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Effects of Inhomogeneous Ice Particle Habit
Distribution on Passive Microwave

Radiative Transfer Simulations
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Abstract— Accurately representing ice clouds in passive
microwave radiative transfer models (RTMs) is considerably
challenging as these clouds include numerous ice particles with
complex shapes. Current RTMs often oversimplify this complex-
ity by assuming spherical or singular nonspherical habits for
these particles. This study improves the representation of ice
clouds in RTMs, shifting from the oversimplified “one-shape-
fits-all” approach to a more realistic approach describing the
inhomogeneous distribution of ice habits. This improved repre-
sentation is facilitated by the predicted particle properties (P3)
microphysics parameterization scheme, which provides natural
variability of the ice-phase hydrometeors’ microphysical proper-
ties. The impact of this improved representation on microwave
scattering is evaluated by comparing the simulated brightness
temperatures (TBs) with actual measurements from the global
precipitation measurement (GPM) microwave imager (GMI) at
scattering frequencies between 89 and 183 GHz, mainly focusing
on tropical cyclone events in the Northwestern Pacific Ocean.
The results show that the improved representation effectively
describes the spatiotemporal variability of ice habits, improving
the accuracy of TB simulations across the scattering chan-
nels. Moreover, investigations are conducted till the frequency
of 664 GHz, emphasizing the potential importance of realistic
ice habit distribution. Although some limitations exist, primarily
relating to the model’s dependence on the P3 scheme and the
limited range of the available ice habits, especially for rimed
particles, this study takes a significant step toward improving the
realism and accuracy of RTMs, providing a deeper understanding
of ice clouds and their influence on RTMs.

Index Terms— Microphysics properties, nonspherical ice par-
ticles, optical scattering, passive microwave radiative transfer
model (RTM).

I. INTRODUCTION

CLOUDS are fundamental components of the Earth’s
hydrological cycle and significantly influence the planet’s

energy balance and atmospheric circulation. To predict
weather and climate patterns, cloud behavior needs to be
comprehensively understood. However, the complex micro-
physical properties of hydrometeors, such as hydrometeor
species, particle size distributions (PSDs), mass–diameter
(m–D) relationships, and particle shapes, are the least under-
stood elements in weather and climate models, as noted by
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Klein et al. [1], Forbes et al. [2], and Geer [3]. Satellite-
based passive microwave radiometers have been widely used
to explore these cloud properties and their impact on weather,
climate, and the hydrological cycle. Using microwaves that
can penetrate clouds, these radiometers measure brightness
temperatures (TBs) at the top-of-atmosphere. When a radiation
beam traverses the cloud, it is absorbed, emitted, or scattered
by suspended particles (e.g., liquid water droplets and ice
particles), substantially changing the TBs. This enables: 1)
the quantification of the cloud properties, as shown in [4],
and 2) assimilation of the cloud-influenced radiometric infor-
mation, subsequently increasing the accuracy of numerical
weather forecasts, as evidenced by studies from Geer et al. [5],
[6], [7]. In these processes, radiative transfer models (RTMs)
serve as a critical tool connecting the cloud information with
the corresponding radiometric observations.

The use of passive microwave RTMs began with the launch
of the first passive microwave radiometer onboard the Nimbus-
5 satellite: the Electrically Scanning Microwave Radiometer
(ESMR). According to Wilheit et al. [8], an early version of the
RTM was primarily designed to simulate horizontally uniform
layers of liquid hydrometeors. Subsequent studies by Wein-
man and Davies [9] and Wilheit et al. [10] included frozen
hydrometeors. Later studies, including Mugnai and Smith [11],
Adler et al. [12], and Smith et al. [13], made the representa-
tion of the hydrometeor distributions more realistic although
their microphysical assumptions are only appropriate for
specific cloud systems (e.g., convective storms). Skofronick-
Jackson et al. [14] demonstrated that simulated TBs are
considerably sensitive to microphysical assumptions. There-
after, numerous researchers, including Doherty et al. [15],
Matsui et al. [16], [17], Shi et al. [18], and Han et al. [19], [20],
have attempted to minimize the uncertainties in their RTMs by
making diverse microphysical assumptions.

The accurate computation of the scattering properties stem-
ming from the intricate nature of ice particles is a substantial
challenge faced by current RTMs. Ice particles have a wider
range of species, sizes, and densities than liquid water droplets.
The complexity further increases when considering the shape
(or habit) distributions of the ice particles, as most ice particles
in the natural atmosphere comprise combinations of different
shapes, as reported in [21], [22], [23], and [24]. Hence, for
simplicity, ice particles have generally been assumed to be
spherical, employing the Mie scattering code as implemented
by Bauer [25] for the computation of the scattering properties
(e.g., [15], [16], [17], [18], [19], [20], [26]). However, several
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studies, including [27], [28], [29], [30], and [31], have indi-
cated that the spherical assumption for nonspherical particles
leads to several disadvantages, such as significant warm biases
of TBs at frequencies exceeding 100 GHz. To avoid these
disadvantages, the discrete-dipole approximation (DDA) [32],
[33] method is recommended for nonspherical particles in the
microwave range.

However, the simulation of the microwave scattering by
nonspherical particles is still simplified and unrealistic. Cur-
rently, RTMs commonly represent ice particles as either
spherical or singular nonspherical habits per category. For
example, the radiative transfer for TOVS (RTTOV; [34])
version 13.0 uses the Large Plate Aggregate for snow,
Column for graupel, and Large Column Aggregate for ice
cloud (refer to [7]), while the community RTM (CRTM)
[35] and [36] version 2.4.1 uses the Sector Snowflake for
snow and Sphere for other categories (refer to [37]). This
oversimplified “one-shape-fits-all” assumption fails to capture
the inherent complexity of the ice particle shape distributions
within clouds, as mentioned in [3] and [38].

The concept of employing an ensemble of ice particle habits
to refine simulations has been explored in previous studies,
though often in the context of solar and near-infrared rather
than microwave radiance. For instance, McFarquhar et al. [39]
assumed an ensemble of Spheres, Hexagonal Ice Columns,
Bullet-Rosettes, and Polycrystals to simulate solar and
near-infrared reflectances in cirrus clouds. Subsequent work by
Rolland et al. [40], McFarquhar et al. [41], Baum et al. [42],
and Baran and Labonnote [43] further underscored the sig-
nificance of the ensemble approach demonstrating that mixed
habits provided a better representation of cirrus bulk properties
than single habits. However, such studies in the microwave
spectrum are more challenging and have been less frequently
conducted. Kulie et al. [27] employed a fixed ensemble of ice
particle habits, albeit without a physical basis or adaptability.
More recently, Barreyat et al. [44] advanced this approach
by using an adaptive ensemble of ice particle habits, though
still lacking a physical underpinning. Our study extends these
efforts by employing an ensemble that adapts dynamically
and aligns physically with cloud microphysical processes,
enhancing the simulation fidelity. This improvement is realized
by constructing combinations of various ice habits, taking
advantage of the flexible microphysical properties of the pre-
dicted particle properties (P3) microphysics parameterization
scheme of Morrison and Milbrandt [45].

