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Abstract— Oil thickness in oil spills involving sea ice is a key
parameter required for an effective oil spill response; however,
quantifying it from radar backscatter data remains a difficult
task. We investigated a possible solution for estimating oil slick
thickness by using electromagnetic (EM) forward and inverse
scattering models of oil-covered newly formed sea ice (NI).
Our forward model employs a first-order approximation of a
multilayered small perturbation method (SPM) to predict two
copolarization C-band radar backscatters of NI covered by
an oil slick with thicknesses ranging from 0 to 7 mm. The
results showed that the backscatter decreases as slick thickness
increases, which we attributed to signal attenuation within the
saline-oil layer. Our inverse model relies on the particle swarm
optimization (PSO) algorithm to determine the slick thickness
on NI using synthetic backscatter data, and it requires the
input of several important ice and oil physical parameters
(thickness, dielectrics, and roughness). Moreover, the estimated
slick thickness was validated using scatterometer data from an
oil-on-ice experiment at the University of Manitoba’s Sea-ice
Environmental Research Facility (SERF). With synthetic data,
the 5 mm oil slick thickness was overestimated by 25%, while
with experimental data, it was overestimated by 8%. Overall, our
findings have laid the groundwork for future inversion studies
to identify the thickest oil spill zone from current and future
C-band radar satellites for immediate response.

Index Terms— Arctic, backscatter estimation, inversion, mod-
eling, oil slick, oil spill, oil thickness, particle swarm optimization
(PSO), radar, sea ice, small perturbation method (SPM).

I. INTRODUCTION

THE risk of an oil spill in the Arctic has been increas-
ing due to the unprecedented reduction of sea ice in

human history, which has led to more shipping and resource
extraction activities [1], [2], [3], [4]. To mitigate this risk, near-
continuous monitoring is needed to timely detect and respond
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to such hazards in this remote and difficult to access region.
Satellite-based microwave remote sensing (e.g., synthetic aper-
ture radar, SAR) is a well-established tool that shows strong
potential for the task [5], [6]; however, the complex physical
interaction between the sea ice and oil makes the microwave
interpretation of oil spills extremely difficult. This is where
electromagnetic (EM) modeling process comes into play and
it has two parts [7]. The first part is forward modeling, where
the material parameters are known and we seek the expected
EM fields, and this allows us to understand how the physics of
oil-ice interactions relate to the microwave scattering behavior.
The second part is inverse modeling, where we take EM
measurements and attempt to infer the material properties that
caused those measurements.

Inversion could allow us to estimate oil slick thickness that
may be distributed beneath, within, and on top of the ice, but it
becomes particularly difficult because different combinations
of physical properties of layered media (such as roughness
and dielectrics) can cause similar backscatter signatures. This
non-uniqueness is especially bad when considering scatterom-
eter measurements, which can have limited scanning geometry
and a single transmit/receive position (i.e., monostatic radar).

The ultimate goal of this manuscript is to estimate oil
slick thickness on experimental oil-covered newly formed ice
(NI) using ground truth C-band scatterometer data, which is
particularly relevant for calibrating contemporary C-band radar
satellites, including the Canadian RADARSAT Constellation
Mission (RCM). To achieve this, we seek to answer two
research questions as follows:

1) What is the expected C-band radar backscatter response
when simulated oil slick thickness on NI increases?

2) How feasible is it to estimate the slick thickness on
NI using the experimentally measured C-band radar
backscatter?

The first question is addressed by employing a
multilayered-SPM forward solver to simulate the total
backscatter response of oil-covered nilas ice, while the second
question is addressed by using an inverse solver (that calls
the forward model) based on particle swarm optimization
(PSO) algorithm. Synthetic backscatter data will be generated
to evaluate the performance of the proposed PSO algorithm.
As a validation step, we use scatterometer data from an
oil-on-ice experiment at the University of Manitoba’s Sea-ice
Environmental Research Facility (SERF).
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The remainder of this manuscript is organized as follows.
Section II introduces key physical and radar aspects of oil-
covered NI. Section III provides an overview of our EM
modeling strategy used to estimate slick thickness on the
ice surface. Section IV presents the results of the forward
and inverse scattering models of oil-covered NI. Section V
discusses the model sensitivity to changes in input oil param-
eters, along with the oil thickness retrieval. Finally, Section VI
concludes with a summary and recommendations.

II. THEORETICAL BACKGROUND

To accurately determine the thickness of an oil slick on
NI, it is important to first understand how microwave energy
interacts with sea ice and oil as a function of their geophysical
and thermodynamic properties. This section provides concise
background information on oil-covered NI, including their
dielectric mixture model, scattering measurement/model, and
slick thickness retrieval.

A. Oil-Covered Newly Formed Sea Ice (NI)

NI is a complex multiphase material consisting mostly of ice
crystals and brine inclusions. This type of sea ice is prevalent
during freeze-up seasons and exists in various formations (such
as frazil, grease ice, nilas, and pancake ice [8]), and its surfaces
can be bare, covered with frost flowers, or covered with
snow [9]. Under relatively calm ocean conditions, NI usually
grows into two distinct ice types: dark nilas (<5 cm thick)
and light nilas (5–10 cm thick) [10]. The topmost layer of
these ice types is characterized by a highly saline frazil [11],
making the NI profile a stratified material [12].

In the event of an oil spill on Arctic NI-covered waters,
weathering processes are expected to occur at a slower rate or
remain unchanged due to subzero ambient temperatures [13].
This causes the spilled oil to spread and drift slowly over
the ice terrain, creating a much thicker slick layer suitable
for effective response methods such as in situ burning and
chemical dispersants.

B. Dielectric Mixture Model of Oil-Covered NI

Using dielectric mixture models, the dielectric properties
corresponding to each layer of the NI profile could be derived
from the ice geophysical properties. The refractive dielectric
mixture model has consistently shown agreement with direct
dielectric measurements among various models used to calcu-
late sea ice dielectrics [14]. In the case of oil contamination
in sea ice, the presence of oil introduces a new component
within the ice structure, necessitating the inclusion of oil in
the dielectric mixture model [15], [16]. If the spilled oil forms
a slick cover solely on the NI, it creates a heterogeneous
mixture of oil and brine due to the high salinity of the topmost
NI layer [17]. The precise mixing process remains uncertain,
as the hydrophobic nature of oil suggests that it will remain
separate from the liquid brine, which is primarily water [18].
As such, it is appropriate to employ two distinct constituent
materials in the refractive mixture model, a technique also
applicable to mixtures in the liquid phase [19].

