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Abstract— A lattice-based target design is presented for
expanding research capabilities in subpixel target detection. The
targets generate large numbers of subpixel samples with a priori
knowledge of the exact subpixel fractions. This contrasts with
traditional targets, where subpixel fractions are either unknown
or estimated with significant uncertainty, with limited samples
available in historical datasets. The subpixel targets dimin-
ish these drawbacks and generate constant subpixel samples
invariant to effects of the system (e.g., image distortions, scan
pattern) which would typically induce uncertainty. Simulations
were performed to assess the accuracy of the proposed method
of achieving samples with constant fractions. To validate and
demonstrate the functionality of the design, four targets were
fabricated with constant subpixel fractions (0.2, 0.4, 0.6, 0.8)
and were deployed into a hyperspectral data collection. Spectral
unmixing validated the retrieval of samples with constant frac-
tions, and a general target detection scenario was demonstrated
using 300–400 samples of each constant fraction. The impacts
of a limited number of target samples (e.g., n = 5, 10) on
receiver operating characteristic (ROC) curves were empirically
assessed, with a significant reduction of variability observed
when n > 100, illustrating the advantages when large sample
sizes are available. Design limitations are discussed, along with
applications (e.g., algorithm comparison) for the community.

Index Terms— Algorithm comparison, fill fraction, ground
truth, object detection, remote sensing, spectral unmixing.

I. INTRODUCTION

DETECTION of subpixel targets is achievable with
hyperspectral technology and proven image processing

algorithms [1], [2], [3], [4]. In historical datasets, subpixel
fractions of target samples are unknown with exact precision,
given the remote sensing system induces various distortions
due to the optical response, scan pattern, and image processing
errors. Subpixel targets are also difficult to manually label
(i.e., ground truth mask) given uncertainty associated whether
mixed pixels are actually targets or background. As a result,
historical datasets for subpixel detection typically consist of a
limited number of subpixel samples [5], which implies perfor-
mance evaluations are inconclusive for determining absolute
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Fig. 1. Random phasing of traditional targets across the projection of image
pixels onto the ground.

algorithm superiority [6]. To resolve these issues, a novel
target design is proposed and demonstrated for expanding
research in subpixel detection.

Hyperspectral imaging (HSI) sensors measure spectra of
radiant energy segmented across dozens, hundreds, or even
thousands of spectral bands. In remote sensing, HSI cubes
consist of spectral and spatial dimensions which are processed
with algorithms to automate the detection of rare objects in
the scene. Although spatially unresolved, subpixel targets are
detectable through the exploitation of a material’s spectral
features.

Traditional targets are observable across a variety of target
detection datasets [7], [8], [9], [10], [11], [12]. Depending
on the size of the target relative to the ground sample dis-
tance (GSD) of the sensor, subpixel samples will either reside
across edges or central regions of the target. A primary issue
when establishing ground truth information of the subpixel
fraction is the random phasing (or placement) of the targets
across the projection of the image pixels onto the ground [13].
This is visualized in Fig. 1, where the scan pattern from the
sensor determines the partition of the target and background
material within the projection of pixels onto the ground.
An overall list of issues associated with traditional targets
include the following.

1) Pixel Phasing: Random phasing (i.e., orientation) of the
target across the image pixels.

2) Sample Size: Small number of target samples implies
large confidence intervals in empirical receiver operating
characteristic (ROC) curves.

3) Image Blur: The point spread function (PSF) of the
sensor blurs the target and background objects.

4) Geometric Processing: Geo-referencing errors distort the
true mapping between object and image space.
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Fig. 2. Target fill fraction of pixel samples across the central region (red) of
the lattice target (orange) when placed onto a background (green) is invariant
to the pixel phasing or scan pattern of the remote sensor.

5) Spatial Distortion: Optical aberrations and misalign-
ments distorts the signal traceability (e.g., keystone).

6) Target Mask: A ground truth target mask is manually
created by a user and thus is susceptible to human error.

A. Advantages of the Lattice-Based Targets

The novel targets are a lattice-based structure that enables
remote sensors to collect constant subpixel fractions of target
material across large numbers of samples. The subpixel targets
are invariant to the issues associated with traditional targets,
which includes pixel phasing as shown in Fig. 2. This is
unique, as historic datasets generally label subpixel targets but
with random or unknown target fill fractions. The outcome for
detection studies is an additional dimension to ROC curves,
where the detection rate (PD) is now a function of the false
alarm rate (PFA) and the target fill fraction (α), broadening
research opportunities for algorithm comparison and system
trade studies. Given large numbers of samples, confidence
intervals are minimized in ROC curves [14], enabling more
conclusive inferences on evaluations of detection. In addition
to assessments of detection limits, the lattice-based targets
enable an empirical validation of subpixel models which has
been demonstrated using an early prototype of the design [15].

