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Yang Chen, and Wenping Yuan

Abstract— Restricted by the design of satellite sensors, the
existing satellite-based normalized difference vegetation index
(NDVI) cannot simultaneously have a high temporal resolution
and spatial resolution, which substantially limits its applications.
In recent years, several spatiotemporal fusion models have
been developed to produce vegetation index datasets with both
high spatial and temporal resolutions, but large uncertainties
remain. This study proposes a spatiotemporal fusion model
[i.e., Integrating ENvironmental VarIable spatiotemporal fusion
(InENVI) model] based on a machine-learning method by incor-
porating environmental variables to reconstruct NDVI data. Over
14 study areas covering various vegetation types globally, the
InENVI method was validated for reproducing spatiotemporal
variations in NDVI. On average, the determining coefficients
(R2) of the reconstructed NDVI compared with satellite-based
NDVI observations were above 0.90, reflecting the spatiotemporal
variations over all study sites. In addition, we compared the
performance of the InENVI model with seven other fusion models
over two cropland areas with high vegetation heterogeneity. The
results showed that the newly developed InENVI method had the
best performance, and the reconstruction error of the InENVI
method decreased about 23.68%–59.63% on average over two
study areas compared to the other seven methods. Our analyses
also highlighted that the integration of environmental variables
into spatiotemporal fusion is necessary to improve reconstruction
accuracy. The InENVI model provides an alternative approach
for reconstructing NDVI datasets with both high spatial and
temporal resolutions over large areas.
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I. INTRODUCTION

THE normalized difference vegetation index (NDVI) is
a widely used satellite-based product for estimating

terrestrial vegetation production [1], detecting vegetation
dynamics [2], and monitoring agriculture [3]; the spatial
and temporal resolutions of these data can determine the
application potential of remote sensing images. There are
essentially no satellite sensors that can simultaneously achieve
high spatiotemporal resolution and long time series. Some
remote sensing images have high temporal resolution (e.g.,
0.5–2 days) but low spatial resolution (from 250 m to >1 km),
such as the Moderate Resolution Imaging Spectroradiometer
(MODIS) dataset. Limited by their low spatial resolution,
these satellite-based NDVI datasets cannot identify vegetation
changes on a fine scale [4]. Some other types of remote sensing
images have low temporal resolution (e.g., >5 days) but high
spatial resolution (e.g., Landsat dataset, 30 m); because of
their low temporal resolution, these high spatial resolution
images are easily affected by poor atmospheric conditions,
such as cloudy and rainy weather [5], [6]. Consequently, obser-
vations in these datasets are often missing or contaminated [7].
In addition, these datasets are acquired relatively infrequently
compared to low spatial resolution datasets, generally limiting
their ability to capture key vegetation phenological phases [8].

Numerous studies have been attempting to develop methods
for reproducing NDVI time-series images with both high
spatial and temporal resolutions, which can be mainly divided
into the temporal interpolation methods and the spatiotemporal
fusion methods [9], [10]. The temporal interpolation method
is based solely on a high spatial resolution dataset [11],
[12], [13], [14], [15]. These interpolation methods develop a
time-series method to fit the original Landsat-NDVI data and
reconstruct NDVI on dates without Landsat observations to
improve the temporal resolution of the dataset [16], [17]. Typ-
ical time-series fitting methods include linear harmonic [17],
[18], logistic [19], and nonlinear harmonic models [10]. The
performance of these interpolation methods depends heavily
on the number and representation of the available Landsat
observations [10]. In particular, the availability of original
Landsat data during vegetation phenophase transitions and
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growth peak periods substantially determines the reliability of
the method [6], [11]. There are many data gaps during the
growing seasons in humid areas [20], which greatly restricts
the application of these methods.

Spatiotemporal fusion models are another method for recon-
structing NDVI time-series data with both high spatial and
temporal resolutions. In contrast to temporal interpolation
methods, spatiotemporal fusion models integrate high temporal
resolution but low spatial resolution data (e.g., MODIS) to
reconstruct NDVI [9], [21], [22], [23], and MODIS data
can provide reference information for reconstruction dates
to optimize the performance of the method. In general,
spatiotemporal fusion models first develop the relationship
between Landsat-NDVI and MODIS-NDVI on 30-m pixels
on dates with both Landsat and MODIS datasets, and then,
the Landsat-NDVI can be reconstructed based on the estab-
lished relationship and data from the MODIS-NDVI on dates
without Landsat-NDVI data. Previous studies have developed
numerous spatiotemporal fusion models, such as the spatial
temporal adaptive reflection fusion model (STARFM) [9],
spatial temporal data fusion approach (STDFA) [24], and
sparse representation-based spatiotemporal reflectance fusion
model (SPSTFM) [25]. In recent years, with the continu-
ous progresses of machine learning methods, spatiotemporal
fusion models based on machine learning have been widely
applied, including extreme learning [26], random forest [27],
[28], convolutional neural network [29], [30], artificial neural
network [31], and long-short-term memory [32].