C. Scattering Measurement of Oil-Covered NI

Sea ice backscatter refers to the signal that is returned when
microwave radiation interacts with the surface and medium of
the ice. Its strength is influenced by three key factors [20]:
the ice surface roughness, measured by the root-mean-square
(rms) height and correlation length; the ice complex dielectric
constant (CDC), which depends on its geophysical properties;
and the microwave system parameters, such as frequency,
incidence angle, and polarization. Meanwhile, the penetra-
tion depth of the EM wave is mostly governed by the ice
dielectric constant and radar frequency [21]. To quantify
the amount of backscatter per unit area of an ice scene,
we utilize a metric called the Normalized Radar Cross
Section (NRCS) [22]. Calculating the ratio of this metric
in VV (vertical transmit–vertical receive) to HH (horizontal
transmit–horizontal receive) polarization will reduce the sur-
face roughness effect on the backscatter response [23].

NRCS data can be obtained through direct observation using
remote microwave sensors, such as SAR and scatterometer. For
oil-contaminated scenes, the measured scattering responses
are very low and close to the sensor’s noise floor, known
as noise-equivalent sigma zero (NESZ) [24]. This leads to
a low signal-to-noise ratio (SNR) of the NRCS values [25].
According to Minchew et al. [24], at least 6 dB above the
NESZ level will enhance the SNR of the measured NRCS for
oil-on-open water. Similar studies have proposed thresholds
ranging from 7 to 9 dB [26], and even up to 10 dB [27].
However, in case of oil-on-ice, there is no detailed SNR
analysis due to the lack of a major oil spill in ice-covered
water regions. As a result, Johannson et al. [28] utilized two
paired SAR images of oil-contaminated open water and oil-
free NI, applying 2 dB threshold for the SNR analysis, while
acknowledging the influence of noise on signal below the 6 dB
threshold. We intend to use the same approach for our SNR
analysis.

D. Scattering Model of Oil-Covered NI

Another way of obtaining NRCS data is via simulation,
achieved by employing forward scattering models, which are
classified into surface and volume components [29], [30].
Because of the high salinity of the topmost layer of NI [12],
[31], radar signals usually interact with the ice surface, making
surface scattering the dominant scattering mechanism.

Several mathematical models have been developed to
predict ice-scattering mechanisms dominated by surface scat-
tering. These include the small perturbation method (SPM),
Kirchhoff approximation, integral equation method, and com-
putational EM techniques [29], [32], [33], [34]. Of these,
SPM is highly suitable for predicting the scattering of NI
because it is computationally inexpensive and can simulate
radar scattering of a slightly rough surface (that could be
submerged in the medium), such that the vertical variation
(rms height, h) and horizontal variation (correlation length, l)
are both smaller than the incident wavelength (λ ). This means
that SPM is applicable under specific roughness conditions,
where h < 0.05λ , l < 0.5λ , and h/l < 0.3 [35]. Even
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in situations where oil covers the ice and smoothens the
surface, the SPM conditions still hold true.

Given the stratified nature of nilas ice, a multilayered SPM
model will be useful in modeling the total scattering responses.
Komarov et al. [36] developed a first-order approximation of
the multilayered-SPM and used it to simulate VV and HH
polarization backscatter of snow-covered sea ice systems when
the dominant scattering occurs at the air/snow, snow/ice, and
ice/seawater interfaces [36], [37], [38]. Isleifson et al. [15]
successfully applied this model to various oil-contaminated sea
ice systems, with oil distributed beneath the ice. In our case,
we implement this multilayered-SPM in a scenario where oil
is on top of the ice.

E. Retrieval of Slick Thickness on Oil-Covered NI

Turning to how oil slick thickness on NI is retrieved,
inverse models rely on optimization algorithms to minimize
the objective function between the modeled and measured
NRCS data [39]. The process involves repeated calls to
forward models during the iterative minimization. Prior to the
actual inversion process, synthetic NRCS is often generated
to test the effectiveness of such optimizers. Retrieving oil
thickness on sea ice is extremely difficult because no oper-
ational radar for an oil spill incident in the Arctic is available.
This limitation can be addressed by conducting experimental
studies to collect in situ radar scattering of oil-contaminated
sea ice. To date, only two studies by Firoozy et al. [40]
and [41], have utilized a differential evolution optimizer to
retrieve the oil layer thickness entrapped beneath and within
ice. In contrast, our study employs a PSO algorithm to retrieve
the oil layer thickness on top of the ice. Experimental studies
in this research domain are scarce, and attempts to extract slick
thickness when spilled oil spreads over sea ice scenes have not
yet been fully explored, motivating our investigation.

III. MATERIAL AND METHODS

A. Input Datasets

Table I provides the input physical datasets used to drive
the EM modeling strategy and they were collected along with
C-band scatterometer data during the SERF 2020 oil-on-sea
ice experiment [17]. Although the details of this experiment
have been discussed elsewhere in [17], [42], and [43], it is
worth noting that the sea ice was grown in a cylindrical tub
of 4-m diameter and 1-m depth, under two phases of oil
spill scenarios. In phase-1, oil was injected beneath existing
ice, and in phase-2, the tub was filled with artificial seawater
contaminated with 6.75 cm3 of Tundra Crude (a crude oil type
provided by Tundra Oil & Gas in Canada). This article focuses
on the phase-2 experiment. It is important to note that we did
not actively control the thickness of the oil slick. Instead, the
oil thickness naturally formed a skim layer over the established
ice pack, with an average thickness of 5-mm measured from
core samples.

During the experiment, we measured the in situ physical
characteristics of ice and crude oil, which is required for
calculating the CDCs of the spilled oil, oil-contaminated
ice, and uncontaminated ice. These dielectric values, along

with other information on ice thickness, oil thickness, and
roughness of the oil/ice (or air/ice in the oil-free case) and
ice/water interfaces, are fed into our EM forward solver.
We vary a number of inputs to achieve the purposes of our
forward solver (see Section IV).

Throughout the experiment, our C-band polarimetric
microwave scatterometer was mounted on a 5.3 m scaffolding
tower and scanned over the tub at a 24.5◦ incidence angle
with respect to the nadir without interference from the edges
of the tub. The measured backscatter values were VV =

−39 dB, HH = −42 dB, and VH = −46 dB [17]. These
values remained relatively constant above the NESZ level of
−45 and −50 dB for the co- and cross-polarization signals,
respectively. As a result, we expect a poor SNR for our
measured NRCS that could affect the retrieval parameters,
including the oil thickness and dielectric property [44]. It is
worth noting that we used only the measured NRCS in VV
and HH polarizations because our NRCS simulation model is
limited to copolarization channels (see Section IV).