To evaluate the effects of inhomogeneous ice habit distri-
butions on the radiance, simulated TBs are compared with
observed TBs from the global precipitation measurement
(GPM) microwave imager (GMI) instrument at scattering
frequencies between 89 and 183 GHz, primarily focusing on
tropical cyclone events in the Northwestern Pacific Ocean.
In addition, this study extends the observations to the scatter-
ing frequency of 664 GHz, exploring how this high frequency
interacts with different ice habits.

This article is organized as follows. Section II introduces
the employed models, focusing on their key components.
Section III describes the methodology for calculating the
scattering properties considering the improved representation

of ice clouds. Section IV provides the effects of these proper-
ties on TBs during tropical cyclone events. Finally, Section V
provides the conclusions.

II. MODEL DESCRIPTIONS

A. Passive Microwave RTM

Passive microwave RTMs are employed to simulate the
propagation of microwave radiation through the atmosphere
and its interaction with various components, such as gases
and cloud particles. They calculate the observed radiance (i.e.,
TB) through a passive microwave radiometer on a satellite.
Generally, RTMs comprise four submodels: surface emissivity
model, atmospheric transmittance model, extinction and scat-
tering model (hereinafter, the “scattering model”), and solver
for the radiative transfer equation.

The surface emissivity model describes the relationship
between microwave radiation and the surface’s physical prop-
erties. To focus on cloud–radiation interactions, this study
restricts the surface type to relatively uniform ocean surfaces.
Therefore, the FAST microwave Emissivity Model version 6
(FASTEM-6) [46] is employed. The atmospheric transmit-
tance model describes the interaction between microwave
radiation and absorbing gases (i.e., O2, H2O, and N2). The
millimeter-wave propagation model (MPM93), developed by
Liebe et al. [47], is used as the atmospheric transmittance
model. The scattering model calculates the absorption, scat-
tering, and extinction of radiation by cloud particles. In the
microwave region, these optical properties are commonly
determined using two models: the Mie and DDA scattering cal-
culations. The Mie theory provides an analytical solution for
Maxwell’s equations, but it is applicable only to homogeneous
spherical particles. DDA enables the accurate computation of
the optical properties of nonspherical particles. Herein, both
Mie and DDA scattering calculations are utilized to account
for the scattering effect caused by various ice habits. Further
details are provided in Section II-B. The determined optical
properties are used to solve the radiative transfer equation.
The delta-Eddington approximation (e.g., [48], [49]) is used
to solve the radiative transfer equation for a plane-parallel two-
stream atmosphere.

In addition, the average cloud fraction, proposed by
Geer et al. [50], is used to capture the subgrid-scale variability
of the water content in the model grid box. The refractive
index of Mätzler [51] applies to both liquid and ice particles.
To maintain computational efficiency, the proposed RTM is
designed to be a fast model, and therefore, all particles are
assumed to be spherical or randomly oriented. However, this
assumption does not theoretically account for the polarization
differences induced by nonspherical particles, especially in
high-frequency channels above 80 GHz. Therefore, the polar-
ization difference correction, proposed by Barlakas et al. [52],
is applied to the relevant channels. Finally, all the TBs simu-
lated by the RTM are coupled with the viewing geometry and
channel specifications of the GPM GMI sensor (refer to [53]).
Then, they are collocated with each channel’s field of view
(FOV) location.
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B. Scattering Model

In passive microwave RTMs, the scattering model deter-
mines the optical properties of hydrometeors, such as liquid
water droplets and ice particles. Single-scattering properties,
such as absorption efficiency (Qabs), scattering efficiency
(Qsca), extinction efficiency (Qext = Qabs + Qsca), and scatter-
ing phase matrix (P̂), describe how a particle interacts with
light. The absorption, scattering, and extinction efficiencies are
defined as the ratio of the absorption, scattering, and extinction
cross section (σ) to the geometric cross section of the particle,
respectively,

Q =
4σ

π D2 (1)

where D represents the particle’s geometric diameter, which
is defined as either the maximum dimension or the volume
equivalent diameter. This study adopts the maximum dimen-
sion of the particle as the diameter, following the approach of
Geer et al. [7]. The cross sections depend on the refractive
index and the size parameter (x = π D/3), where 3 is
the wavelength of the light. In addition, the scattering phase
matrix (P̂) describes the shift in the phase of the light waves
after scattering by the particles. Specifically, the first element
(P11), known as the scattering phase function, describes the
intensity of scattered light as a function of the scattering angle.
The other matrix elements comprise information about the
polarization of the scattered light. When particles are spherical
or randomly oriented, these other matrix elements can be
neglected, which simplifies the calculations, as described by
Bohren and Huffman [54].

This study uses the Mie scattering model to determine the
single-scattering properties of cloud water, rain, and spher-
ical ice particles. When considering homogeneous mixtures
of ice and air, the refractive index is calibrated using the
Maxwell–Garnett mixing rule (air in ice), as proposed by
Garnett [55]. In such cases, the inhomogeneous effects arising
from the particle’s internal structure are disregarded, as they
negligibly affect the realistic ice particle sizes, according to
Tang et al. [56]. However, Mie scattering can lead to significant
errors for nonspherical particles due to its inadequate repre-
sentation of both the particle shape and dielectric constant,
as mentioned in [57]. Recently, many studies, including [27],
[28], [29], [30], and [31], have investigated the possible errors
associated with Mie scattering and have shown that Mie
scattering tends to overestimate the forward scattering from
ice particles, resulting in an underestimation of the scattering
reduction of radiation.

To obtain the single-scattering properties of nonspherical
particles, this study utilizes the DDA scattering database.
However, the data for the microwave regions are limited in
publicly available DDA databases (e.g., [28], [58], [59], [60]).
The databases provide different single-scattering properties for
various ice habits. Among the available databases, the Atmo-
spheric Radiative Transfer Simulator (ARTS) database, created
by Eriksson et al. [60], offers the most comprehensive range of
single-scattering properties for various ice habits. Hence, this
study employs the ARTS scattering database, which provides
the extinction matrix, the absorption vector, and the phase

matrix for frequencies ranging from 1 to 886.4 GHz and
temperatures of 190 K, 230 K, and 270 K. Furthermore,
the database covers 18 single crystals, 13 aggregates, and
three rimed particles. Their visualizations can be found in
Eriksson et al. [60]. The current database version assumes
that all particles are randomly oriented. A newer version,
introduced by Brath et al. [61], provides the single-scattering
properties of oriented ice particles, but it is not used herein
as it requires complex calculations. In addition, the ARTS
database adopts the refractive index proposed by Mätzler [51],
which aligns with the RTM settings of this study. The database
and its associated interface are publicly accessible via Zenodo,
a multidisciplinary open repository operated by the European
Council for Nuclear Research (CERN) and the Open Access
Infrastructure for Research in Europe (OpenAIRE) with the
doi: https://doi.org/10.5281/zenodo.1175573.