Although many spatiotemporal fusion models have been
developed, there are still two important shortcomings that
significantly restrict their performance. First, almost all the
existing models use one or two pairs of cloud-free Landsat
and MODIS images that are adjacent to the target construction
dates [10], [33], [34]. However, over humid areas, there are
large ratios of temporally continuous data gaps, and it is quite
difficult to find high-quality adjacent pixels, which greatly
decreases the accuracy of the method [11], [35], [36]. For
example, previous studies have found that available cloud-free
images can be several months away from a given date [11].
Although gap-filling and Savitzky–Golay filtering (GFSG)
model can be used to improve the reconstruction of time
series with consecutive missing values [11], it may still be
challenging to apply sparse and insufficient observations to
Landsat data reconstruction.

The second shortcoming of current spatiotemporal fusion
models is the neglect of environmental variables for determin-
ing the relationships between high and low spatial resolution
images. Essentially, a spatiotemporal fusion model can be
used to explore the relationships between the two types of
satellite-based datasets [9]. However, several studies have
highlighted that a linear mixing assumption is only suitable
for cases of bare soil, ice, and snow, and the relationship is
assumed to be nonlinear over vegetation-covered areas [37],
[38], [39], [40]. Although machine-learning methods have
been used to capture nonlinear relationships, they only assume
that the relationship is temporally dependent [36], [41].
In fact, a nonlinear relationship between the two types of
satellite-based datasets is likely to change with variations

in the environmental conditions [42]. Especially in het-
erogeneous vegetation regions, low spatial-resolution pixels
generally include multiple vegetation types, which display
diverse responses to environmental changes [43]. For instance,
a previous study showed that grassland and cropland may
be less adaptive to water changes than forests ecosystems
because of their shallower root systems [44]; however, cur-
rent machine-learning methods only consider the information
contained in the base and target date images [41], [45], [46].
Machine-learning methods should incorporate environmental
variables to improve the performance of the reconstructed
NDVI dataset [42].

This study aims to develop a new machine-learning spa-
tiotemporal fusion model to reconstruct high spatiotemporal
resolution images during all periods, for which there are high
temporal resolution images. In particular, our study utilizes all
available images of high spatial resolution (Landsat) and high
temporal resolution (MODIS) and integrates the impacts of
environmental variables on their relationship into the fusion
model. The overall objectives of this study are to 1) develop a
machine-learning spatiotemporal fusion model to reconstruct
high spatial resolution datasets, 2) examine the accuracy of this
new model over various ecosystem types, and 3) compare the
accuracy of the new model with other existing fusion mod-
els, including weighted function-based and unmixing-based
models.

II. INTEGRATING ENVIRONMENTAL VARIABLE
SPATIOTEMPORAL FUSION MODEL

A. Overview of InENVI

This study developed a new machine-learning fusion model,
i.e., Integrating ENvironmental VarIable spatiotemporal fusion
(InENVI), which has the following improvements compared
to previous machine-learning models. First, InENVI includes
neighboring pixels that with a certain similarity to the target
pixel to build the machine-learning models. InENVI is a
machine-learning fusion model, and the number of training
samples is important for improving model accuracy. Theo-
retically, there should be comparable relationships between
similar high spatial-resolution pixels and the same low spatial-
resolution pixels. Therefore, this study used a local window
to select pixels with a certain similarity to the target pixel
and included these pixels in the InENVI model to expand the
number of training samples.

Second, we assumed that the relationship between high
and low spatial-resolution NDVI data highly depends on
environmental conditions; therefore, we included environ-
mental variables as explanatory variables in the InENVI
method. Although several fusion models have highlighted the
time-varying relationship between high spatial resolution and
high temporal resolution images [22], [47], none of them
have used environmental variables to indicate the varying
relationship. Near any given low spatial-resolution pixel, there
are many neighboring pixels with high spatial resolution.
In most cases, low-resolution pixels cover multiple vegeta-
tion types, and it is well established that various vegetation
types response quite differently to environmental changes [42],
[48]. Therefore, the time-varying relationships between high
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Fig. 1. Flowchart of the InENVI model.

spatial-resolution and high temporal-resolution images may
be highly dependent on environmental conditions. Previous
studies have analyzed the dominant environmental variables
for determining temporal variations in the vegetation index
and highlighted that the air temperature, vapor pressure deficit,
and solar radiation are the most important variables com-
pared to other environmental variables [42], [48]. Therefore,
we selected these three environmental variables to develop the
InENVI model.

Based on these assumptions, the InENVI fusion model is
developed as follows:

LNDVIi, j,t = f
(
MNDVIi, j,t , Ti, j,t , VPDi, j,t , Ri, j,t

)
(1)

where LNDVIi, j,t is the Landsat-NDVI at the i th pixel (tar-
get pixel and similar pixels), j th year, and t th period; f
is the adopted machine-learning method; MNDVIi, j,t is the
weight-average NDVI derived from MODIS observations.
Ti, j,t , VPDi, j,t , and Ri, j,t are the air temperature, vapor pres-
sure deficit, and incident shortwave radiation, respectively.
Fig. 1 shows the flowchart of InENVI model. The followings
are the detailed method.