Our scatterometer has a very low NESZ compared to the
current satellite SAR (e.g., RCM ScanSAR low noise beam
mode [45]), which compelled us to use the 2 dB threshold from
Johannson et al. [28] as a “mild threshold” above the NESZ for
both modeled and measured NRCS data, ensuring their suit-
ability for subsequent analysis. Despite this, we acknowledge
the 6 dB threshold recommended by Minchew et al. [24] as
a “harsh threshold” to avoid any possible noise contamination
from the receiver noise background [24]. Details on our
scatterometer system and calibration methods are provided in
the literature [46].

B. Electromagnetic (EM) Modeling Strategy

Fig. 1 provides an overview of the EM modeling strategy
used to determine the thickness of the oil slick on oil-covered
NI (i.e., the target). The procedure begins with the inputs
of parameters (see Table I) into our multilayered-SPM for-
ward solver, which simulates C-band radar with VV and
HH polarizations and 20◦–60◦ incidence angles. To serve the
purposes of our forward solver, we vary a number of input
parameters. In Fig. 1(a), we adjusted only the oil thickness
from 1 to 7 mm to predict the expected NRCS of the target.
In Fig. 1(b), we modified certain parameters as unknowns
(e.g., oil thickness, oil dielectrics, and ice dielectrics) and fixed
certain parameters as a-prior information (e.g., ice thickness,
roughness, and water dielectrics) for each forward solver that
our PSO-based inverse solver called. During the inversion
process, the output is fed into the PSO algorithm which
attempts to find the parameter of interest (oil layer thickness)
by modifying the unknowns until the modeled NRCS matches
the experimental NRCS.

Using synthetic NRCS (σ o(syn) in dB units) data serves as
a preliminary step to test the applicability of the PSO and to
fine-tune its hyperparameters. This better prepares our inverse
solver for validation with ground truth scatterometer NRCS
measurements of experimental oil spills on artificially devel-
oped saline ice. During the testing of the inversion process
with σ o(syn), we added 1% Gaussian white noise (Gn) to the
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TABLE I
INPUTS DATA FOR THE ELECTROMAGNETIC MODELING STRATEGY

modeled NRCS (σ o(mod) in dB units) at 20◦–60◦ incidence
angles (θ):

σ o(syn)
pq (θ) = σ o(mod)

pq (θ) + Gn(r)N f (1)

N f = max60
◦

θ=20
◦

∣∣∣∣∣σ o(mod)
VV (θ) + σ

o(mod)
HH (θ)

2

∣∣∣∣∣ (2)

where the subscripts p and q denote the linearly transmitted
and received polarizations, which are orthogonal to each other
as vertical (V) or horizontal (H) components, respectively. The
notation, r represents the independent normally distributed
random numbers at VV and HH polarizations. Note that
the noise was added to avoid overly optimistic estimates
of inversion performance on synthetic data, and the exact
magnitude of that noise was a choice made by matching the
noise until the synthetic data resembled the experimental data.

1) Forward Solver: This study utilizes a forward solver
based on the first-order approximation of multilayered SPM
to simulate the backscatter of an oil-covered NI profile. This
forward solver was developed by Komarov et al. [36] and has
been widely used for applications that require robust prediction
of multilayered media, such as snow-covered sea ice [36], [37],
[38] and oil-contaminated sea ice [15]. Full details can be
found in [36].

In the multilayered-SPM framework, the idealized ice pro-
file is a multilayer medium between the upper air and lower
water half-spaces. We set up this framework with two different
ice profiles, as shown in Fig. 2. Each layer is characterized
by specific parameters, such as thickness (d̄), CDC (ε), and
roughness statistics (h and l). The first case pertains to oil-
free NI, which necessitates the calculation of NRCS from
two rough interfaces (air/ice and ice/water). This model case
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Fig. 1. Overview of electromagnetic modeling strategy used for estimating oil thickness on newly formed sea ice: (a) forward solver and (b) inverse solver.

Fig. 2. Newly formed sea ice (NI) multilayer profile: (a) oil-free and
(b) oil-covered. All the notations are defined in Table I.

provides a baseline for comparison with the oil-contaminated
ice. In contrast, the second case involves an oil-covered NI,
requiring the calculation of NRCS from two rough interfaces
(oil/ice and ice/water). In this case, we varied the oil layer
thickness on NI, in the range of 1–7 mm. The oil-covered NI
has two significant aspects. First, we designate the slick oil
on NI as “saline-oil” due to its contamination with brine that
migrated from the highly saline topmost layer of NI. Second,
we refer to the frazil layer as “oiled-frazil” because it has been
contaminated by the spilled oil.

Table I shows the input parameter values used in our
multilayered-SPM forward solver. The pure sea ice CDC, brine
CDC, and brine volume were calculated using formulas devel-
oped by Mätzler and Wegmüller [22], Cox and Weeks [47],
and Stogryn and Desargent [22], respectively. Whereas, the
CDC of the weathered oil was obtained from [41]. For each
layer, the effective CDC was computed using the refractive
mixture formula [22]. The upper half-space is air with real
dielectric constant, ε0 = 1, while the lower half-space is
seawater with CDC, εw derived from Klein and Swift for-
mulas [22].

In the monostatic setup, the cross-polarization channel
within the first-order multilayered SPM is zero; therefore,
the results presented in Section III-A include the copolariza-
tion channel in VV and HH polarizations. Using only two
copolarization channels limits the polarization diversity of
the NRCS. Such diversity is crucial for deriving polarimetric
parameters used to discriminate scenes with low backscat-
ter contrast or strong volume scattering mechanisms (e.g.,
see [48] and [49]). However, this limitation is not an issue
in this study, which focuses on a bare oil-covered ice scene
predominately influenced by surface scattering mechanisms.
The cross-polarization backscatter in this case is very low
and could be at the NESZ level, making it not usable for
inversion. As a result, in an operational setting under our
study, having copolarization backscatter measurements across
multiple incidence angles is more important for inversion
than having measurements from all polarizations at a single
incidence angle.