B. Overview

The design and demonstration of a novel target for hyper-
spectral subpixel detection is outlined, with an objective of
collecting large numbers of subpixel samples with constant fill
fractions. In Section II, the target design, system parameters,
optics, and detector characteristics are discussed for achieving
uniformity of target and background material across the optical
and digital image. Methods for fabrication of the targets are
presented in Section III, and details of the remote sensing field
experiment for the targets are in Section IV. Validation of the
target design objectives reside in Section V, and demonstration
for a subpixel target detection scenario is in Section VI.
To conclude, an empirical case study revealing impacts of a
limited sample size on detection is outlined in Section VII,
with limitations of the novel design discussed in Section VIII.

II. DESIGN

The design of the novel target is a lattice structure consisting
of repeating patterns of polygons (e.g., squares) with holes

across 2-D. The target surface area is simply an area difference
between inner and outer polygons, (aout − ain), and when
normalized with aout is the effective fill fraction α. A single
parameter to characterize the effective fill fraction across the
entire target is the inner wall width, w, of the structure, when
given a constant pitch between central polygons. Illustrations
are shown in Fig. 3. The polygons may be squares, hexagons,
triangles, or any other geometric variation.

A. System Requirements

The subpixel target is geometrically characterized by three
parameters, which include the overall area A, inner wall
width w, and lattice pitch pℓ (distance between center polygon
holes). This is illustrated in Fig. 4 for a hexagonal target,
where the overall length L replaces the overall area A, for
simplicity. The sensor parameters include the GSD and ground
sample size (GSS), which co-vary as defined by the Q value
of the sensor [16]. Appropriate combinations of these system
parameters are required for the collection of large numbers of
samples with constant fill fractions.

To achieve the design objectives, general guidelines include
pℓ ≤ GSD and L ≫ GSD; further details will be outlined
in the succeeding subsection. This ensures the collection of
a large number of samples with constant fill fractions across
the central region of the target. Samples across the edges of
the target will not comprise of constant fill fractions, given
the PSF of the sensor blurs the background material onto the
target space. Furthermore, the remote sensor is required to fly
at near-nadir conditions to minimize the error associated with
the projected area of the lattice. This is attributed to a physical
target having 3-D thickness, albeit the overall geometry is 2-D
flat.

B. Optical Blur

The PSF of an optical system is a primary source of image
degradation, apart from optical aberrations and misalignments.
The PSF spreads radiant energy from a point object into the
surrounding medium, effectively blurring the output image.
The convolution equation is

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (1)

where g(x, y) is the image, f (x, y) is the object, h(x, y) is
the PSF, and n(x, y) is additive noise. Considering a remote
sensor, the system PSF is the convolution of the PSF for each
component

hsys = hopt ∗ hmot ∗ hdet ∗ helec ∗ hatm (2)

where hopt is the PSF of the optics, hmot is the PSF of the
platform motion, hdet is the PSF of the detector, helec is the PSF
of the electronics, and hatm is the PSF of the atmosphere. For
a traditional target, the blur of the PSF increases uncertainty
in the fill fraction of a pixel.

The effects of the PSF uniquely enhance the objectives
of the lattice target, given a more uniform distribution of
target material is established in the blurred image of the
lattice. In general, the amount of blur can be characterized
by the full-width at half-maximum (FWHM) of the PSF;
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Fig. 3. Illustration of subpixel target design for varying nominal fill percentages.

Fig. 4. Target design parameters for the lattice subpixel target.

when projected onto the ground is referred to as the GSS [17].
Uniformity of target material across the image plane of the
sensor can then be characterized by a ratio of the GSS to
lattice pitch (pℓ)

0 =
GSS

pℓ

(3)

where increasing 0 increases target uniformity. To demonstrate
these optical effects across a lattice-based target, a simulation
was established considering a value of 0 = 2. A similar value
was proposed for early experimentation with the subpixel tar-
gets in an empirical dataset [15]. The simulation involves the
generation of a binary array (e.g., hexagonal lattice) convolved
with a normalized Gaussian (i.e., generalized system PSF).
The hexagonal geometry was selected given the radial sym-
metry with the Gaussian PSF would theoretically maximize
uniformity. A demonstration is shown in Fig. 5. As observed,
the blurred image after convolution exhibits visual uniformity
across the central target region. The nominal fill fraction of the
example lattice is α = 0.2, calculated using the discrete ratio
of computational pixels within the outer and inner hexagons of
the binary array. A cross-sectional plot of the optically blurred
image is shown in Fig. 6. Uniformity diminishes across the
edges of the blurred lattice, as the PSF smears target material
into the surrounding background. This simulates the optical
effects in a real scenario.