We first collected all Landsat images from 2001 to 2020,
including Landsat5, Landsat7, and Landsat8 datasets. The
revisit time of all three Landsat satellites is 16 days; therefore,
the temporal resolution of combined three satellites is higher
than 16 days. To match with the temporal resolution of MODIS
NDVI (8 day, see Section III-A), we set each of Landsat image
into the corresponding intervals of 8 day. At some intervals
of 8 day, there are no Landsat images. However, there are
multiple images at other intervals of 8 day, and we selected the
maximum NDVI value with this interval as the NDVI value.

B. Selection of Similar Pixels

To search for similar pixels in a given target pixel
(i.e., a Landsat pixel), we first set a sliding window with

1500 × 1500 m (i.e., 50 × 50 Landsat pixels). In the sliding
window, we searched for similar pixels in terms of seasonal
changes in the Landsat-NDVI. We then retrieved the seasonal
curve (SC) of NDVI, that is, the 8-day NDVI values averaged
over the last three years (the present year, previous year, and
subsequent year). The averaged 8-day NDVI values of the SC
should include 70% of the sample period, and if the ratio was
<70%, we then used the observations from the five most recent
years to calculate the averaged SC of NDVI, and so on, until
the ratio reached more than 70%. The purpose of selecting the
closest years to generate SC is to avoid the impacts of vegeta-
tion type changes on spatiotemporal fusion, and the shorter the
periods used in calculating Landsat season curve and selecting
similar pixels, the higher the probability of avoiding vegetation
type changes. Similar pixels were identified by calculating the
determination coefficient (R2) for the seasonal NDVI series
of the target and adjacent pixels within the sliding window.
If the calculated R2 value was larger than the set threshold (i.e.,
0.95), the pixel was considered to be similar to the target pixel.

This study included multiple MODIS pixels to calculate
MNDVI of target and similar Landsat pixels [see (1) and
Fig. 1], and these MODIS pixels are named as contribution
pixels. We used the same method of selecting similar pix-
els to determine contribution pixels. For example, for the
target Landsat pixel, we calculated the correlation coeffi-
cient of NDVI series between target Landsat pixel and all
MODIS pixels within the sliding window. If the correlation
coefficients (R) are larger than 0.8, the MODIS pixels are
set as contribution pixels. The same method was used to
determine contribution pixels for all similar pixels. In addi-
tion, we assumed the larger contributions from the closer
MODIS contribution pixels to reconstruct NDVI of target
pixel. Therefore, the MNDVI was used as

MNDVIt =

M∑
l=1

ConNDVIl,t × wl (2)

wl =
Rl∑M

l=1 Rl
(3)

where MNDVIt is the weighted combined NDVI value at the
t th period derived from all contribution pixels (Con_NDVIl,t )

for target pixel or similar pixel; M indicates the number
of all contribution pixels; wl is the weight value of the lth
contribution pixel; Rl indicates the correlation coefficients
between target pixel (or similar pixels) and contribution pixels.

C. XGBoost Model

This study used the Extreme Gradient Boosting (XGBoost)
algorithm to explore the nonlinear relationship between the
MODIS- and Landsat-NDVI. XGBoost was proposed by
Chen and Guestrin [49] and is an optimized integrated tree
algorithm. The main idea is to continuously add new trees
and constantly split features to grow a tree. In fact, adding
one tree each time teaches the algorithm a new function to
fit the residual of the last prediction. Each tree falls into a
corresponding leaf node, and each leaf node corresponds to
a score. XGBoost is a great improvement over the traditional
gradient boosting decision tree (GBDT) algorithm, especially
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in the optimization of the objective function. Previous studies
have demonstrated the good performance of XGBoost in
predicting vegetation growth [42], [48].

In general, we collected all Landsat and MODIS images
of the same period from 2001 to 2020, but we used only
80% of the available paired images during the last three
years (the present year, previous year, and subsequent year)
to train the InENVI model each time. The trained InENVI
model was first used to predict high-resolution images at any
desired date using only MODIS images and to predict the
high spatial resolution images in the other 20% of periods
with both Landsat and MODIS datasets for method valida-
tion. We recycled the aforementioned products to obtain the
predicted high spatial resolution NDVI values for all periods
with the cloud-free paired Landsat and MODIS images. For
validation, we compared the predicted NDVI values for each
period with the corresponding Landsat observations.

III. DATA AND EXPERIMENTAL SETUP

A. Satellite Data and Processing

In this study, we used MODIS-NDVI data as low spatial-
resolution images. The NDVI was calculated based on the
surface spectral reflectance for red (620–670 nm) and near-
infrared (NIR) (841–876 nm) bands at 250-m resolution.
In order to minimize the noise, such as disturbances from
clouds and the atmosphere, for each MODIS pixel, the
maximum value composite method was performed for the
derived NDVI values from the MOD09Q1 and MYD09Q1
surface reflectance products within an 8-day period. We used
the weighted Whittaker smoother to preprocess the initial
MODIS-NDVI product to avoid uncertainties induced by the
MODIS data. Compared with other filtering methods, the
Whittaker smoother can balance fidelity and roughness well
by minimizing the fitting error and penalizing the roughness
of the smooth curve [50], [51].