To help interpret the effect of surface roughness on the radar
scattering, we calculated the copolarization ratio, ϒVV/HH,
which represents the ratio of NRCS in VV to HH polarization.
Within the first-order approximation of SPM, in the case
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of a single rough interface, this ratio is independent of the
roughness parameters and only depends on the ice dielectrics
and radar incidence angle [23]. In addition, to explore how far
the microwave radiation propagates through the oil-covered NI
profile, we computed the microwave penetration depth for each
layer given by the formula in [21].

2) Inverse Solver: Once the scattering properties have been
modeled, it serves as the basis for inverse solvers to estimate
the unknown physical parameters from the observed scattering
data. In this study, the inverse solver relies on the PSO
algorithm (a global optimizer inspired by the social behavior
of bird flocks, updating their position and velocity to achieve
an optimum search solution [50]).

To estimate the oil slick thickness over the NI profile, the
PSO algorithm seeks to minimize the objective function, which
is a measure of the estimation error difference, ϵσ o , based
on the inputs between the experimental (or synthetic) and
modeled backscatter data [see Fig. 1(b)]. Thus, the objec-
tive function, f , can be expressed in two different ways as
(3) and (4), shown at the bottom of the page.

In (3), the objective function, f1, uses NRCS data for
the minimization, where σ o(∗) (in dB units) represents
either the synthetic NRCS when testing the performance of
PSO or the experimental NRCS when validating PSO. In (4),
the objective function, f2, uses the ratio of NRCS in VV to
HH polarization data for the minimization, where ϒ

(∗)
VV/HH (in

dB units) follows a similar definition as the NRCS in (3).
The symbol, τ represents three low incidence angles (θ) of
20◦, 22◦, and 25◦ when using synthetic inputs. Conversely,
τ represents only one incidence angle, 24.5◦, when using
experimental inputs. The notations, χ⃗ and χ⃗ ′ represent vectors
of the unknown and known variables of the oil-covered NI (see
Table I for the definitions of these variables).

The unknown variables include d̄1, ε1, ε2, and ε3, which
are the retrievable variables to be optimized by PSO for the
oil-covered NI profile. This indicates that PSO must initialize
seven unknowns for the minimization (note that each dielectric
medium, ε is complex, with both real and imaginary parts).
Meanwhile, the known variables include d̄2, d̄3, h01, h12,
h3w, l01, l12, and l3w, are a priori information based on the
delineation of certain ice types obtained from SAR satel-
lite imagery. Incorporating these input datasets substantially
reduces the number of unknowns and improves the estimation
accuracy. Nevertheless, we acknowledge that they may not be
entirely precise because, in reality, no operational SAR can
directly extract the oil/ice interface roughness (e.g., h12, l12,
h3w, and l3w) and underlying ice thickness (d̄2 and d̄3) which

TABLE II
INPUT PARAMETER VALUES FOR THE PSO INVERSE SOLVER

IMPLEMENTED IN MATLAB

are obscured by the surface oil cover [17]. This compelled
us to test the effect of incorrect ice roughness and thickness
parameters on the estimation accuracy in our inversion process.
For instance, we will adjust the experimentally measured
value of d̄3 from 4.5 cm to 2.5 and 8.5 cm, and check the
estimation accuracy of the 5 mm oil thickness (see Table V in
Section IV-B for the adjustments on other subsurface param-
eter). Our adjustments were constrained by the following: 1)
the SPM region of validity: h < 0.05λ , l < 0.5λ , and h/l <

0.3 [35] and 2) the thickness ranges of frazil and nilas, which
are 0.1–1 cm and 2–10 cm, respectively [10].

In this inversion framework, the PSO algorithm was
implemented in MATLAB [51], with parameterization values
provided in Table II. Note that the lower and upper bound of
these unknown variables were estimated from [21], [41], [52],
[53]. We set the lower bound of oil thickness, d̄1 slightly above
zero to ensure that oil must be present before the algorithm
works.

IV. RESULTS

Following the implementation of the EM modeling strat-
egy described in Section III, we present our results in two

f1
(
χ⃗ , χ⃗ ′

)
= min (ϵσ o) =

∑
θ=τ

∣∣∣σ o(∗)
VV (θ) − σ

o(mod)
VV (χ⃗ , χ⃗ ′

; θ)

∣∣∣2
+

∣∣∣σ o(∗)
HH (θ) − σ

o(mod)
HH (χ⃗ , χ⃗ ′

; θ)

∣∣∣2

∣∣∣σ o(∗)
VV (θ)

∣∣∣2
+

∣∣∣σ o(∗)
HH (θ)

∣∣∣2 (3)

f2
(
χ⃗ , χ⃗ ′

)
= min (ϵσ o) =

∑
θ=τ

∣∣∣ϒ (∗)
VV/HH(θ) − ϒ

(mod)
VV/HH(χ⃗ , χ⃗ ′

; θ)

∣∣∣2

∣∣∣ϒ (∗)
VV/HH(θ)

∣∣∣2 (4)
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Fig. 3. Modeled C-band backscatter from an oil-covered NI: (a) angular response of co-polarization NRCS at varying oil thickness, (b) thickness response
of co-polarization NRCS at 25◦ and 50◦ incidence angles, and (c) angular response of co-polarization ratio. For comparison, we included the experimentally
measured C-band VV and HH polarizations (VV(meas) and HH(meas)), collected from a 5-mm-thick layer of oil on top of the established NI [17].

subsections that correspond to our research questions posed in
Section I. First, we delve into the NRCS results derived from
the forward solver based on the multilayered SPM. Three sets
of modeled backscatter datasets with varying slick thicknesses
on ice will be shown. Second, we investigate the retrieval
of oil slick thickness from the inverse solver based on our
PSO-based parametric inversion process. We will showcase
two inversion results: the near-ideal case based on synthetic
data to evaluate the suitability of the algorithm and the real
case based on experimental scatterometer measurement from
the SERF 2020 oil-on-ice experiment.

A. Modeled Backscatter Results

Fig. 3 depicts the angular response of our forward solver,
which predicted the C-band backscatter from an oil-covered
NI at various oil slick thicknesses (ranging from 1 to 7 mm).
Nonetheless, only for thicknesses of 1, 3, and 5 mm are the
NRCS values well above the NESZ level (i.e., −45 dB) for
incidence angles <35◦.

