be seen from the first row. By combining
the ST-RPN and ST-BBH, the best visualization quality is
achieved. The third row demonstrates that this combination
can help to detect small ship objects with high accuracy. These
results further demonstrate the significance of incorporating
the self-training mechanism to solve the unlabeled novel object
issue.

F. Sensitivity Analyses of Hyperparameters

We conducted a sensitivity analysis to evaluate the impact
of hyperparameter selection on the proposed method. The
hyperparameters we tested include the two self-training
thresholds τrpn and τbbh used in ST-RPN and ST-BBH, and
the momentum α used when updating the teacher networks
via EMA [27]. The results are presented in Table VI.
We observed slight performance fluctuations (generally less
than 2%) with different hyperparameter values. However,
compared to the variances caused by different sampling seeds
as shown in Tables II–IV, such fluctuations are not significant.
Therefore, we can conclude that the proposed method is
not highly sensitive to the values of the aforementioned
hyperparameters.

TABLE VII
TRAINING TIMES (SECONDS PER ITERATION) AND INFERENCE

FPS OF THE PROPOSED METHOD EVALUATED ON ISAID DATASET.
MAP (%) IS ALSO REPORTED FOR COMPARISON

G. Computational Efficiency

To assess the incremental computational demands intro-
duced by our two proposed modules, ST-RPN and ST-BBH,
we conducted an evaluation based on training times (measured
in seconds per iteration) during the fine-tuning stage and
inference frames/s (FPS) when these modules were integrated.
The outcomes, as illustrated in Table VII, indicate that the
inclusion of ST-BBH results in a negligible computational
overhead, both during the training and inference phases. This
outcome aligns with our expectations, as ST-BBH simply
introduces a pair of additional bounding box regressor and
classifier layers on top of the RoI features.

In contrast, the integration of ST-RPN introduces a more
substantial computational load during the training phase.
However, it is crucial to note that the fine-tuning phase
in FSOD algorithms typically involves significantly fewer
iterations compared with the base training phase (see our
settings in Section IV-B). As such, the additional training
costs remain within acceptable bounds. Furthermore, while
ST-RPN does marginally reduce inference speed, it is essential
to consider this cost in light of the performance gains it offers.
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Fig. 7. Visualized failure cases of the proposed method on NWPU-VHR10 v2, DIOR, and iSAID datasets. Base-novel class splits are the same as the splits
in Figs. 3–5.

This expense is manageable given the corresponding boost in
detection performance. In addition, upon closer investigation,
we found that a substantial portion of the computational cost
introduced by ST-RPN is attributed to the additional bounding
box operations, such as nonmaximum suppression (NMS).
These options can be optimized and accelerated through the
utilization of compute unified device architecture (CUDA)
implementations.

H. Failure Cases

To gain a better understanding of the limitations of the
proposed FSOD method, we visualize some failure cases
in different FSOD settings, as shown in Fig. 7. Based on
the figure, we can observe that the majority of the missed
detections are primarily due to the small size of the objects
(“ships” in the third column) or objects with large size
variance compared with the training data (“ships” in the
second column). In addition, there may be duplicated detected
boxes for objects that lack clear boundaries, such as the “tennis
court” in the first column or “soccerball field” in the fourth
column. While these issues are prevalent in general OD [64],
improved techniques related to addressing them can also be
utilized to enhance the performance of FSOD.

V. CONCLUSION

In this article, we analyze the current FSOD setting
for remote sensing and identified the issue of IANOs that
can negatively impact the performance of FSOD methods.
To address this issue, we propose to incorporate the self-
training mechanism into the classical two-stage fine-tuning-
based FSOD pipeline. Our approach includes an ST-RPN
module, which generates a set of novel proposals by excluding
some proposals from the loss calculation that are likely to be
novel objects but cannot be assigned to an existing few-shot
annotation. In addition, we designed an ST-BBH module that
leverages the pseudolabels generated from a teacher BBH to

filter out potential novel bounding boxes that are unlabeled
and use them to supervise the student BBH to recall more
novel objects.

While our proposed method significantly improved the
novel class FSOD performance in remote sensing, the base
class performance may slightly decrease compared with
the base model. Future works could focus on designing
a generalized FSOD method that prevents the model from
forgetting the previously learned base knowledge while
improving the performance in detecting novel classes.
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