Landsat-NDVI data were used as high spatial-resolution
images. This study included surface reflectance data from the
Landsat 5 ETM, 7 ETM+, and 8 OLI sensors. These sensors
have near-polar orbits that can collect reflectance imagery
every 16 days at a spatial resolution of 30 m. We selected these
three satellites together in the study to create an 8-day return
frequency for a special region. Furthermore, considering the
sensor differences, we converted the NDVI data extracted from
Landsat 5 or 7 sensors (NDVIL5,7) to match the Landsat 8 OLI
sensor (NDVIL8) with the following linear transformation [52]:

NDVIL8 = 0.0235 + 0.9723 × NDVIL5,7. (4)

B. Meteorological Data

This study used the ERA5 reanalysis dataset to drive
the InENVI model, which is the latest generation of Euro-
pean Centre for Medium-Range Weather Forecasts (ECWMF)
reanalysis data that has been substantially improved in terms
of its spatiotemporal resolution, radiative transfer model, and
assimilation method [53]. ERA5 dataset provides daily meteo-
rological variables at a spatial resolution of 0.1◦. In this study,
we calculated the mean values of each 8-day interval to match

Fig. 2. Geographical distribution of the 14 study areas. The abbreviations
indicate evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF),
deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), crop-
land (CROP), shrubland (SHRUB), and grassland (GRASS).

the temporal interval of Landsat and MODIS NDVI datasets,
and we also resampled meteorological data to 30 m using
cubic spline interpolation to match the resolution of Landsat.
Air temperature and incident shortwave radiation were directly
extracted from the reanalysis dataset. Notably, the ERA5
reanalysis dataset does not provide vapor pressure deficit data,
which requires further calculation based on relative humidity
and temperature [2].

C. Study Areas

Fourteen heterogeneous study areas were selected to run
the InENVI model and examine its performance. The study
area was dominated by various vegetation types, includ-
ing evergreen needleleaf forests (ENFs), evergreen broadleaf
forests (EBFs), deciduous needleleaf forests (DNFs), decidu-
ous broadleaf forests (DBFs), croplands (CROPs), shrublands
(SHRUBs), and grasslands (GRASSs) (see Fig. 1). All study
areas covered an area of 30 × 30 km, and the specific location
information of all study areas is labeled in Fig. 2.

D. Model Comparison and Assessment

This study assessed the accuracy of the InENVI model
in reconstructing the spatiotemporal variations of the recon-
structed NDVI. As discussed in Section II, this study
conducted cross-validation, and 80% of the paired cloud-free
MODIS and Landsat observations were used to train the
InENVI model, while the other 20% of the paired observations
were used for validation. In this research, the determination
coefficient (R2) was selected to evaluate the variations in
observations simulated by the InENVI model. Furthermore,
the root mean squared error (RMSE) and relative predictive
error (BIAS) were also selected to participate in the statistical
assessment, which is expressed as follows:

RMSE =

√√√√1
n

n∑
i=1

(Oi − Pi )
2 (5)

BIAS =

∑n
i=1 |Oi − Pi |∑n

i=1 Oi
× 100%. (6)

In addition, structural similarity (SSIM) was further applied
to denote the similarity between the fusion image and the true
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image, ranging from −1 to 1, and it can be calculated using
the following formula:

SSIM =

(
2µ f µt + C1

)(
2σ f t + C2

)(
µ2

f + µ2
t + C1

)(
σ 2

f + σ 2
t + C2

) (7)

where f and t represent the fused and true images, respec-
tively; µ and σ refer to the mean and standard deviation,
respectively; σ f t is the covariance of the f and t images;
and C1 and C2 are set as constants to avoid computation
errors when divided by 0, which are set to 0.0001 and 0.0009,
respectively. The higher the SSIM value, the more similar the
two images are, indicating better performance of the fused
model.

Additionally, to assess the performance of the InENVI
model, seven typical spatiotemporal fusion models were
selected for comparison with the InENVI model: the
STARFM [9], enhanced spatial and temporal adaptive
reflectance fusion model (ESTARFM) [22], combination of
downscaling mixed pixel algorithm and spatial and temporal
adaptive reflectance fusion model (CDSTARFM) [54], flexible
spatiotemporal data fusion (FSDAF) [23], regression model
fitting, spatial filtering and residual compensation (Fit-FC)
[55], simultaneously generated full-length NDVI time series
(SSFIT) [6], and GFSG [11]. The comparisons were only
conducted in two cropland areas (i.e., CROP01 and CROP02)
because of their high heterogeneity.