To avoid poor SNR, we set two thresholds: a mild threshold
of 2 dB and a harsh threshold of 6 dB above the NESZ [see
Fig. 3(a) and (b)]. Employing the mild threshold, the results
showed that the predicted NRCS corresponding to 1, 3, and
5 mm slick thicknesses remained above the “NESZ + 2 dB”
(i.e., −43 dB) for incidence angles <30◦. Using the harsh
threshold, a significant portion of the predicted data exceeded
the “NESZ + 6 dB” (i.e., −39 dB) for incidence angles <25◦.
The only exception was a few points in the HH polarization
for the 5-mm slick layer, which marginally fell below this
threshold. Concerning the measured NRCS data that represents
only the 5-mm oil-covered NI, both VV and HH exceeded
the mild threshold. However, when the harsh threshold was
imposed, the VV polarization met the limit, whereas the HH
polarization fell 3 dB below it. In summary, our SNR analysis

indicates that NRCS data at lower incidence angle (≤25◦) will
be reliable for the subsequent retrieval analysis.

In Fig. 3(a), we observe a downward linear trend in the
modeled NRCS of the oil-free NI (0 mm oil thickness) as
the incidence angle increases from 20◦ to 60◦. This behavior
is expected, especially with the VV polarization showing a
higher backscatter level and a gentler slope from −12 to
−19 dB, in contrast to the HH polarization, which exhibits
a lower backscatter level and a steeper slope from −13
to −29 dB. These oil-free NRCS data, both in trend and
magnitude, serve as baseline for comparing the NRCS data
predicted from the oil-covered NI. When we simulated a
1 mm oil slick layer over the NI surface, the expected NRCS
values for VV and HH polarizations decreased slightly by
9 and 8 dB, respectively. However, with 3 and 5 mm slick
thicknesses, the predicted copolarization NRCS values experi-
enced a significant drop, averaging 19 and 26 dB, respectively.
To validate the accuracy of our forward solver prediction,
we compare between the modeled and measured NRCS for oil
slick thickness of 5 mm. The modeled VV completely captures
the experimental measurement, while the corresponding HH
compares well within 2 dB difference. In general, there was
a clearly defined contrast once oil is introduced into the NI
scattering simulations.

Fig. 3(b) shows the oil thickness response of the modeled
NRCS at incidence angles of 25◦ and 50◦. As expected,
the NRCS exhibited a continuous decline with increasing oil
thickness, and also the predicted VV and HH signatures were
more closely related at 25◦ compared to the 50◦ incidence
angle.

In Fig. 3(c), we show a different insight into the predicted
backscatter response, which is the angular response of the
ratio of modeled NRCS in VV to HH polarization (denoted
as ϒVV/HH). The oil-free ϒVV/HH values increase from ∽1 to
10 dB, and upon introducing oil, these values inconsistently
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TABLE III
SIMULATED MICROWAVE PENETRATION DEPTH THROUGH EACH

LAYER OF THE OIL-COVERED NI PROFILE

decrease by 2, 1.5, and 2 dB for slick layers measuring 1, 3,
and 5 mm, respectively. Comparing this with the simulated
NRCS data leads to two notable observations. First, both the
oil-free and oil-covered ϒVV/HH data exhibit an increasing
trend as the incidence angle ranges from 20◦ to 60◦. Second,
as oil slick thickness increases, there is no discernible contrast.

Table III demonstrates the simulated penetration depth when
microwave radiation propagates through each layer of the
oil-covered NI profile. Based on the results, we expected
two behaviors of microwave penetration. First, when the oil
thickness is less than 2 mm, the microwave energy successfully
penetrates through the saline-oil layer and oiled-frazil layer
until it reaches the sea ice medium. Second, when the oil
thickness is 2 mm or greater, the microwave penetration
becomes limited within the saline-oil medium, leading to
NRCS values closer to or below the NESZ level. Despite this,
we noticed that the backscatter response at a 25◦ incidence
angle remained above the NESZ level (including the mild and
harsh thresholds) until the surface oil thickness approached
5 mm [see Fig. 3(b)].

B. Inversion Results

Table IV presents the results of the PSO estimation of oil
slick thickness and the related CDCs in different layers of
the oil-covered NI profile. Hereafter, the term “True” refers
to simulated values, as the actual oil thickness (d̄1) was
simulated, except for d̄1 = 5 mm, which we directly measured
during our experimental work. Note that the elapsed run time
took less than 5 min to complete.

With the synthetic NRCS data at three lower incidence
angles (20◦, 22◦, and 25◦), we noticed a consistent pattern
where the estimated oil thickness generally increased with the
true oil thickness. For instance, when the true oil thickness was
1 mm, the estimated value closely approximated 0.84 mm.
Likewise, for oil thicknesses of 3 and 5 mm, the estimated
values proportionately increased to 2.62 and 6.23 mm, respec-
tively. While the corresponding retrievable CDCs exhibited
random variations as the oil thickness increased, they were
held relatively close to their true values within a reasonable
margin of error.

With the synthetic ϒVV/HH at the same incidence angles,
we noticed an unacceptable discrepancy between the true
oil thickness and the estimated oil thickness. Moreover, the
corresponding retrievable CDCs remained unchanged as the
oil thickness increased, and their estimated values were held
relatively close to their true values.

Fig. 4. Inverted oil slick thickness: (a) estimation error difference between
the true and estimated oil thickness values, based on the synthetic (Syn) and
experimental (Exp) NRCS data. The vertical line is a separation between
“Syn” and “Exp” data; and (b) objective function evaluation.

With the experimentally measured NRCS data at a single
incidence angle (24.5◦), we noticed that the estimated slick
thickness closely approximated the true value. Similar to the
synthetic NRCS, the accompanying retrievable CDCs ranged
reasonably close to their true values.

Fig. 4 depicts the estimation error difference and the
convergence of the objective function based on our primary
estimated variable of interest (i.e., oil thickness). In Fig. 4(a),
we compare the error difference between the true and esti-
mated oil thickness values. For the synthetic NRCS, the error
difference increases with thicker oil layers; specifically, the
1 and 3 mm oil thicknesses were underestimated by 3%
and 8%, respectively, whereas the 5 mm oil thickness was
overestimated by 25%. For the experimental NRCS, the error
difference was found to be 8% overestimated based on the
5 mm oil thickness.

Fig. 4(b) demonstrates how the objective function progres-
sively minimizes the difference between the modeled and
experimental NRCS. With each iteration, the function eval-
uation consistently decreased, eventually reaching the optimal
global minimum ( f1 = 0.000432) at iteration 62.