To demonstrate the impacts of the 0 value on target unifor-
mity across the image plane, a case study is shown in Fig. 7,
which considers the equivalent target geometry (α = 0.2)
shown in Fig. 5. The results infer visual uniformity when
0 ≥ 1. The simulation does assume a Gaussian PSF as a
general baseline, although the actual shape certainly varies
across different sensors, pixels, and flight lines. Regardless,
the mechanism of blurring the lattice target to improve fill
fraction uniformity across pixels remains consistent.

After the blurred image is cast onto the focal plane, detector
sampling partitions radiant energy into discrete pixels. This
process, along with optical blurring, improves the collection of
constant fill fractions, given subpixels variations are effectively
averaged when a pixel is integrated during detector sampling.

C. Detector Sampling

Detector sampling occurs after the target object is blurred
onto the image plane of the sensor. While the GSS describes
optical blur, the GSD describes how pixels are sampled across
the detectors. The relationship between GSD and GSS is
given by the Q value (GSS/GSD), which is constant for a
given sensor with typical values ranging between 1 and 2.
Increasing the size of the GSD, relative to a constant GSS,
decreases the Q value and pixel-to-pixel variability of the
target fill fraction. To investigate the 0 values required to
achieve sufficient uniformity for a desired maximum pixel-
to-pixel variability (e.g., 1%), a trade study was conducted
simulating optical blur and detector sampling for a range of
α, 0, and Q values.

First, a series of unique lattice arrays were generated com-
putationally for fill fractions, α, between [0.1, 0.9] with a step
size of 0.1. Second, optical blur of the lattices was simulated
using a Gaussian PSF for 0 values between [0.1, 1.5] with
a step size of 0.1. Third, detector sampling of the blurred
lattices was simulated using Q values between [0.5, 2] with
a step size of 0.1. As a result, 2160 unique detector sampled
images were generated. An example of the detector sampling
method is shown in Fig. 8, for a blurred lattice with nominal
fill fraction of α = 0.2 and 0 = 0.75 identical to an example
shown in Fig. 7. Detector samples were simulated by averaging
computational values within bins of the array determined from
the GSD, or Q value, of the given sensor. The sampled image
in Fig. 8(b) illustrates pixel-to-pixel variability of the target
fill fraction, relative to the nominal value.

A cross-sectional plot of the detector sampled image (α =

0.2, 0 = 0.75) is shown in Fig. 9. Nonuniform regions are
observed around the lattice edges, in addition to pixel-to-pixel
variability within the central region of the lattice. An RMSE
metric is used to measure pixel-to-pixel variability of the target
fill fraction of i th detector samples relative to the nominal
value

σRMSE =

√∑
(αi − α̂)2

N
(4)

where α̂ is the nominal target fill fraction, αi is the effec-
tive target fill fraction, and N is the total number of
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Fig. 5. Demonstration of the effects of a PSF across a lattice structure. The expected constant subpixel fraction of target material is α = 0.2, with a GSS
to lattice pitch ratio of 0 = 2.

Fig. 6. Cross-sectional plot of the effective fill fraction of the blurred image
for a lattice with α = 0.2 and 0 = 2. Regions of nonuniformity reside
within ±3 standard deviations of the Gaussian PSF from the outer lattice
edges.

Fig. 7. Visual assessment of target uniformity for a lattice with a GSS
to lattice pitch ratios 0 = 0.25, 0.5, 0.75, 1, and nominal target fill fraction
α = 0.2.

Fig. 8. Lattice target with nominal fill fraction α = 0.2. (a) After optical
blurring with 0 = 0.75. (b) After detector sampling with 0 = 0.75 and
Q = 2.

detector samples. The RMSE equation is used for detector
samples across the central region, excluding the outer region
of ±3 standard deviations of the PSF from the lattice edges.
Given the range of α, 0, and Q values considered, results for
σRMSE across the 2160 simulations are shown in Fig. 10.