The different ice habits have distinct m–D relationships,
which can be described using a power law expression

mhabit(D) ≈ αhabit Dβhabit (2)

where mhabit(D) is the mass distribution of the ice habit.
The coefficients (αhabit and βhabit) are determined through an
empirical fitting of the logarithm of mhabit and D of particles
larger than 0.2 mm (refer to [60]). In DDA calculations,
mhabit(D) is used instead of the right term in (2). Table I
provides the parameters for the ice habits considered in this
study. The habit names are written in italics to facilitate
recognition. The particle diameter range varies depending on
the ice habits, and certain habits do not cover particles smaller
than 0.1 mm. To describe the smaller particles, combining
these habits with others is recommended. This combination,
denoted by an asterisk, is based on previous research such
as [62] and [63] and the continuity of two habits. Notably,
an observational study by Schmitt and Heymsfield [64] found
that ice particles with a maximum dimension greater than
0.15 mm predominantly take the form of aggregates. Con-
sequently, single crystals are excluded from this size range.

Once the single-scattering properties are determined, the
bulk-scattering properties, such as the extinction coefficient
(Kext), scattering coefficient (Ksca), and asymmetry parameter
(g), are calculated by combining the single-scattering proper-
ties of individual particles with the size distribution of particles
over a specified diameter range (Dmin to Dmax)

Kext =

∫ Dmax

Dmin

σext(D)N (D)d D (3)

Ksca =

∫ Dmax

Dmin

σsca(D)N (D)d D (4)

g =
1

Ksca

∫ Dmax

Dmin

1
2

∫ π

0

P11(D, θ)cosθsinθdθσsca(D)N (D)d D (5)

where θ represents the angle between the incident and scat-
tered beams. The single-scattering albedo (SSA; ω0) is defined
as the ratio of Ksca to Kext. N (D) is the number of particles
within the diameter range from D to D + d D. Consequently,
the scattering model relies on information about the micro-
physical properties of hydrometeors. This information can
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TABLE I
SUMMARY OF THE ICE HABITS EMPLOYED IN THIS STUDY. THE MASS–SIZE RELATIONSHIPS ARE DESCRIBED BY A POWER LAW EQUATION OF

THE FORM m = αDβ . ASTERISKS ARE USED TO DENOTE ICE HABITS REPRESENTING A COMBINATION OF TWO HABITS, SPECIFICALLY FOR
INCLUDING A PARTICLE DIAMETER RANGE SMALLER THAN 0.1 MM. FOR SPHERICAL PARTICLES, BOTH SOLID SPHERE, AND SOFT

SPHERE, THE SINGLE-SCATTERING PROPERTIES ARE CALCULATED USING THE MIE SCATTERING CODE, WHILE THE PROPERTIES
OF NONSPHERICAL PARTICLES ARE OBTAINED FROM THE ARTS DATABASE [60]

be determined with microphysics parameterization schemes,
which are key components of numerical weather prediction
(NWP) models.

C. Convection-Permitting Model

A convection-permitting model (CPM) is a type of NWP
model designed to simulate atmospheric processes at high
spatial resolutions (i.e., less than 4 km). This fine reso-
lution enables the model to explicitly represent convective
processes occurring on a small scale, thereby enhancing the
accuracy of the detailed predictions for severe weather events.
CPM includes sophisticated parameterizations of atmospheric
physics, such as the effects of radiation, turbulence, and cloud
microphysics. The CPM output products (i.e., environmental
and hydrometeor variables) can be used as a priori information
for the radiative transfer simulations.

In this study, the weather research and forecasting (WRF)
model version 4.1.5 is employed. The initial and boundary
conditions are obtained from the National Centers for Envi-
ronmental Prediction (NCEP) Final (FNL) dataset, with a
grid resolution of 1.0◦ and a temporal interval of 6 h. The
WRF model is configured with three domains, with horizontal

resolutions of 36, 12, and 4 km, respectively. Moreover, the
model utilizes 35 vertical levels up to a 50-hPa pressure top
and has a fixed time step of 180 s for integration. The physics
parameterizations used are given as follows: the rapid RTM
(RRTM) [65] longwave radiation scheme, the Kain–Fritsch
cumulus scheme proposed by Kain and Fritsch [66] (turned
off for the third domain), the Yonsei University (YSU) [67]
surface and planetary boundary layer (PBL) scheme, and the
P3 microphysics parameterization scheme.

D. P3 Microphysics Parameterization Scheme

The P3 scheme simulates the microphysical processes of
hydrometeors. It is based on a bulk microphysics approach,
representing hydrometeor distributions through a few prognos-
tic variables. However, instead of using predefined ice-phase
types (e.g., cloud ice, snow, and graupel), the P3 scheme
predicts the continuous evolution of a single “free” ice-phase
category. It predicts four prognostic variables, i.e., ice mass
mixing ratio (qi ), ice total number concentration (Ntot,i ), rime
mass mixing ratio (qrime), and rime volume mixing ratio
(Brime), and then uses them to diagnose the microphysical
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TABLE II
M–D RELATIONSHIPS AND PARTICLE DENSITIES FOR THE P3 ICE–PHASE CATEGORIES. BOUNDARIES BETWEEN SMALL, UNRIMED, COMPLETELY

RIMED, AND PARTIALLY RIMED CRYSTALS ARE DEFINED AS Dth , Dgr , AND, Dcr , RESPECTIVELY

properties of the ice particles, such as their m–D relationship
and PSD.

The P3 scheme can depict the natural transition of ice-phase
categories from unrimed to rimed crystals (e.g., small,
unrimed, completely rimed, and partially rimed crystals),
determining the mass distribution m p3(D) based on two coef-
ficients (αp3 and βp3), which depend on the rime fraction
(Frime = qrime/qi ) and rime mass density (ρrime = qrime/Brime).
Table II illustrates the m–D relationships and densities of the
ice crystals obtained using the P3 scheme. For small crystals,
αp3 is determined by the ice density (ρi = 917kg/m3), while
βp3 is equal to 3. The coefficients for unrimed crystals, which
are grown through vapor diffusion or aggregation, are αva and
βva , as proposed by Brown and Francis [68] and modified
by Hogan et al. [69]. For partially rimed crystals, resulting
from riming, αp3 is similar to that of the unrimed crystals
but is adjusted by Frime. Completely rimed crystals, which are
assumed to be fully encased in rime, are treated as spherical
particles with a density of ρg

ρg = ρrime Frime + (1 − Frime)
6αva

(
Dβva−2

cr − Dβva−2
gr

)
π(βva − 2)

(
Dcr − Dgr

) (6)

where Dgr and Dcr are the critical diameters that sepa-
rate unrimed, completely rimed, and partially rimed crystals,
respectively. In addition, Dth separates small crystals from
unrimed crystals. These critical diameters represent points
where the mass of adjacent ice-phase categories is equal
(refer to Table II). The mass distribution of the P3 scheme is
flexible, meaning that it varies with time and space. In contrast,
traditional category-based microphysics schemes (e.g., [70],
[71]) consider fixed α and β and, thus, do not adequately
capture the diverse nature of ice particles. Morrison and
Milbrandt [45] stated that the P3 scheme’s flexible approach,
allowing for α and β adjustments, better reflects reality than
the traditional approach.