Table V presents the retrievable variables of the oil-covered
NI profile using incorrect subsurface known ice thickness and
roughness data. Our primary estimated variable of interest is
the 5 mm oil thickness. For the oiled-frazil layer, we observed
that the retrieved oil thickness closely matched the true value
(within 0.7 mm average difference). For the sea ice layer,
we found that the estimated oil thickness closely aligned
with the actual value, with an average difference of 0.4 mm.
Regarding the subsurface roughness, we tested two cases:
1) independently adjusting either the h (marked with the
∗ superscript) or l (marked with the ∗∗ superscript) and
2) simultaneously adjusting both h and l values (marked with
the † superscript). At the oil/ice interface, when we make
independent adjustments, the retrieved oil thickness closely
matched the true value (within 0.5 mm average difference).
However, with the simultaneous adjustments, the estimated
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TABLE IV
ESTIMATED VARIABLES OF THE OIL-COVERED NI PROFILE

oil thicknesses were deemed unacceptable. On the contrary,
at the ice/water interface, all the estimated oil thickness results
closely aligned with the actual value, differing by an average
of 0.1 mm, irrespective of the independent or simultaneous
adjustments.

V. DISCUSSION

Our primary objective in this manuscript has been to
describe how C-band radar data can be used to retrieve oil
thickness on top of NI terrains. Two questions are raised
to address this objective: what is the expected C-band radar
backscatter when a simulated oil slick thickness on the NI
surface increases? And how feasible is it to retrieve the slick
thickness on NI using experimentally measured C-band radar
backscatter? It is clear that the answers to these questions
touch upon the issues of modeling backscatter sensitivity,
which is a forward scattering problem, and oil spill retrieval,
which is an inverse scattering problem.

A. Modeled Backscatter Sensitivity

To address the first question, it is important to distin-
guish between the backscatter characteristics of oil-free NI
and oil-covered NI. Our study presents a novel approach
of using a first-order multilayered-SPM forward solver to
predict the scattering behavior of stratified bare, undeformed
NI; nonetheless, remarkable progress has been achieved with
other forward solvers ([12], [31], and references therein).
For instance, Nghiem et al. [12] used a multilayer scattering
model that considered both surface and volume contributions
to predict the C-band scattering response of the 8 cm bare
NI profile, following similar stratification shown in Fig. 2(b).
Their modeled results predicted copolarization NRCS, which
decreases over the range of incidence angles with VV having
a gentler slope and a higher value than HH. In comparison,

our multilayer scattering predictions, which only account for
surface contributions, agreed with the decreasing trend of their
NRCS, except that our NRCS magnitude was 10 dB higher.
This discrepancy is due to the differences in experimen-
tal setups, ambient environmental conditions and scattering
models.

In fact, it is reasonable to assert that modeling the C-band
backscatter of bare oil-free NI is relatively well-established,
and any remaining unclear scattering mechanisms can be
readily identified and are likely to be addressed in the near
future. However, when the NI surface is covered with frost
flowers, snow, or a combination of both, considerably more
work remains to be done, particularly modeling of frost flower-
covered NI, which is a common phenomenon during freeze-up
seasons.

For oil-covered NI, we performed a backscatter sensitivity
study to assess the impact of varying oil layer thickness
on bare NI through backscatter simulations. The results in
Fig. 3(a) and (b) revealed that the predicted signatures exhib-
ited a highly sensitive response with decreasing NRCS values
as the oil layer thickness increased. We attributed this to signal
attenuation within the saline-oil layer due to a very large
imaginary part of the saline-oil dielectrics. Past experiments
by Firoozy et al. [40] and Asihene et al. [17] supported this
finding. The study in [40] injected a larger volume of oil (20 L)
beneath the ice, resulting in a thicker oil layer (value unknown)
when the oil migrated onto the ice surface. Meanwhile the
study in [17] injected a smaller oil volume (6 L) beneath
the ice, leading to a thinner oil layer (5 mm) when the oil
migrated onto the ice surface. Both studies reported a decrease
in backscatter sensitivity, with the former demonstrating a
more pronounced effect. Although our study is a simulation
where oil is spilled on top of ice, the observations from these
studies confirm the existence of complex physical processes
at interplay between oil and sea ice, which contribute to the
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TABLE V
ESTIMATED VARIABLES OF THE OIL-COVERED NI PROFILE USING ERRONEOUS SUBSURFACE ICE THICKNESS AND ROUGHNESS

smoothening of the NI surface and alteration of its dielectric
properties.

For validation purposes, our simulation result compares
well with the experimentally measured backscatter (at 24.5◦

incidence angle) of 5 mm oil-covered NI. This was expected
as the presence of oil significantly reduces the roughness rms-
height, leading to a smooth oil/ice interface.

Furthermore, we hope to determine how much an increase
in oil layer thickness suppresses the backscatter response
closer to, and even below the NESZ level (−45 dB) of
our C-band microwave scatterometer. This level was met at
lower incidence angles (≤35◦) up to 5 mm oil thickness [see
Fig. 3(b)]. Despite this, as shown in Fig. 3(a), the backscatter
responses of the oil-covered ice (especially the 5-mm thick
curve), were in close proximity to the NESZ background,
leading to a poor SNR [25]. This indicates that a potential
noise leakage from the receiver noise floor could compromise
the usefulness of NRCS for oil spill detection [24]. Using

the mild threshold (NESZ + 2 dB), preserve the acceptable
signals at incidence angles ≤30◦, while the harsh threshold
(NESZ + 6 dB) preserves the useful signals at incidence
angles ≤25◦. These thresholds highlight that the NRCS signal
values at low incidence angles are well-suitable for analyzing
low backscatter phenomena (e.g., [44], [54]). Given our SNR
analysis, we recommend the mild threshold for ground-based
scatterometer, and the harsh threshold for airborne/spaceborne
SAR measurements of oil-covered NI.

Comparing our NESZ level to that of radar satellites with
high noise backgrounds (e.g., −33 to −38 dB for RCM
ScanSAR low noise beam mode [45]), we speculate that
our prediction could be limited to a slick layer of 2 mm
or even lower. This highlights the need for technological
advancements in the development of new SAR satellites
with low NESZ levels, as well as the importance of con-
ducting more in situ radar measurements for calibration
purposes.
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Other factors we considered include the sensitivity of
C-band radar over the range of incidence angles. As noted in
Fig. 3(a) and (b), we found that the backscatter sensitivity is
greater at lower incidence angles compared to higher incidence
angles (>35◦). This difference in sensitivity arises from the
dominance of surface scattering at lower incidence angles,
whereas specular reflection becomes more dominant at higher
incidence angles.