E. Sensitivity Analysis and Ablation Experimental Setup

In order to better identify the relative importance of parame-
ters, we conducted sensitivity analysis on the developed model.
In machine learning algorithms, sensitivity analysis is a crucial
method for assessing how changes in the parameter settings
affect the quality of the results [56]. In this study, each
parameter was systematically changed, and each time accuracy
was computed, in order to determine the sensitivity of the
results to variation. The key variables tested include the SCs
used for training, the sliding window size, and the Landsat
correlation coefficient threshold. Among them, the SCs were
incorporated into three different combinations as 2016–2018,
2017–2019, and 2018–2020, and 2019 was considered as the
target year. The size of the sliding window was set from
10 × 10 to 65 × 65 Landsat pixels, with a step size of 5,
and a total of 12 tests were conducted. The threshold for
the determination coefficient (R2) used in the identification
of similar pixels was configured at five levels: 0.8, 0.85, 0.9,
0.95, and 0.98, resulting in a total of five tests.

These tests were conducted using CROP01 region as an
example, and MODIS- and Landsat-NDVI and environmental
variables from 2018 to 2020 were used for model training and
prediction. We used only 80% of the available paired images
during the selected three years to train the InENVI model
each time. The trained InENVI model was used to predict the
high spatial resolution images in the other 20% of periods.
The above process was recycled until the predicted high
spatial-resolution NDVI values for all periods were obtained.
For validation, we compared the predicted NDVI values for
each period with the corresponding Landsat observations.

Fig. 3. Comparisons of (a) R2, (b) RMSE, (c) BIAS (%), and (d) SSIM
among all cloud-free NDVI observations and the reconstructed NDVI over all
14 study areas from 2001 to 2020.

We also conducted ablation experiments on three impor-
tant innovative steps of the InENVI model, which include
searching similar pixels of Landsat, searching MODIS con-
tributed pixels, and introducing environmental information.
Ablation experiments explore the impact on model perfor-
mance by removing different steps of the model, which is
a very labor-saving method to study causal relationships [57].
To verify the importance of each step, the contributed pixels
of MODIS, the similar pixels of Landsat, and environmental
variables were removed, respectively. In each experiment,
the verification kept consistency with previous tests, and the
results were also compared with the original InENVI model,
which did not remove any steps.

IV. RESULTS

A. Accuracy Assessment of the InENVI Fusion Model

First, this study examined the accuracy of the reconstructed
NDVI using the InENVI fusion model to reproduce spatial
variations. In each study area, we selected all cloud-free
Landsat images during the study period (2001–2020), which
were not used to train the InENVI model for validation.
We calculated four statistical metrics (see Section III-D) for
each period and then calculated the mean values of these four
metrics over all investigated periods to validate the model
performance. The results indicate that the InENVI model can
accurately reflect the spatial variations in NDVI for various
vegetation types (see Fig. 3). The mean values of R2 were
above 0.90 over all 14 study areas, and the highest R2 reaches
0.99 [see Fig. 3(a)]. The average RMSE and BIAS values
were below 0.03 and 5% over all areas [see Fig. 3(b) and (c)],
respectively, and the average SSIM values were above 0.9 [see
Fig. 3(d)].

To better evaluate the actual performance of the InENVI
model, the study area of CROP01, with strong vegetation
heterogeneity, was selected for a detailed assessment. In this
region, four Landsat-NDVI images on March 13, June 9,
September 21, and December 18 in 2020 served as reference
data for independent verification under cloudy and cloud-free
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Fig. 4. Comparison between Landsat-NDVI observations and the recon-
structed NDVI at the CROP01 site on (a) March 13, (b) June 9, (c) September
21, and (d) December 18 in 2020.

Fig. 5. Comparisons of (a) R2, (b) RMSE, and (c) BIAS (%) among all
cloud-free observed NDVI values and the reconstructed NDVI over 14 study
sites from 2001 to 2020.

conditions (see Fig. 4). It is evident from Fig. 4 that the
InENVI model can accurately reconstruct the NDVI. Spatial
details were captured correctly in the fused images [see
Fig. 4(a)–(c)].

We further examined the performance of the InENVI model
in reproducing temporal variations in NDVI over all study
areas. Based on the 8-day reconstructed NDVI values and
observations from 2001 to 2020, we calculated three metrics
(i.e., R2, RMSE, and BIAS) at each pixel and used the mean
values of the three metrics over the entire study area to indicate
the model performance for reproducing the temporal variations
of NDVI. The results revealed that the reconstructed NDVI
accurately indicated the temporal variations in NDVI in all
14 study areas (see Fig. 5). The average overall R2 was
above 0.95, and it almost reached 1 in several study areas
[see Fig. 5(a)]. Compared to the other ecosystem types, the
two EBFs showed a lower average R2 and higher RMSE [see
Fig. 5(a) and (b)].

As an example, this study showed a detailed valida-
tion of temporal variations in the reconstructed NDVI in
the CROP01 area. The mean values of the reconstructed

Fig. 6. Validation of the temporal variations of the Landsat-NDVI observa-
tions and reconstructed NDVI at the CROP01 site. (a) Temporal changes of the
Landsat-NDVI observations and constructed NDVI averaged over all pixels
at the CROP01 site. (b) Correlation between the observed and reconstructed
NDVI at the CROP01 site.