In addition, the P3 scheme allows for diverse distributions
of ice particle sizes through the four prognostic variables. The
generalized gamma distribution form is used to describe PSD

N (D) = N0,i Dµi e−λi D (7)

where N0,i , λi , and µi are the intercept, slope, and shape
parameters, respectively. The relationship between λi and µi

is given as follows:

µi = 0.0019λ0.8
i − 2 (8)

with the constraint of 0 < µi < 6 (refer to [22]). The PSD
parameters are finally determined via moment relations using
a numerical iteration method. All four prognostic variables
are essential in this process, with particular emphasis on the
variables associated with rime as they also govern the particle
density. Compared to the traditional microphysics schemes,
the P3 scheme provides additional degrees of freedom, allow-
ing for flexible ice microphysical properties. This flexibility
is highly significant when trying to realistically represent
hydrometeors’ distribution.

The flexibility provided by the P3 microphysics scheme is
crucial for reducing unrealistic assumptions within the RTM
scattering processes. In this study, the microphysics of the
P3 scheme is fully incorporated into the scattering model.
While the microphysical assumption of liquid hydrometeors
(e.g., cloud water and rain) is used in this RTM, it is not
discussed in this study, as this study specifically focuses on
the scattering effects of ice particles at high frequencies.
Kim et al. [72] employed the P3 scheme in their passive
microwave RTM, but they only used the Mie theory. In con-
trast, this study additionally uses scattering databases derived
from the DDA method to obtain the scattering properties for
nonspherical particles. Furthermore, the effects of inhomoge-
neous ice habit distribution on passive microwave simulations
are analyzed.

III. REPRESENTATION OF ICE CLOUDS

Ice particles within natural clouds have complex shapes,
as mentioned in [21], [22], [23], and [24]. The form of
individual ice crystals, stemming from nucleation processes,
varies depending on the temperature and supersaturation in
the surrounding environment (refer to [73]). These crystals
evolve into various shapes and sizes through different growth
processes, such as vapor deposition, riming, and aggregation,
as described in [74]. In addition, secondary ice production
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Fig. 1. Schematic illustrating the spatial inhomogeneity in the ice habit
distribution within a cloud. Image of individual ice habits are sourced from
the ARTS database of Eriksson et al. [60].

mechanisms, such as rime splintering, droplet shattering,
ice–ice collisional break-up, and fragmentation, significantly
increase the generation of irregular and nonspherical ice
particles according to Field et al. [75]. Given this diversity,
a combination of different ice habits needs to be considered
to accurately determine the scattering using the RTM. Fig. 1
presents a schematic demonstrating the various mixtures of
ice habits, including spheres, single crystals, aggregates, and
rimed particles, as an illustrative example. This study aims
to improve the representation of ice clouds, as depicted in
Fig. 1, for accurate radiative transfer simulations, particularly
at high microwave frequencies, which are highly sensitive to
scattering by ice particles. This improvement is accomplished
by constructing combinations of diverse ice habits, taking
advantage of the flexible microphysical features of the P3
scheme. One of the main challenges is the selection of optimal
ice habits based on physical criteria instead of solely relying
on empirical considerations.

A. Optimal Ice Habit Selection

The optimal ice habit is selected using the effective density
(ρeff)

ρeff =
m(D)
π
6 D3 . (9)

Effective density is a valuable metric that provides insights
into the morphology of ice particles, as mentioned in [60],
[76], and [77]. When considering perfectly spherical ice par-
ticles (i.e., Solid Spheres), effective density is 917kg/m3 for
all diameters. However, for spherical particles with internal
voids (i.e., Soft Spheres), the effective density decreases below
917kg/m3 but remains constant across different diameters.
In contrast, the effective density of nonspherical particles

Fig. 2. P3 ice crystals’ effective density as a function of the particle diameter.
The different line patterns illustrate four examples of effective density, each
derived from different combinations of rime fraction and density (see legend
for details).

not only decreases below 917kg/m3 but also varies with the
diameter.

Fig. 2 displays the relationship between the effective density
and particle diameter within the P3 scheme. The dotted line
represents the effective density of the ice particles in the
absence of rimed crystals (i.e., Frime= 0), while the dashed
line represents the effective density of Solid Spheres. The
solid lines in Fig. 2 illustrate two distinct combinations of
the rime fraction and density: the thinner line corresponds to
Frime = 0.2 and ρrime = 203 kg/m3, while the thicker line
corresponds to Frime = 0.6 and ρrime = 356kg/m3. Additional
relationships between effective density and particle diameter
can be expressed depending on the combination of these
two prognostic variables. As shown in Fig. 2, the effective
density remains constant at 917 kg/m3 for small crystals
(i.e., D < Dth), indicating that the optimal habit for these
crystals is Solid Sphere. In contrast, completely rimed crystals
(i.e., Dgr ≤ D < Dcr) have a lower effective density than
917 kg/m3, indicating that the optimal habit for these crystals
is close to the Soft Sphere. To ensure physical consistency
with the P3 microphysics, both these types of crystals—the
small and completely rimed ones—are considered spheres,
and the Mie scattering model is employed to calculate their
scattering properties. In addition, for unrimed crystals (i.e.,
Dth ≤ D < Dgr) and partially rimed crystals (i.e., Dcr ≤ D),
the effective density decreases with increasing particle size,
implying that their optimal habits are nonspherical in shape.
The four types of ice crystals have different density values and
display different patterns of density changes with increasing
particle size.

The ARTS scattering database includes various ice habits,
each characterized by its own effective density obtained by
applying the given particle mass to (9). Fig. 3 provides the
effective densities of the ice habits listed in Table I. For
simplification, the asterisk, denoting a combined habit (refer
to Table I), has been omitted. Generally, for most nonspherical
ice habits, the effective density decreases with increasing
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Fig. 3. Effective density plot similar to Fig. 2 but for the ice habits listed
in Table I.

particle size, except for 8-Column Aggregate, which has a
constant effective density of 124.14 kg/m3. Spherical Graupel
has a higher effective density than other nonspherical ice
habits when its diameter exceeds 0.3 mm, while the Large
Column Aggregate has the lowest density. Furthermore, the
effective density of the Soft Sphere is indeed not illustrated in
Fig. 3.