To establish a relationship between the physical properties
and backscatter sensitivity of variations of oil thickness on the
dielectric profile of NI, we modeled the penetration depth of
microwave propagation at C-band frequency (see Table III).
Our findings indicate that in the absence of a saline-oil cover,
microwave radiations can penetrate deeper into the oil-free
NI, resulting in a higher backscatter response compared to
oil-covered NI. This is primarily due to surface scattering
contributions resulting from the strong dielectric contrast
at the air/ice interface. On the other hand, when a saline
oil is present, its surface weakens the dielectric mismatch
and suppresses the surface scattering mechanism from the
oil/ice interface. This phenomenon has been described by
Asihene et al. [17] as a “masking effect” that leads to a
constant backscatter response over time.

Based on our simulated microwave penetration depth data
across each layer of the oil-covered NI (see Table III), we ini-
tially expected the backscatter sensitivity to approach or even
fall below the NESZ level as the oil thickness increases above
2 mm. Surprisingly, we found that the backscatter sensitivity
remained above the NESZ level until the surface oil thickness
exceeded 5 mm [see Fig. 3(a) and (b)]. This indicates that even
though the estimated penetration depth through the saline-oil
layer is 2 mm (which is defined as the depth where the EM
power drops by a factor of e = 2.7 times at zero degree
incidence angle [22]), some fraction of EM energy still reaches
the oil/ice rough surface at the 5 mm depth. As a result, this
phenomenon generates a measurable backscatter signal higher
than the NESZ level up to a certain incidence angle.

The sensitivity of the ϒVV/HH to oil slick thickness vari-
ations provides a different perspective on our investigation
because of its ability to discriminate between uncontaminated
and oil-contaminated NI [43]. Prior to the oil spill, ϒVV/HH
exhibited a steep increase over the range of incidence angles.
This behavior has been linked to highly saline brine cover
under freeze-up conditions, which reflects more microwave
energy at larger incidence angles, decreases horizontally polar-
ized wave transmission, and increases the ϒVV/HH values [55].
When oil is introduced, ϒVV/HH decreases with a clear contrast
from the oil-free ice, which we attributed to the reduction
of the surface roughness effect. This finding agrees with the
observation by Brekke et al. [54] which found that oil reduces
the SPM-simulated ϒVV/HH response.

In comparison to the NRCS, ϒVV/HH displays incon-
sistent sensitivity to variations in oil thickness [refer to
Fig. 3(a) and (b)]. While sensitivity becomes apparent upon
oil introduction, it follows neither a decreasing nor increasing
trend with further increments in oil thickness. This incon-
sistency could be attributed to the VV/HH ratio, which is
less sensitive to the roughness effect compared to either the

VV or HH NRCS. This is the first time, to our knowledge,
that such a result has been observed for oil-covered NI;
thus, additional experiments data are required for validation.
Moreover, when compared to NRCS, the ϒVV/HH displayed
a negligible contrast at lower incidence angles and very low
contrast at higher incidence angles as the oil layer thickness
increased [see Fig. 3(c)]. This indicate that the ϒVV/HH data
was insensitive to a changing oil slick thickness. As a result,
we attest that inversion studies involving the retrieval of oil
slick thickness on sea ice are more likely to be successful with
remotely sensed NRCS observations.

B. Oil Thickness Retrieval

After interpreting the scattering sensitivity predicted by
our multilayered-SPM forward solver, we focus our atten-
tion on the second question involving the inversion of oil
layer thickness on bare, undeformed NI terrains. To tackle
this, we used two different backscatter datasets during the
PSO-based parametric inversion process to evaluate the data
misfit objective function.

Initially, we employed synthetic inputs to test the applica-
bility of our optimizer. The results in Table IV demonstrate
that when using NRCS, the estimated oil thickness was closer
to the true value compared to when using ϒVV/HH. This
indicates that the PSO hyperparameters were optimally fine-
tuned, and NRCS datasets are suitable for accurately retrieving
oil thickness, as their predicted signatures had shown to be
sensitive to the increasing oil layer thickness on ice [see
Fig. 4(a)]. Our findings agree with several previous inversion
studies that utilized NRCS datasets for their inversion studies
(e.g., [12], [31], [56] and references therein). On the con-
trary, the inversion using ϒVV/HH was unsuccessful because
the simulation results were inconsistent and lacked contrast
with oil thickness variations. We discussed in the preceding
Section IV-A that this inconsistency and lack of contrast was
caused by the derivation of ϒVV/HH, which is less sensitive
to roughness, making it solely dependent on CDCs of the
inhomogeneous medium and radar incidence angle [23]. This
highlights the significance of roughness parameters for accu-
rate estimation of oil thickness on sea ice; thus, we recommend
using instruments such as LiDAR for precise measurement of
surface roughness [57], as well as roughness at the underlying
oil/ice and ice/water interfaces (although the technology is
currently unavailable).

In addition, we used experimentally measured NRCS data
to validate the performance of PSO, and the estimated result
closely matched the true oil thickness (see Table IV). Com-
pared to synthetic data that employed three incidence angles,
the estimation error difference result was impressive with the
measured NRCS data at a single incidence angle (see Fig. 4).
We acknowledged that using a single dataset in terms of
incidence angle and oil thickness is insufficient because our
studies were limited to experimental designs constraints. Our
future work will aim to improve the realism of the inverse
solver by expanding the inversion method to encompass a wide
range of incidence angles and oil layer thicknesses.

Our PSO-based parametric inversion technique allows for
quantitative extraction of multiple physical parameters from
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remote sensing observations. Although oil slick thickness is
our primary parameter of interest, we were able to retrieve the
CDCs of saline oil, oiled frazil, and sea ice (see Table IV).
These retrievable CDCs were randomly close to their true
values within a reasonable margin of error (except for the
5 mm oil thickness estimation, which we attributed to the
noise leakage from the NESZ level). We say that the error
margin is “reasonable” because the environmental conditions
that contribute to sea ice formation in regions including the
Arctic, undergo dynamic processes [58], resulting in constant
changes in the thermophysical properties that characterize
these inverted CDCs. As a result, we anticipated these random
variations, but we recommend that evaluations of the objective
function be monitored. For instance, as shown in Fig. 4(b), the
convergence of the objective function demonstrates a guar-
anteed optimal value of our estimated parameter of interest.
Moreover, we recommend that future work consider direct
dielectric measurements of saline-oil and oil-contaminated ice
in a wide range of temperatures and salinities. These measure-
ments could be used for validating the inversion algorithms
and also for tuning/validating the dielectric mixture model.