Fig. 7. Comparisons between the observed and reconstructed NDVI at the
CROP01 site from 2001 to 2020 showing (a) R2, (b) RMSE, and (c) BIAS.

NDVI over the entire study area agreed very well with the
Landsat-NDVI observations in terms of temporal variations
on an 8-day scale from 2001 to 2020 [see Fig. 6(a)], and
the temporal correlation between the average reconstructed
NDVI and the observations reached approximately 0.97 [see
Fig. 6(b)]. In addition, for almost all pixels, the reconstructed
NDVI indicated very good temporal variation in the observed
NDVI. The BIAS of most pixels (>84%) was <5% [see
Fig. 7(c)]. The RMSE is below 0.04 for over 95.98% of the
pixels, and the mean RMSE is approximately 0.02, with high
values mainly distributed at the border of fields and roads [see
Fig. 7(b)].

B. Method Comparison

This study compared the performance of the InENVI
model with seven other spatiotemporal fusion models (see
Section III-D) in two cropland regions (i.e., CROP01 and
CROP02) because of high vegetation heterogeneity. These
two areas have been selected by previous studies for data
fusion method validation [6], [11]. First, we compared the
model performance in reproducing the spatial pattern of the
NDVI in the two study areas. The mean values of the four
metrics (i.e., R2, RMSE, BIAS, and SSIM) showed the best
performance for the InENVI model among all seven investi-
gated models (see Fig. 8). The mean values of R2 reached
0.98 and 0.93, the RMSE values were 0.03 and 0.03, and the
bias values were 3.85% and 4.53% for the InENVI model
at the CROP01 and CROP02 areas, respectively. In addition,
the fact that SSIM (0.99) is closer to 1 than the SSIM of
the other methods indicates that the InENVI model has the
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Fig. 8. Comparisons of the InENVI model with the other seven models
for reproducing spatial variations of NDVI in CROP01 (2017) and CROP02
(2018). The four metrics were calculated for every cloud-free moment.

Fig. 9. Comparisons of the method performance for reproducing spatial
variabilities at the CROP01 site on December 11, 2017. (a) Observed NDVI,
(b) InENVI, (c) CDSTARFM, (d) ESTARFM, (e) STARFM, (f) FSDAF,
(g) Fit-FC, (h) SSFIT, and (i) GFSG.

highest similarity with the observations compared to the other
methods.

Figs. 9 and 10 show a detailed comparison of the spa-
tial patterns derived from the eight models in these two
cropland study areas. Compared with the other seven meth-
ods, the NDVI reconstructed using the InENVI model more
closely represented the actual spatial pattern of the NDVI
[see Fig. 9(b)]. It can capture land-cover borders correctly
and distinguish different patches of vegetation. In contrast,
the CDSTARFM, ESTARFM, and STARFM methods had
large deviations compared to the observations (see Fig. 9).
The reconstructed NDVI of SSFIT showed clear borders of
certain patches but significantly overestimated the NDVI [see
Fig. 9(h)]. Quantitative indicators also demonstrated that the
InENVI model provided the most accurate predictions in
these two areas (see Figs. 9 and 10). It closely replicated
the actual spatial pattern of NDVI, with R2

= 0.99 and
RMSE = 0.02, which was superior to the other models.
Similarly, in the CROP02 study area, the spatial patterns of
six existing methods differed significantly from the actual
observations. Except for the fit-FC model, all other methods
had different degrees of overestimation, which was especially
visible in the ESTARFM method [see Fig. 11(d)]. In contrast,
the InENVI model reproduced the Landsat observations well
and accurately depicted the spatial variation in the NDVI [see
Fig. 11(b)]. The scatterplots in Fig. 12(a)–(e) show that the
InENVI model with observations had a closer adherence to

Fig. 10. Correlations between the observed and reconstructed NDVI at
the CROP01 site on December 11, 2017. (a) InENVI, (b) CDSTARFM,
(c) ESTARFM, (d) STARFM, (e) FSDAF, (f) Fit-FC, (g) SSFIT, and
(h) GFSG.

Fig. 11. Comparisons of the method performance for reproducing the spatial
variability at the CROP02 site on September 6, 2018. (a) Observed NDVI,
(b) InENVI, (c) CDSTARFM, (d) ESTARFM, (e) STARFM, (f) FSDAF,
(g) Fit-FC, (h) SSFIT, and (i) GFSG.

Fig. 12. Correlations between the observed and reconstructed NDVI at
the CROP02 site on September 6, 2018. (a) InENVI, (b) CDSTARFM,
(c) ESTARFM, (d) STARFM, (e) FSDAF, (f) Fit-FC, (g) SSFIT, and
(h) GFSG.

the 1:1 line and also had the lowest RMSE (0.03) and the
highest R2 (0.90).