As illustrated in Figs. 2 and 3, both the P3 ice crystals
and ARTS ice habits have their respective effective densities.
The root mean square error (RMSE) values of their effec-
tive densities are compared. According to the microphysical
assumptions of the P3 scheme, the effective density of unrimed
crystals is determined independently of the prognostic vari-
ables, such as Frime and ρrime (refer to Table II). Consequently,
the optimal habit for the unrimed crystals is selected indepen-
dently of these variables. As depicted by the dotted line in
Fig. 2, for unrimed crystals, the effective density exponentially
decreases as the diameter increases beyond Dth. Among the
ice habits listed in Table I, Evans Snow Aggregate (represented
by yellow circles in Fig. 3) closely resembles unrimed crystals
in terms of effective density, yielding the lowest RMSE value
of 61.38 kg/m3. In contrast, the other ice habits have RMSE
values of 100 kg/m3 or higher. Thus, Evans Snow Aggregate
is the optimal habit for unrimed crystals.

In contrast to unrimed crystals, the effective density of
partially rimed crystals is adjusted by Frime, and its diameter
boundary (Dcr) is determined by both Frime and ρrime, as pre-
sented in Table II. Hence, the effective density of partially
rimed crystals is more variable than that of unrimed crystals.
To determine the optimal habit for partially rimed crystals,
Frime is divided into nine parts from 0.1 to 0.9 and ρrime
is divided into 18 parts from 50 to 917 kg/m3. If Frime is
either 0 or 1, no partially rimed crystals exist; consequently,
the selection of the optimal habit is not required for such
cases. Fig. 4 shows the chosen habits and their corresponding
RMSE values, which are depicted through grayscale shading.
Generally, Large Plate Aggregate (i.e., habit ID 6) is chosen
as the optimal habit for partially rimed crystals when Frime

Fig. 4. Optimal ice habits for partially rimed crystals in the P3 scheme. Their
ice habit ID (refer to Table I) is displayed with the corresponding RMSE value
represented in grayscale. The optimal ice habits are determined by dividing
Frime into nine parts, ranging from 0.1 to 0.9, and ρrime into 18 parts, ranging
from 50 to 917 kg/m3.

ranges from 0.1 to 0.3, ICON Snow (i.e., habit ID 9) is chosen
when Frime ranges from 0.4 to 0.5, a Large Block Aggregate
(i.e., habit ID 7) is chosen when Frime ranges from 0.6 to
0.7, and Spherical Graupel (i.e., habit ID 8) is chosen when
Frime ranges from 0.8 to 0.9. However, when partially rimed
crystals are composed of high-density rimes, the chosen habits
have high RMSE values, as shown in the top right corner
of Fig. 4. This problem stems from the ARTS scattering
database’s limited range of available ice habits, particularly
for dense and strongly rimed particles, indicating a potential
limitation in accurately representing these specific types of ice
particles.

Consequently, the combination of Frime and ρrime determines
the type of ice habits and their combination status, allowing for
an intricate distribution of the diverse ice habits. For instance,
in a scenario where Frime = 0.2 and ρrime = 203kg/m3, the
optimal ice habit is a combination of Solid Sphere, Evans Snow
Aggregate, Soft Sphere, and Large Plate Aggregate. Moreover,
this approach effectively describes the spatiotemporal variabil-
ity of ice habits, as it relies on the prognostic variables. This
approach can be applied to other microphysics schemes if they
can predict the ice density. However, some discrepancies may
exist in the particle masses (or effective densities), as indicated
by the high RMSE values in Fig. 4. This study employs a PSD
renormalization technique to minimize such differences.
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B. PSD Renormalization

Geer et al. [7] proposed the PSD renormalization technique
to prevent the loss or gain of total mass that results from incon-
sistencies in the microphysical properties. A key parameter for
evaluating the degree of inconsistency in the total mass is the
ice water content (IWC), denoted as l. The P3 scheme predicts
the IWC, which is proportional to the βth moment (Mβ) of
the PSD

lp3 =

∫
∞

0
m p3(D)N (D)d D = αp3 · Mβp3 . (10)

The scattering model reconstructs the IWC by integrating
the mass of particle habits and the corresponding PSD over a
given diameter range (Dmin to Dmax) as follows:

lhabit =

∫ Dmax

Dmin

mhabit(D)N (D)d D. (11)

This reconstructed IWC (lhabit) may differ from the predicted
IWC (lp3) due to two factors: 1) differences in particle mass
and 2) deficiencies in numerical integration. The ratio of the
two IWCs represents a renormalization factor (r)

r =
lP3

lhabit
. (12)

The original PSD is modified using the renormalization
factor as follows:

N ′(D) = r N (D). (13)

The modified PSD is used in the calculation of the
bulk-scattering properties in (3)–(5). This method can reduce
the scattering difference caused by differences in the particle
mass.

C. Inhomogeneous Distribution of Ice Habit

Fig. 5 displays the ice water path (IWP) simulated using
the WRF model for the tropical cyclone “HAISHEN” at 09:20
UTC on September 3, 2020. The IWP values obtained from
the simulation are collocated within the FOV of the GMI
166-GHz channel. Fig. 6 presents the vertical cross sections
of the scan track indicated by the bold black line in Fig. 5.
Fig. 6(a)–(c) depicts the simulated Frime, simulated ρrime, and
the assigned ice habits for each grid (colored rectangles) in the
“HAISHEN” case, respectively. The ice habits for each grid
are displayed based on the proportion of the IWC value, and
a maximum of four different ice habits may be present within
a single rectangle.

Fig. 6(c) effectively demonstrates the horizontal and ver-
tical inhomogeneity of the ice habits selected through the
proposed approach. Moreover, the distribution features suggest
a significant association between the chosen ice habits and
the ice crystal formation and growth mechanisms in clouds.
In Fig. 6(a), two distinctive areas can be observed where Frime
exceeds 0.3. The first area is the convective core, designated by
pixel numbers 12–14, 40–42, and 48–50. This area generally
comprises a substantial amount of supercooled liquid water,
leading to a highly efficient riming process (refer to [45]).
As shown in Fig. 6(c), the ice habits in the convective core are
primarily ICON Snow or Large Block Aggregate. Particularly,

Fig. 5. IWP simulated with the WRF model using the P3 scheme for the
tropical cyclone “HAISHEN” at 09:20 UTC on September 3, 2020. The solid
black line represents the cross-section shown in Fig. 6.

in areas where ρrime exceeds 800kg/m3 [see Fig. 6(b)], the
ice habits are mainly Spherical Graupel, Solid Sphere, or Soft
Sphere. These habits maintain higher effective densities, even
for large particle sizes, than the other ice habits, as shown
in Fig. 3. The second region is the cloud top reaching above
12 km, which has a relatively high Frime despite the absence of
supercooled liquid water. This is due to the horizontal transport
of rimed ice crystals from convective updrafts, as described
in [78]. The ice particles in this area are typically small,
signifying that partially rimed crystals are less commonly
found here. Hence, the Soft Sphere ice habit is dominant in
this area. The selection of spheres as the optimal habit may
seem disappointing when considering that natural ice particles
are rarely perfect spheres. This choice is primarily for physical
consistency with the P3 microphysics and secondary due to the
limited range of rimed particles in the current ARTS database.
To move toward a more realistic representation of ice particles
in our methodology, advancements in both cloud microphysics
schemes and DDA-based particle models are necessary.