The results quantitatively confirm pixel-to-pixel variability
of the target fill fraction, σRMSE, decreases for increasing

Fig. 9. Cross-sectional plot of the effective fill fraction of the detector
sampled image for a lattice with α = 0.2 and 0 = 0.75. Regions of
pixel-to-pixel variability, reside within ±3 standard deviations of a Gaussian
PSF from the outer lattice edges; in addition, the central lattice region in this
example.

Fig. 10. Quantitative assessment of the RMSE of the target fill fraction as a
function of three independent parameters (α, 0, Q). The RMSE values denote
pixel-to-pixel variability as a result of 2160 unique simulations for varying
values of optical blur, 0.1 ≤ 0 ≤ 1.5, detector sampling, 0.5 ≤ Q ≤ 2, and
hexagonal lattice structures with nominal fill fractions of 0.1 ≤ α ≤ 0.9.

values of 0. In particular, it is observed sufficient uniformity
of the blurred image occurs when 0 > 0.8 to achieve a
σRMSE < 1% for all values of Q tested. This provides a
general baseline for the lower limit of the 0 value needed to
minimize error in the target fill fraction of subpixel samples.
The results also quantitatively confirm σRMSE decreases for
decreasing values of Q (i.e., increasing GSD). Furthermore,
σRMSE appears to maximize when α = 0.5, particularly for
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Fig. 11. Ground truth images of the subpixel targets (α = 0.2, 0.4, 0.6, 0.8, 1) captured with a handheld camera.

large values of Q. Overall, the results provide a quantitative
assessment of error associated with the retrieval of subpixel
samples with constant fill fractions when a user is designing
a data collection.

D. Review of Other Target Designs

Other novel target designs are featured in spectral unmixing
datasets, using ground [18] and remote sensing [8], [19], [20]
imagers. The design of the SHARE 2010 and 2012 targets
developed by the Rochester Institute of Technology (RIT)
consist of a checkerboard pattern of two materials. The propor-
tions of squares between the two materials were modulated to
enable constant area fractions of either 25%, 50%, or 75%,
when sensed with the appropriate GSD. The limitations
with this design occur when other area fractions are desired
(i.e., other than in 25% increments). Furthermore, the SHARE
targets were comprised of synthetic fabric squares adhered
to a solid panel. This design does not allow mixed pixels to
consist of natural backgrounds, which does incur in real target
detection scenarios. The proposed lattice-based target design
eliminates these shortcomings.

III. FABRICATION

Initial prototypes of the subpixel targets were designed with
CAD software; then fabricated using high density 1/8 in
plywood and a CO2 laser cutting apparatus. The small tar-
gets (approx. 12 × 12 in) were deployed into a basic data
collection using an unmanned aerial system (UAS), as an
initial technology demonstration. The mission was successful
in retrieving small numbers (1–2 dozen) of near-constant fill
fractions across each target, given the high spatial resolution
of the sensor (GSD ≈ 4.5 cm) [15]. The initial prototypes
consisted of square, triangular, and hexagonal geometries, with
early analyses confirming the patterns were equally effective
at generating samples with near-constant fill fractions. This
was attributed to the large GSS to lattice pitch ratio (0 > 2)
established between the targets and aerial sensor. Nevertheless,
important differences do exist between the geometries. Square
and triangular lattices are rigid structures (with small bending
moments), providing practical benefits during deployment of
the delicate structures in the field. Hexagonal lattices are
space efficient, enabling easier fabrication of very small fill
fractions (e.g., 10%), while also likely providing more radial
symmetry with the PSF to improve target uniformity. The
optical advantages were prioritized, thus current versions of
the subpixel targets use the hexagonal pattern.

Subsequent targets were fabricated to improve on the initial
developments, with a focus on retrieval of large numbers of

samples. Specifically, four lattice-based targets were fabricated
with 1/4 in plywood and nominal fill fractions of 0.2, 0.4, 0.6,
and 0.8; with a lattice pitch of pℓ = 2 cm and overall
dimensions of 45.3 × 33.7 in, as shown in Fig. 11. The overall
dimensions were maximized given the limited bed size of
the laser cutter was 48 × 36 in, and the increased thickness
of the plywood (1/4 in) improved structural rigidity. When
combined with the appropriate GSD (e.g., 4 cm), the retrieval
of large numbers of samples (n ≈ 300–400) was predicted
with constant fill fractions across each target. To minimize
bi-directional reflectance (BRDF) effects, which induce inac-
curacies in the retrieved fill fraction values, the targets were
painted with a matte and speckled finish to approximate
the properties of a diffuse reflector. This minimizes spectral
variability which was observed in the initial investigation [15].