V. DISCUSSION

A. Sensitivity Analysis and Ablation Experiments

1) Parameter Sensitivity Analysis: First, we incorporated
three different SCs into our model and compared the
reconstruction accuracy. SC1 indicates the reconstruction
accuracy using SC derived from satellite-based observations
of 2018–2020, SC2 indicates the accuracy using SCs from the
data of 2017–2019, and SC3 indicates the accuracy using SCs
from the data of 2016–2018 [see Fig. 13(a)]. In general, the
model accuracies of three tests are not statistically different
[see Fig. 13(b)], which implied the InENVI model is reliable
and predictable.
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Fig. 13. Comparisons of reconstruction accuracy under different seasonal
curve scenarios at the CROP01 site in 2019. (a) R2 and (b) averaged R2

among all cloud-free NDVI observations and the reconstructed NDVI in all
periods.

Fig. 14. Comparison of reconstruction accuracy and similar pixels number for
each target pixel at the CROP01 site for different thresholds. (a) Relationship
between accuracy and similar pixels number. The letters in the inset indicate
the statistically significant differences (p < 0.05) over five groups with
different thresholds. (b) Frequency distribution of similar pixels number.

Second, we evaluated the influence of Landsat determination
coefficient threshold for the InENVI model. This threshold
indicates a tradeoff of number and similarity of similar pixels.
The higher threshold means the higher similarity of similar
pixels, but the smaller number of similar pixels [see Fig. 14(b)]
and vice versa. It can be seen from Fig. 14(a), as the thresh-
old increases, the reconstruction accuracy of the model also
increases. When the threshold reaches above 0.95, the average
R2 > 0.9. However, a higher threshold does not necessarily
equate to better results. When the threshold reaches 0.98, the
number of searchable similar pixels decreases, and the recon-
struction accuracy also becomes unstable [see Fig. 14(a)]. The
results indicated that our model is sensitive to the threshold of
Landsat correlation coefficient, and the current threshold (i.e.,
0.95) can get the best reconstruction accuracy over all pixels
[see Fig. 14(a)].

Third, the influence of the sliding window size for the
InENVI model was tested. As shown in Fig. 15, at most times,
as the size of the sliding window increases, the fusion accuracy
of the model also increases. When the sliding window size
reaches 50 × 50 Landsat pixels, the fusion accuracy of the
model almost no longer increases, and further increases in
window size lead to a decrease in accuracy. This decline
might be attributed to excessively large windows that intro-
ducing redundant information, thus affecting the accuracy
of the model. Besides, as the sliding window increases to
55 × 55 Landsat pixels, its computation time increases rapidly
(see Fig. 15). Therefore, after comprehensive consideration,
we chose a 50 × 50 sliding window, which can well balance
high accuracy and efficiency.

2) Ablation Experiments: We further conducted ablation
experiments on three innovative steps of the developed model
to determine the relative importance of each step. It can

Fig. 15. Comparisons of R2 trend (a), averaged R2 (b) and computation
efficiency (c) among all cloud-free NDVI observations and the reconstructed
NDVI at the CROPO1 site with different sliding window.

Fig. 16. Comparisons of reconstruction accuracy (R2) trend (a) and variations
(b) in different ablation experiments. Base indicates employing our optimized
InENVI model for reconstruction and validation. No_Sim indicates imple-
menting the InENVI model while removing the step of searching for similar
pixels. No_Syn indicates applying the InENVI model with the exclusion of
the steps involving the search for MODIS contribution pixels and the synthesis
of the weighted combined curve. No_Meteo indicates executing the InENVI
model by omitting environmental variables.

be seen from Fig. 16(a) that when the three steps were
removed, respectively, the accuracy of the model decreased
in all periods. After ignoring the MODIS contribution pixels
and removing environmental variables, respectively, R2 of the
model decreased significantly (p < 0.01), and the average R2

decreased by 0.10 and 0.11 compared with the original model
[see Fig. 16(b)]. When removing similar pixels of Landsat,
the average R2 decreased about 0.02, showing a significant
decrease (p < 0.05). The results showed that the input
of MODIS contribution pixels, Landsat similar pixels, and
environmental variables can effectively improve the accuracy
of the model.

B. Superiority of the InENVI Model
In this study, a new machine-learning fusion model

(InENVI) was developed by incorporating environmental vari-
ables to combine the MODIS- and Landsat-NDVI datasets.
The validation in various global vegetated areas indicated the
good performance of the InENVI model for reconstructing
high-quality spatiotemporal resolution datasets. In addition,
a comparison with seven other spatiotemporal fusion models
showed that our new model can more accurately produce
a synthetic high spatial-resolution NDVI dataset. In partic-
ular, the InENVI model shows several improvements over
the available weighted-function-based, unmixing-based, and
machine-learning methods.
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Fig. 17. Comparing the applicability of five typical models. The figure shows
the average R2 of the five models for predicting the target date NDVI image
at different intervals.

First, most existing methods use adjacent pairs of cloud-free
high and low spatial-resolution images (base images) in the
training model to produce high spatial-resolution datasets [9],
[22], [23], [54], [55]. In this study, five fusion models (except
InENVI, SSFIT, and GFSG) used one or several pairs of cloud-
free images. However, there is a high proportion of cloud
contamination in numerous regions, particularly in humid
areas [24]. Therefore, it is difficult to obtain cloud-free satellite
images in adjacent periods for a target study period, and the
available images may be obtained during a time that is a couple
of months away from the study period [58]. For example, over
the study area of CROP01, the interval number of days should
be set to 88 to ensure that most of the given dates can obtain
the available cloud-free images [see Fig. 17(b)].