Conversely, areas outside the convective core have Frime
values below 0.3 [Fig. 6(a)], implying that the primary growth
mechanism is vapor deposition and aggregation (refer to [45]).
Evans Snow Aggregate typically represents particles grown via
vapor deposition and aggregation, while Large Plate Aggregate
represents particles grown through just aggregation, as shown
in Fig. 6(c).

Although the selected habits do not fully represent the
shapes of ice particles formed via each growth process, they,
nonetheless, share comparable effective densities. These find-
ings indicate that the selection of the optimal ice habit is not
arbitrary or empirical but relies on the fundamental physical
mechanisms of crystal formation and growth in hydrometeors.

D. Bulk-Scattering Properties

The final bulk-scattering properties, encompassing all ice
categories, can be expressed as the summation of integrals
of the different size ranges. Each integral term utilizes the
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Fig. 6. Cross-sectional example of a deep convection core along the transect of interest presented in Fig. 5. (a) Rime fraction, (b) rime density, and (c) optimal
ice habits overlaid on the background of the rime fraction. In (c), each grid contains up to four different ice habits (colored rectangles; see legend), and their
size is proportional to the IWC for each habit.

single-scattering properties of the optimal ice habit associated
with a specific ice category. For example, the extinction and
scattering coefficients are

K =

∫ Dth

Dmin

σhabit1(D)N ′(D)d D +

∫ Dgr

Dth

σhabit2(D)N ′(D)d D

+

∫ Dcr

Dgr

σhabit3(D)N ′(D)d D +

∫ Dmax

Dcr

σhabit4(D)N ′(D)d D

(14)

where σhabit# represents the optical cross section of the optimal
ice habit, which is derived from either the Mie solution or the
DDA scattering database. Kim et al. [72] stated that PSD plays
a crucial role in determining microwave scattering signals.
They emphasized the importance of maintaining consistency
between the PSD used in the scattering calculations and that of
the microphysics scheme providing input profiles to the RTM.
Hence, the PSD employed herein is aligned with that of the
P3 scheme but is slightly adjusted via PSD renormalization.

Fig. 7 displays the bulk-scattering properties of various
ice habits, including the extinction coefficient, SSA, and
asymmetry parameter, along with their relative differences
from the optimal ice habit, across the GMI frequency range.
Note that the scattering coefficient is obtained by multiplying
the extinction coefficient and SSA. The computations are
performed for all combinations of the prognostic variables.
However, Fig. 7 only presents two specific conditions: the
top group [see Fig. 7(a)–(f)] corresponds to Frime = 0.2 and
ρrime = 203kg/m3, while the bottom group [see Fig. 7(g)–(l)]
corresponds to Frime = 0.6 and ρrime = 356kg/m3. In the

figure, the red line represents the bulk-scattering properties
obtained from the optimal ice habit, while the other colored
lines depict those derived from individual ice habits.

Fig. 7 demonstrates the significant influence of the ice
habits on the bulk-scattering properties. Notably, Spherical
Graupel and 8-Column Aggregate consistently exhibit higher
extinction (scattering) coefficients relative to other habits,
attributed to their higher effective densities as shown in Fig. 3.
In addition, Large Block Aggregate and GEM Snow generally
show higher extinction (scattering) coefficients than Large
Plate Aggregate and ICON Snow. Conversely, Evans Snow
Aggregate and Large Column Aggregate have lower extinction
(scattering) coefficients due to their lower effective densities.
The extinction (scattering) coefficients of the optimal ice habit
are similar to those of Large Plate Aggregate at Frime =

0.2 and ρrime = 203kg/m3 and Large Block Aggregate at
Frime = 0.6 and ρrime = 356kg/m3, respectively. This indicates
that these habits are dominant within the optimal ice habit
under these specific conditions.

The asymmetry parameter determines the direction of scat-
tered radiation, ranging from pure forward scattering (g =

1) to complete backward scattering (g = −1). Generally,
nonspherical particles lead to weaker forward scattering than
spherical particles. In other words, the complexity of non-
spherical particles’ structure correlates with increases in lateral
scattering, consequently resulting in a decrease in the asym-
metry parameter, as mentioned in [79]. As shown in the right
column of Fig 7, the asymmetry parameter of Soft Sphere
is relatively high value. Interestingly, GEM Snow, despite
only being quasi-spherical in appearance (refer to [80]), has
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Fig. 7. Bulk-scattering properties, including (a) and (g) extinction coefficient, (b) and (h) SSA, and (c) and (i) asymmetry parameter, calculated considering
the different ice habits (refer to legend) and the P3 microphysical properties. (d)–(f) and (j)–(l) Differences in the bulk-scattering properties of each ice
habit relative to the optimal ice habit. Computations are performed for the IWC li = 0.1 g/m3, ice total number concentration Ntot,i = 104m−3, and
temperature T = 246 K for the GPM GMI frequency range (10–183 GHz). (a)–(f) Conditions with a rime fraction of 0.2 and rime density of 203kg/m3, while
(g)–(l) correspond to a rime fraction of 0.6 and rime density of 356kg/m3.

an even higher asymmetry parameter than Soft Sphere. Fur-
thermore, 8-Column Aggregate and Spherical Graupel have
relatively high asymmetry parameters. Owing to their high
density and compactness, these particles generally have higher
asymmetry parameter values, as shown in [7], contributing
to increased radiation reaching the top-of-atmosphere. The
calculated bulk-scattering properties are stored as a multidi-
mensional matrix within the lookup table (LUT).

The LUT comprises various parameters such as tem-
peratures, hydrometeor species, prognostic variables, and
frequencies of the employed microwave sensors. Substantial
computational resources are required to construct this multi-
dimensional LUT, but once the LUT is generated, the RTM
can run efficiently without additional burden on the processing
time.

IV. RESULTS AND DISCUSSION

A. Targeted Events

A set of specific tropical cyclones in the Northwestern
Pacific Ocean during 2020 is chosen for analysis. During

2020, the considered region experienced a total of 23 trop-
ical cyclones, and only two were not detected by the GPM
GMI sensor. The sensor captured 76 observational images of
21 tropical cyclones. The information is sourced from the
Japan Aerospace Exploration Agency (JAXA) Earth Obser-
vational Research Center (EORC) tropical cyclone database.