Extensive UAS resources are available in the Digital Imag-
ing and Remote Sensing (DIRS) Laboratory at RIT [21], which
accelerated the design, testing, and analysis process for the
subpixel targets. In regards to fabrication, any homogeneous
material is suitable for the targets; the choice of hardwood was
appropriate for the laser cutter. Theoretically, the development
of any nominal fill fraction is attainable given the appropriate
material strength and design parameters of the target (w, pℓ).

IV. FIELD EXPERIMENT

A hyperspectral data collection occurred on September 9,
2022, at the Tait Preserve of RIT in Rochester, NY: a 177 acre
estate, featuring diverse landscapes of open fields, hills,
forests, and a 60 acre lake. The dataset was used for validation
and demonstration of the subpixel targets. The altitude of
the UAV during data collection was approximately 200 ft,
with clear sky conditions. The UAV was flown at near-
nadir (θz ≈ 2.5◦–3◦) conditions across the subpixel targets,
per design requirement. A 270 band hyperspectral sensor
(Headwall Nano-Hyperspec) in the VIS-NIR spectral range
(0.4–1 µm) was mounted onto a DJI Matrice 600 UAV.
The subpixel targets were deployed across a uniform gravel
path, with ground truth images shown in Fig. 11. The scene
consisted of a diverse range of background classes, including
both man-made and natural materials, as shown in a flight
line in Fig. 12. The data collection included a GSD ≈4 cm
with a lattice pitch pℓ = 2 cm. The Q value of the sensor is
estimated between 1 and 1.5, through observation of PSF char-
acteristics from an adjacent UAV case study using illuminated
point sources [22]. Therefore, it is predicted an estimated 0

between 2 and 3 was established during the data collection.
These system specifications, along with the large overall
dimensions of the lattice targets (45.3 × 33.7 in) enabled
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Fig. 12. RGB render of HSI data collected using a UAS across the Tait
Preserve of RIT in Rochester, NY, USA.

the retrieval of a large number of samples with constant
fill fractions. The optical simulation in Fig. 5 considered a
similar 0 value as what was predicted in the data collection.
Therefore, excellent uniformity of constant target fill fractions
across pixels was expected from the real data.

V. VALIDATION

The retrieval of image pixels with constant fill fractions
across the lattice targets was validated using hyperspectral data
from the field experiment in Fig. 12. Analysis of real data sup-
ports the proposal that fill fractions nominally calculated from
the geometry of the lattices, are invariant to the effects of the
remote sensing system (i.e., atmosphere, sensor, processing).

The method involves using spectral linear unmixing to com-
pute abundance fractions of the target endmember across the
image pixels of lattice. Then compared these abundances with
the nominal values assigned to each target. The target end-
member was defined by averaging approximately 200 image
pixels across the central region of the 100%, or full-pixel,
target. Boundary regions across the target were avoided, due to
contamination of background material from the blurring of the
PSF. No unit-sum constraint was applied, to allow any variabil-
ity in the retrieved target abundance to be observed. Otherwise,
the unit-sum constraint would likely propagate error associated
with background spectral variability into the estimate of the
target abundance. Furthermore, minimal spectral variability
was observed associated with the target material (chemical and
radiometric) and sensor noise, reducing error in the unmixing
method. The average standard deviation across all bands of
available full-pixel target samples (n ≈ 400) within the image
was 0.75% reflectance.

The validation results are shown in Fig. 13, which include
histograms of the target abundance scores across the central
regions of the lattice targets. A supporting set of validation
images, in Fig. 14, include an RGB render of the HSI
data above the lattice targets and a corresponding abundance
colormap of the target endmember. This visually demonstrates
the uniformity of samples with near-constant fill fractions.
Furthermore, examination of the histograms demonstrates the
retrieval of large numbers of samples (n ≈ 300–400) retrieved
across each subpixel target. The mean abundance percentages
across each histogram (99.97, 80.24, 62.11, 41.27, 19.74)

co-align with the nominal values with minimal percent dif-
ferences (0.03, 0.24, 2.11, 1.27, 0.26). The standard deviation
percentages (relative to the mean abundances) across each
histogram are 1.18, 1.02, 1.19, 1.39, and 1.43 for the nominal
100%, 80%, 60%, 40%, and 20% targets, respectively.