In time-sensitive emergency situations such as oil spills,
rapid identification of the thickest oil spill zone is crucial
for mounting an effective response. This necessitates the use
of fast inverse scattering models capable of extracting the
oil thickness from remote sensing observations. Our inversion
method takes an iterative approach that uses the forward solver
to assess the data misfit objective function, while relying on the
PSO algorithm to minimize error differences in the estimated
unknown variables. As shown in Table IV, the computational
cost of our method is extremely low, taking less than 5 min to
complete (on a standard PC with 8 GB RAM and 1.6 GHz 4-
core CPUs). This run time demonstrates the efficiency of our
forward solver and its potential to handle larger radar datasets
(such as SAR imagery).

Our inversion studies have been successful thus far; how-
ever, it is important to recognize the limitations of this
method. First, this inversion process does not support a zero-
oil thickness. We assumed that oil must be present, which
implies that the occurrence of an oil spill situation should be
detected before its application. Second, this inversion method
is only generalized for oil covering bare NI and does not
account for the presence of frost flower and snow cover, which
are commonly associated with NI growth [20]. This limitation
arises from insufficient snowfall and unfavorable atmospheric
conditions for frost flower formation during the SERF oil-
on-ice experiment [17]. Our future work will consider this
limitation and introduce surface cover such as frost flower,
snow, or combination of both into the multilayer dielectric pro-
file NI. Third, this inversion method relies on prior knowledge
associated with the inhomogeneous multilayered oil-covered
NI (e.g., roughness, ice thickness, and water dielectrics) to
improve estimation accuracy. In practice, the existing radar
satellites such as SAR, lack the capability to directly retrieve
(at least with the limited number of measurements) some
of these input parameters, including the roughness at the
oil/ice and ice/water interfaces, as well as the underlying ice
thicknesses of the oil-covered NI (see Fig. 2). This implies that

there is a likelihood of using inaccurate a priori information,
which could lead to estimation errors.

For this reason, we tested the estimation accuracy of our
inversion with erroneous a priori subsurface roughness and ice
thickness (see Table V); note that no testing was done with
incorrect surface roughness because oil spills on NI scenes
usually smoothens the ice surface [17]. Our findings emphasize
the importance of using accurate a priori knowledge for precise
oil thickness retrievals in oil-covered NI profiles. Under-
standing these relationships, we establish that PSO-inversion
method achieves optimal results when NI thickness is between
2 and 10 cm, with the topmost layer (frazil) thickness falling
between 0.1 and 1 cm. Furthermore, we found that the
roughness at the oil/ice interface can significantly affect the
inversion process compared to the ice/water interface. This
is because the presence of highly saline-oil cover attenuates
high microwave signals, limiting the microwave propagation
through the sea ice medium (see Table III).

VI. CONCLUSION

In this manuscript, we presented an EM modeling strategy
for retrieving the thickness of an experimental oil spill on sea
ice. Our approach involves using a first-order approximation
of a multilayered-SPM forward solver to simulate the C-band
radar backscatter from an oil-covered NI and employing a
PSO-based parametric inverse solver to estimate the oil slick
thickness.

Prior to our simulation and inversion analyses, we checked
the influence of noise contamination using mild (2 dB) and
harsh (6 dB) thresholds of the measured and simulated NRCS
data above the NESZ level (see Fig. 3). Our results showed
that NRCS data for the 1, 3, and 5 mm slick layer curves at
lower incidence angles ≤25◦ were reliable for analysis. This
finding highlights the need for technological advancements in
the development of new SAR satellites with low NESZ levels.

Our simulation results demonstrate several important find-
ings (see Fig. 3). First, the predicted backscatter is highly
sensitive to the increase in oil layer thickness, resulting in
a continuous reduction in backscatter strength. This reduction
is attributed to signal attenuation within the saline-oil layer.
Second, the copolarization ratio is initially sensitive as soon as
oil covers the NI surface, decreasing its magnitudes. However,
unlike the backscatter sensitivity, the copolarization ratio lacks
consistency due to the reduction of the roughness effect. Third,
the penetration depth through each layer of the oil-covered NI
is significantly hindered by the oil layer, which contains highly
saline brine wicking from the topmost layer of NI.

Regarding our inversion results, the estimated oil thickness
closely matches the true value (see Table IV). For instance, the
synthetic NRCS underestimates 1 and 3 mm oil thicknesses by
3% and 8%, and overestimates 5 mm thickness by 25%, while
the experimental NRCS overestimates 5 mm oil thickness by
8%. The corresponding retrievable dielectrics exhibit random
variations within a reasonable margin of error, attributed to the
dynamic nature of NI thermophysical properties. With the use
of synthetic copolarization ratio, the estimated oil thickness
proves unsuccessful, and we recommend against its use.
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These findings hold significant implications for oil spill
response efforts. Accurately estimating the thickness of an oil
slick allows for the identification of areas with the highest
concentration of oil, which should be prioritized for immediate
action using remediation techniques such as in situ burning and
chemical dispersants. By swiftly providing this information,
the disaster response team can offer actionable methods and
recommendations for containing and cleaning up the spill.
In the context of oil spills, time is of the essence, and the
rapid identification of the thickest oil spill zones is crucial
for making well-informed decisions that minimize damage to
natural resources, communities, and economies dependent on
them. Additionally, combining these thickness estimates with
the extent of the spill area enables more precise calculations of
the total volume of oil spilled, facilitating accurate assessments
of environmental impacts.

While our study establishes the foundation for using C-band
radar observation to estimate oil slick thickness on NI, there
is still room for improvement. First, our inversion method
relied on a single experimental data set for validation. Second,
the method assumes the presence of oil, making it applicable
primarily as a planning tool for oil spill situations. Third, the
a priori parameters used in our inversion process cannot be
directly extracted from current radar satellites. However, this
is not a problem provided our assumptions for subsurface NI
thickness are within 10 cm, and for underlying roughness
remain within the SPM region of validity (see Table V).
Finally, surface features such as frost flower and snow, which
commonly occur during sea ice formation, were not considered
in our inversion method. In future research, we intend to
address these limitations by incorporating a more generalized
scenario encompassing various surface features and a wider
range of experimental data.
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