The WRF simulations are conducted over a 36-h period for
tropical cyclone cases satisfying the following criteria: 1) max-
imum sustained wind speed exceeding 17 m/s; 2) cyclone
center positioned within the GMI swath; and 3) center sit-
uated over an ocean surface. In addition, to minimize the
WRF simulation errors, the allowable track and minimum
sea level pressure (MSLP) errors are limited to 120 km and
20 hPa, respectively. The tropical cyclone center positions in
the simulations are determined using the Geophysical Fluid
Dynamics Laboratory (GFDL) vortex tracker (refer to [81])
and validated with the best track data obtained from the Joint
Typhoon Warning Center (JTWC). The track and MSLP errors
are primarily influenced by the model configuration like the
horizontal resolution and microphysics scheme. In this study,
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TABLE III
LIST OF TROPICAL CYCLONES CONSIDERED IN THIS STUDY. THEIR LOCATION AND INTENSITY DATA ARE SOURCED FROM THE JTWC BEST-TRACK

DATASET. CYCLONES ARE GENERALLY CATEGORIZED INTO FOUR CLASSES BASED ON THEIR MAXIMUM WIND SPEEDS: TROPICAL DEPRESSION
(TD; < 17 M/S), TROPICAL STORM (TS; 17–25 M/S), SEVERE TROPICAL STORM (STS; 25–33 M/S), AND TYPHOON (TY; ≥33 M/S). NOTE

THAT MSLP REFERS TO THE MINIMUM SEA LEVEL PRESSURE AND ROCI DENOTES THE RADIUS OF THE OUTERMOST
CLOSED ISOBAR

the thresholds for these errors are set by referencing the
errors reported in previous studies, including [82], [83], [84],
and [85]. Finally, a total of 19 scenes from 11 tropical cyclones
are selected, as listed in Table III. The time difference between
the WRF simulations and the GMI observations at the tropical
cyclone center is kept within 5 min. The mean track error for
the selected cases is calculated as 69.75 km, and the root mean
square (rms) value for the MSLP errors is determined to be
8.61 hPa. The WRF simulation outputs are used as input data
for the RTM to calculate the TBs at the scattering channels
(including 89, 166, 183.31 ± 7, and 183.31 ± 3 GHz) of the
GMI instrument.

The simulated TBs are spatially averaged to match the
resolution of each channel’s FOV and positioned at the center
of each FOV. Only pixels within the radius of the outermost
closed isobar (ROCI) of the tropical cyclones, corresponding

to ocean surfaces, are selected for the analysis. Subsequently,
the inclusion of clear-sky pixels, which fall outside the scope
of our investigation, is reduced. Land and ocean data are
acquired from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Land Cover Climate Modeling Grid
(CMG) (MCD12C1) version 6 data products. Fig. 8 displays
the GMI-observed TBs at 166-GHz V-pol for the chosen
pixels. This study aims to reproduce the GMI-observed TB
distribution (e.g., the left corner of Fig. 8) by improving the
ice cloud representation in the scattering model.

B. TB Simulations

In this section, the scattering effects of the optimal ice
habit are analyzed by comparing the simulated TBs with the
observed TBs at the scattering channels. Scattering efficiency
increases as the frequency increases from 89 to 183.31 GHz,
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Fig. 8. GMI-observed TB at the 166-GHz V-pol channel for the tropical cyclones considered in the study. Land and ocean surfaces are distinguished using
the MODIS MCD12C1 version 6 land/ocean mask, and data above land surfaces are excluded. Only data located within the ROCI of the tropical cyclones
are used. Their pdf plot is shown in the top left corner.

indicating that higher frequency channels are more efficiently
scattered by small particles. Thus, the 183.31-GHz channels
have the greatest scattering efficiency. In addition, these chan-
nels have low transmittance (i.e., high optical thickness) for
water vapor, resulting in weighting function peaks at altitudes
higher than the ground level. As the frequency approaches
183.31 GHz, the altitude at which the weighting function
peaks tends to increase. This peak altitude tends to be higher
in warmer and wetter conditions than in colder and drier
conditions, as shown in [86]. As the peak altitude increases, the
scattering reduction in these channels becomes increasingly
likely due to the smaller ice particles.

Fig. 9(a)–(j) demonstrates simulated TBs derived from
different ice habits, along with Fig. 9(k) showing GMI obser-
vation at the 166-GHz V-pol channel for the tropical cyclone
“HAISHEN” at 09:20 UTC on September 3, 2020. This spe-
cific example is chosen from the targeted cases. As anticipated,
the WRF simulations exhibit discrepancies in terms of the
location, shape, and intensity of the tropical cyclone compared
to the observations. The current NWP models cannot accu-
rately predict hydrometeors on a small scale. Nevertheless,
if the microphysical properties are realistically represented, the
simulated TB distribution will closely resemble the observed
distribution. Fig. 9 shows that in areas where ice particles
exist, Soft Sphere [see Fig. 9(b)], Evans Snow Aggregate[see
Fig. 9(c)], and Large Column Aggregate [see Fig. 9(e)] gener-
ally result in weaker scattering signals than observations [see
Fig. 9(k)]. Conversely, 8-Column Aggregate [see Fig. 9(d)]
and Spherical Graupel [see Fig. 9(h)] lead to strong scattering

signals below 150 K over large areas. Moreover, the scattering
signals simulated by Large Block Aggregate [see Fig. 9(g)]
are weaker than those simulated by the former two but still
stronger than the observed signals. The remaining ice habits,
i.e., optimal ice habit [see Fig. 9(a)], Large Plate Aggregate
[see Fig. 9(f)], ICON Snow [see Fig. 9(i)], and GEM Snow
[see Fig. 9(j)], exhibit a relatively similar degree of scattering
signal as the observations. However, the differences between
them are difficult to visually distinguish in the figure.

The probability density functions (pdfs) of the
RTM-simulated TBs (colored lines) are analyzed and
compared with the GMI-observed TBs (black line), as shown
in Fig. 10. This analysis is performed using the dataset
of 19 tropical cyclones listed in Table III. Under clear-sky
conditions, where the TB values are approximately 240 K or
higher, no significant differences are observed in terms of the
TB distribution between the simulations and observations.
However, when the TBs decrease to below 240 K due to
ice particle scattering, the simulated TB distributions exhibit
substantial disparities. This pattern is observed for all the
channels.