Error in the subpixel abundance distributions is attributed
to a variety of factors, with many uncorrelated to any devel-
opmental issues associated with the targets. For example,
variability in the 100% target distribution shown in Fig. 13 is
attributed to inherent chemical and micro-structure variations
in the material itself and sensor noise in the imaging system.
This source of error is propagated through all the other
histograms, given the spectral unmixing method considers just
a single reference spectra, or endmember. Additional possible
sources of error include small BRDF effects across the targets,
attributed to nonhorizontal target orientations relative to the
ground. However, attempts to minimize BRDF effects were
implemented before data collection, through careful deploy-
ment of the targets with a level measuring tool and application
of multiple coats of matte paint during fabrication. In addition,
it is predicted the sensor viewing angle (θz ≈ 2.5◦–3◦) from
nadir may contribute approximately 1% error in the target fill
fraction, determined analytically using geometry of the lattice
structures (see Section VIII for further details).

VI. TARGET DETECTION DEMONSTRATION

To demonstrate the functionality of the lattice-based tar-
gets for subpixel target detection, an example scenario was
established using HSI data collected as shown in Fig. 12.
A ground truth mask was developed for five independent
target classes, associated with pixels with constant fill fractions
(0.2, 0.4, 0.6, 0.8, 1) within central regions (n ≈ 300–400) of
each subpixel target. Nonuniform subpixels across outer edges
of the targets were masked with conservative guard regions
(null), to decouple the analysis from subpixel targets with
unknown fill fractions. Background pixels were defined across
all remaining pixels within the flight line.

The target reference spectrum for the detector algorithm was
selected using the mean of approximately 400 image samples
across the central region of the 100% target. Although many
algorithms exist for subpixel detection, two were selected for
demonstration purposes which include the matched filter (MF)
and adaptive cosine estimator (ACE)

wMF(x) =
(t − µb)

T 6−1
b (x − µb)

(t − µb)
T 6−1

b (t − µb)
(5)

wACE(x) =

[
(t − µb)

T 6−1
b (x − µb)

]2

(t − µb)
T 6−1

b (t − µb)(x − µb)
T 6−1

b (x − µb)

(6)

where x is an image pixel, µb and 6−1
b are the mean vector

and inverse covariance matrix of the background, and t is the
target reference vector.

Preexisting subpixel datasets provide target samples with
unknown fill fractions, α, and the unknown correspond-
ing number of samples, Nα . To demonstrate the results of
a typical detection performance evaluation, probabilities of
detection (PD) and false alarm (PFA) were computed for
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Fig. 13. Abundance histograms of the target endmember from samples across central regions of each subpixel target.

Fig. 14. (a) Nominal target percentages of subpixel targets and (b) corre-
sponding abundance map of target endmember.

Fig. 15. Performance comparison of target detection algorithms (MF
and ACE) when considering approximately 1800 subpixel samples with fill
fractions of 0.2, 0.4, 0.6, 0.8, and 1.

algorithm output score distributions without knowledge of
the target fill fraction across the available 1800 approximate
subpixel samples. The results are shown with ROC curves
in Fig. 15, using the MF and ACE algorithms.

To demonstrate the value of the lattice-based targets, prob-
abilities of detection (PD) and false alarm (PFA) were also
computed for algorithm output score distributions with knowl-
edge of the target fill fraction across partitioned sample groups
of constant fractions. The ROC curves for each subpixel
target group (0.2, 0.4, 0.6, 0.8, 1) are shown in Fig. 16,
using the MF and ACE algorithms. The results infer more
definitive conclusions on algorithm performance given the
specific background scenario. When comparing the MF and
ACE algorithms, it is observed performance is comparable
without knowledge of the target fill fraction. However, with
knowledge, performance can now be assessed as a function of
the fill fraction α at various false alarms of interest PFA.

VII. IMPACTS OF SAMPLE SIZE ON DETECTION

In historical datasets for subpixel target detection, a limited
number of target samples are available for experimentation.
Therefore, performance results are subject to variability if the

Fig. 16. Performance comparison of target detection algorithms (MF and
ACE) when considering partitioned groups of constant subpixel fill fractions
of 0.2, 0.4, 0.6, 0.8, and 1.

experiment were repeated with an alternate number of random
samples derived from a larger population. To quantify this
uncertainty, confidence intervals or regions in ROC curves
have been developed [14]. The design of the lattice-based
target mitigates this issue, given the retrieval of a large number
of samples (e.g., 300–400). To demonstrate the impacts of
sample size on detection, a case study for random sampling
limited numbers of mixed target spectra was performed.