Furthermore, our study showed decreased accuracy of the
five investigated models with the time intervals between the
target date and the date closest to the available paired satellite
images (see Fig. 17). For example, for the STARFM model,
the R2 values between the observed and reconstructed NDVI
were more than 0.9 when the base images were 24 days apart,
but R2 decreased to below 0.5 when the time intervals were
longer than 88 days [see Fig. 17(a)]. The InENVI model
generated a fused NDVI dataset by integrating all available
paired cloud-free high and low spatial-resolution images over
a long-term period (i.e., three years in this study).

Second, similar pixels were included within the sliding
window to train the InENVI model. Previous fusion mod-
els (e.g., ESTARFM and FSDAF) have also shown that
integrating information from additional images can improve
fusion accuracy [22], [23]. A recent learning-based method
also included information from several neighboring images
to predict the reflectance for the target date, which showed
substantial improvement in producing spatiotemporal fusion
data [59]. The potential cause for this improvement may be
that neighboring images increase the training dataset size
and are helpful for learning-based methods to develop better
models [48].

Third, the InENVI model shows a higher computational
efficiency than the other six state-of-the-art fusion models
(see Fig. 18). Although numerous fusion methods have been
developed over the past few decades [9], [33], [34], [35],
[54], [55], no regional or global fused datasets have been
generated. One of the most important reasons for this is the
high computation requirements given the high spatiotemporal
resolution of the reconstructed datasets [60]. Therefore, it is
crucial to quantify the computational efficiency of the fusion

Fig. 18. Comparison of the computation times for InENVI and the other
seven fusion models. All models are run to reconstruct the 8-day NDVI of
one year with a spatial resolution of 30 × 30 m over a 30 × 30 km region.

models to determine the capability of producing regional and
global fusion datasets. Based on a desktop computer with a
CPU of eight processors at 2.7 GHz, the InENVI requires
124 s to reconstruct the 8-day NDVI data for one year with
30 × 30 m spatial resolution over a region of 30 × 30 km,
which has the best computational efficiency in addition to
SSFIT (see Fig. 18). The InENVI method also supports cluster
parallelism and has the potential to produce fused NDVI
datasets at regional and global scales.

C. Limitations of the InENVI Model

Most state-of-the-art fusion models explicitly reconstruct the
reflectance values of multiple spectral bands [9], [33], [34],
[35], [54]. Considering the important role of NDVI, InENVI
was designed to reconstruct the NDVI dataset, and this study
did not take any efforts to examine its performance for recon-
structing other reflectance data. In particular, NDVI indicates
vegetation growth; therefore, InENVI was designed to incor-
porate environmental variables to improve fusion accuracy,
as the environmental variables dominate vegetation growth.
The reflectance of spectral bands is also highly dependent on
other factors, such as the water conditions of the land surface;
therefore, the capability of InENVI to process the reflectance
of spectral bands still needs further validation.

Second, the InENVI model, such as other spatiotemporal
fusion models, integrated MODIS-NDVI data to reconstruct
high spatiotemporal resolution NDVI data. MODIS-NDVI data
are less affected by land cover or other noise and have high
temporal resolution compared to Landsat-NDVI data [61],
[62]. However, there are still a large number of data gaps
for MODIS-NDVI data over many areas, especially in humid
areas [63], [64]. Therefore, it is challenging to acquire high-
quality MODIS-NDVI data for spatiotemporal fusion [11].
This study used the weighted Whittaker smoothing method to
fill the data gaps in the MODIS-NDVI data [50]. Although the
weighted Whittaker smoothing method has been examined as
a good candidate for improving the quality of MODIS-NDVI
data, some uncertainties still remain [50]. Any noise in the
MODIS-NDVI propagates into the InENVI model.

VI. CONCLUSION

Traditional fusion models have long been constrained by the
assumption of linear mixture theory and the restriction of input
data. These issues limit their ability to generate long-term
consistent time series of high-resolution images. Consequently,
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this study proposes a data-driven fusion algorithm (InENVI)
based on machine learning to address these challenges.
In comparison with previous studies, the InENVI model
does not require any cloud-free high-resolution images as
necessary input, allowing it to fully utilize all the collected
MODIS- and Landsat-NDVI time-series images and consider
the environmental conditions to solve the nonlinear problems.
Furthermore, in contrast to the six typical algorithms, InENVI
shows a more stable and accurate fusion at all characteristic
regions of interesting (ROIs), suggesting that it can be used to
generate better NDVI products and improve related studies.
In conclusion, the InENVI model improves the capability
of generating long time-series NDVI images with both high
spatial and temporal resolution. This capability is beneficial for
monitoring terrestrial ecosystem dynamics at finer spatiotem-
poral scales.

APPENDIX

See Figs. 13–15.
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