A limited sample size of 5, 10, 50, and 100 target subpixels
was considered for each fill fraction of 0.2, 0.4, 0.6, 0.8, and 1.
For each limited sample size (5, 10, 50, 100), an ensemble of
50 groups (randomly sampled with replacement) was collected
from a larger distribution of available samples (n ≈ 300–400).
The choice of 50 groups was selected given it was assumed
50 random iterations would sufficiently demonstrate variability
in the ROC curves. The results of the limited sample trade
study, using the identical algorithm and background statistics
outlined in Section VI, are shown in Fig. 17,

The results demonstrate significant variability occurs in
ROC curves when a small number of random target samples
(e.g., 5, 10) are considered from a larger population. The
shaded regions in Fig. 17 represent the envelope of minimum
and maximum PD values across the 50 random iterations. This
reiterates the importance of confidence intervals or regions
when reporting ROC curves with a small number of tar-
get samples. The variability of the ROC curves decreases
significantly when the number of target samples n ≥ 50.
When n ≥ 100, the variability in ROC curves, across the PD

direction, becomes marginal. This validates the efficacy of the
lattice targets implemented in the UAS dataset for generating
300–400 samples of constant fill fractions per target.

VIII. LIMITATIONS OF LATTICE-BASED TARGETS

The lattice target design was proven effective for the collec-
tion of constant fill fractions of large numbers of samples with
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Fig. 17. ROC curves using 50 random groups of (a) five samples, (b) ten
samples, (c) 50 samples, and (d) 100 samples with constant subpixel target
percentages from the MF.

the appropriate system parameters; however, limitations do
exist. The fabrication method (laser cutter) constrains targets
to sizes smaller than the spatial resolution of airborne or space-
borne sensors. Therefore, additional efforts are required to
plan larger-scale experiments with sensors at higher altitudes.
Although the optical depth of the atmosphere varies between
UAS, airborne, and spaceborne systems, it is assumed infer-
ences derived from UAS data extend to alternate platforms.

Other limitations include deviations of the target fill fraction
for off-nadir sensor viewing angles, θv . An analytical equation,
derived in the Appendix, for the off-nadir fill fraction is

αθ = αn + τ
√

1 − αn · tanθv (7)

where τ = h/pℓ denotes the lattice thickness (or height) to
lattice pitch ratio, for a unit-less expression. The equation
assumes the material of the lattice inner wall is equivalent to
the upper surface. Deviations of the target fill fraction, αθ , rel-
ative to the nominal values for a range of viewing angles
and τ ratios are shown in Fig. 18. In the field experiment,
τ = 0.3175 characterizes the target geometry. Therefore, a 1%
error in target fill fraction is estimated when the viewing angle
is approximately 2.5◦–3◦ off-nadir, using (7). Additional error
in the target fill fraction is associated with the target tilt relative
to the ground not being perfectly flat, which is coupled to the
error associated with off-nadir sensor viewing angles.

A “self shadowing” effect within a lattice target occurs when
the lattice pitch is small (e.g., 2 cm) relative to the target’s
3-D thickness (e.g., 1/4 in). An analytical equation, derived in
the Appendix, for the fraction of shaded background within a
mixed pixel is

β = τ ·
tanθs

√
1 − αn

(8)

where θs is the solar zenith angle and τ = h/pℓ creates
a unit-less expression. The results across a range of solar
zenith angles and τ ratios are shown in Fig. 19. The self-
shadow effect, although can be interpreted as a limitation,

Fig. 18. Assessment of the target fill fraction (αθ ) relative to the nominal
value (α) as a function of off-nadir sensor viewing angle (θz) and lattice
thickness to pitch ratio (τ ).

Fig. 19. Assessment of the shaded background fraction (β) as function of
the solar zenith angle (θz) and lattice thickness to pitch ratio (τ ), for varying
nominal fill fraction targets (α).

has also enabled new research on impacts of fully illuminated
subpixel targets on partially shaded subpixel backgrounds [23].
Regardless of the lattice target impinging a shadow onto the
background, the target material remains fully illuminated with
image pixels consisting of constant subpixel fill fractions.

Lastly, if the lattice-based targets are placed onto a single
background, the diversity of subpixel samples mixed with
different backgrounds is limited. However, the availability of
large numbers of subpixels samples of targets over a single
background provides conclusive results of detection for the
given target-background combination and surrounding scene.

IX. CONCLUSION

A lattice-based target design for subpixel detection exper-
iments was proposed for expanding research capabilities in
the field. The design enables a hyperspectral remote sensor
to collect large numbers of samples with constant fill frac-
tions, α, for a desired target material, given the appropriate
target design (w, L , pℓ) and sensor (Q) parameters of the
system. A unique characteristic of the targets involve the sen-
sor PSF enhancing uniformity of target material across the
image. A metric to characterize this uniformity was defined
as the GSS to lattice pitch ratio, or 0. A trade study assess-
ing pixel-to-pixel variability after detector sampling, σRMSE,
as function of α, 0 and Q was performed. Subpixel targets
for a range of fill fractions (0.2, 0.4, 0.6, 0.8) were fabricated
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Fig. 20. Illustration of a cross-sectional square lattice pattern for varying
combinations of lattice height to pitch ratios τ = h/pℓ and sensor viewing
angles θv .

and deployed into a UAS data collection, producing 300–
400 uniform samples per target. Nominal fill fractions were
validated using spectral unmixing to compute target abundance
fractions of the mixed pixels. A scenario for subpixel target
detection was then established for demonstrating functionality
of the targets, using independent ROC curves computed from
groups of samples with constant fill fractions. The detection
impacts when given a limited number of target samples were
demonstrated empirically when considering ensembles (50)
of identical scenarios (i.e., background statistics) for varying
fill fraction groups of nonidentical numbers of target samples
(e.g., 5, 10, 50, 100). The results imply the availability of
large numbers of samples (e.g., 300–400) collected across
the lattice targets provide definitive conclusions on detection
evaluations (e.g., algorithm comparison) for a specific scene
and combination of subpixel target-background material.

APPENDIX

There are two cases for deriving the fill fraction for off-nadir
sensor viewing angles (zenith), as observed in Fig. 20. For a
generalized assessment, both cases assume a square patterned
lattice with an azimuth viewing angle perpendicular to the
lattice edge.

For case 1, the target fill fraction observed for off-nadir
sensor viewing angles, αθ , is a ratio of projected areas within
a segment of the repeating lattice pattern

αθ =
At,P

At,P + Ab,P
=

p2
ℓcosθv − xx1cosθv

p2
ℓcosθv

= 1 −
xx1

p2
ℓ

. (9)

where θv is the sensor viewing angle, p2
ℓ is the total area across

a lattice segment, and xx1 is the rectangular area visible from
the sensor. The equation assumes the inner wall material of the
lattice target is equivalent to the upper surface. The xx1 term
can be expanded

xx1 = x(x − x2) = x2
− x · htanθv (10)

with x = pℓ

√
1 − αn derived from the nominal target fill

fraction for nadir sensor viewing angles

αn =
At

At + Ab
=

p2
ℓ − x2

p2
ℓ

. (11)

Fig. 21. Illustration of a cross-sectional square lattice pattern for varying
combinations of lattice height to pitch ratios τ = h/pℓ and solar angles θs .

Therefore, the expression

xx1 = p2
ℓ(1 − αn) − pℓ

√
1 − αn · htanθv (12)

is now in terms of parameters (pℓ, αn, θv). Substituting (12)
into (9), the target fill fraction for off-nadir sensor viewing
angles after simplification is

αθ = αn +
h
pℓ

√
1 − αn · tanθv. (13)

Considering τ = h/pℓ, the lattice thickness (or height) to
lattice pitch ratio, αθ is now a unit-less expression

αθ = αn + τ
√

1 − αn · tanθv. (14)

For case 2, the background material is nonobservable from the
sensor (αθ = 1). This occurs when the viewing angle

θv > arctan
( x

h

)
(15)

θv > arctan
(√

1 − αn

τ

)
. (16)

Similarly, there are two cases for deriving the shaded
background fraction due to varying solar angles, as observed
in Fig. 21. For a generalized assessment, both cases again
assume a square patterned lattice with an azimuth viewing
angle perpendicular to the lattice edge.

For case 1, the fraction of the shaded background is

β =
x2

x
=

h · tanθs

pℓ

√
1 − αn

(17)

β = τ ·
tanθs

√
1 − αn

(18)

where θs is the solar zenith angle and τ = h/pℓ is substituted
for a unit-less expression. For case 2, the background is
entirely shaded (β = 1) which occurs, similar to (16), when
the solar zenith angle

θs > arctan
(√

1 − αn

τ

)
. (19)
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