At the 89-GHz channel [see Fig. 10(a)], the simulations con-
sistently display lower TB populations than the observations
within the 200 K–250 K range. In comparison, this under-
estimation is less evident at the 183.31-GHz channels [see
Fig. 10(c) and (d)], which predominantly responds to small ice
particles suspended at higher altitudes. This underestimation
could be due to the limitations inherent to the P3 microphysics
scheme, which treats all ice species as a single category. Thus,
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Fig. 9. RTM-simulated TBs: (a) optimal ice habits, (b)–(j) individual ice habits when used exclusively, and (k) the GMI-observed TB at 166 GHz V-pol
channel. The targeted case is the tropical cyclone “HAISHEN” (09:20 UTC on September 3, 2020). (b) Soft Sphere. (c) Evans Snow Agg. (d) 8-Column Agg.
(e) Large Column Agg. (f) Large Plate Agg. (g) Large Block Agg. (h) Spherical Graupel. (i) ICON Snow. (j) GEM Snow. (k) OBS.

this approach may not accurately simulate the number concen-
tration of ice particles in regions where bimodal or multimodal
PSDs are expected, resulting in lower concentrations of both
small crystals and larger particles grown through aggregation
or riming. This limitation is generally referred to as the
“dilution problem” by Milbrandt and Morrison [87]. Further-
more, the secondary ice production considerably amplifies the
number concentration of small nonspherical ice particles in
mixed-phase clouds, specifically between 0 ◦C and −15 ◦C,
as reported by Field et al. [75] and Zhao and Liu [88].
However, for the P3 scheme, with its single-category approach,
the accurate simulation of their number concentrations is
challenging, according to Qu et al. [89]. Moreover, water-
coated ice particles within the melting layer can notably alter
the scattering properties of microwaves (refer to [90]), but
these particles are not accounted for in both the current RTM
and the P3 scheme.

Despite these limitations, the results obtained using the
optimal ice habit (red line) relatively well match the GMI
observations. This agreement implies that accurate TB simu-
lations can be realized by employing flexible microphysical
properties and considering the inhomogeneity effect of ice
habit distribution in microwave scattering simulations. In con-
trast, attempts to represent all ice particles with a single habit
generally yield unsatisfactory results. Particularly, 8-Column

Aggregate, Large Block Aggregate, and Spherical Graupel,
known as effective scatterers, tend to overestimate the scat-
tering intensity across all scattering channels. As another
effective scatterer, GEM Snow overestimates the scattering
intensity at the 89-GHz channel, but its strong forward scat-
tering (see Fig. 7) increases the amount of radiation reaching
the top-of-atmosphere, resulting in a weaker overestimation
compared to the three aforementioned habits. Conversely, Soft
Sphere, Evans Snow Aggregate, and Large Column Aggre-
gate tend to underestimate the scattering intensity across all
scattering channels due to their lower scattering efficiencies.
Moreover, strong forward scattering of Soft Sphere leads to the
amplification of the overall underestimation, highlighting the
limitations of assuming spherical shapes for ice particles in
the RTM. Thus, realistic TB distributions cannot be obtained
when representing all ice particles using these habits. Across
all scattering channels, only ICON Snow and Large Plate
Aggregate yield results comparable to the observations, along
with the optimal ice habit, visually overlapping in Fig. 10.

C. Measures of Fit

Several fit measures are used to quantiitatively evaluate the
performance of the RTM simulations. While widely utilized
metrics such as the standard deviation, RMSE, and correlation
coefficient are useful for quantifying the fit, they may be
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Fig. 10. PDFs of TBs at (a) 89-GHz V-pol, (b) 166-GHz V-pol, (c) 183 ± 7 GHz, and (d) 183 ± 3 GHz for the tropical cyclones listed in Table III. The
different colored lines represent different ice habits (see legend), while the black line indicates GMI observations.

influenced by location errors stemming from the NWP model
itself, which is commonly known as the “double penalty”
issue. Furthermore, measures that are sensitive to relatively
rare events, such as cloudy pixels, need to be considered to
evaluate the scattering effect caused by ice particles.

An alternative measure is comparing the mean TBs between
the observations and simulations, focusing on determining
errors occurring during ice scattering. To isolate these cases,
clear-sky pixels are filtered out by considering TBs below
the threshold of 240 K for each channel, as proposed by
Ekelund et al. [62]. The mean TBs are calculated as follows:

TB =

∫ 240
0 TBN (TB)dTB∫ 240

0 N (TB)dTB
(15)

where N(TB) represents the TB distribution and dTB is set as
1.0 K. Subsequently, the difference in mean TBs is calculated
as

1TB<240 = TBsim − TBobs. (16)

The second alternative measure is the skewness of the
histogram, which depicts the differences between the observed
and simulated TBs. Although location errors may exist
between the two datasets, the histogram tends to exhibit a
symmetric bell curve with a skewness value close to zero
when the TB distributions are similar. Skewness is sensitive to

outliers (refer to [38] and [91]), eliminating the need to filter
out clear-sky cases.

The final alternative measure is the TB histogram fit (h),
which was introduced by Geer and Baordo [38]. This measure
assesses the discrepancies between the histograms of the
observations and simulations. It is a modification of the Kull-
back and Leibler [92] divergence, where the weighting term in
each bin is removed. The modification enhances the sensitivity
of measuring the histogram differences, particularly within
bins with small population sizes. The measure is defined as
follows:

h =
1

#binsobs

∑
bins

∣∣∣∣log
(

#sim
#obs

)∣∣∣∣ (17)

where #obs and #sim represent the TB populations in each bin
for the observations and simulations, respectively, and the bin
size is set as 1.0 K. To prevent the infinity problem caused
by bins with zero populations, a value of 0.1 is assigned to
such bins. The TB histogram fit penalizes both excessive and
insufficient scattering, as described in [38].

Fig. 11 presents the fit measures for all the scattering chan-
nels. Measures close to zero indicate good performance. In the
figure, the top figure displays the mean differences between
the RTM-simulated and GMI-observed TBs below 240 K.
Similar to the pdf analysis, 8-Column Aggregate, Large Block
Aggregate, and Spherical Graupel consistently overestimate
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Fig. 11. Measures of fit between the RTM-simulated and GMI-observed TBs for all scattering channels. (Top) Mean differences below 240 K (1TB<240).
(Middle) Skewness. (Bottom) TB histogram fit (h).

the scattering (negative 1TB<240) across all scattering chan-
nels. Particularly, 8-Column Aggregate and Spherical Graupel
have considerable 1TB<240 values of approximately −30 to
−40 K at the 89-GHz channels. Conversely, Soft Sphere,
Evans Snow Aggregate, and Large Column Aggregate tend
to underestimate the scattering, resulting in positive 1TB<240
values of approximately 10 K–25 K across all scattering
channels, with the exception of Evans Snow Aggregate at the
89-GHz channels. Among the different habits considered, only
the optimal ice habit, Large Plate Aggregate, and ICON Snow
have 1TB<240 values below the absolute value of 10 K across
all scattering channels.

The middle figure of Fig. 11 illustrates the skewness of the
TB difference histogram. A positive skewness value indicates
a longer tail on the right side of the histogram, suggesting
an underestimation of the simulated TBs and consequently
implying excessive scattering. Conversely, a negative skewness
value suggests insufficient scattering. A notable feature is
the consistent negative skewness exhibited by ICON Snow,
ranging from −0.2 to −0.5. These values are relatively worse
than those of the optimal ice habit and Large Plate Aggregate.

The bottom figure of Fig. 11 presents the TB histogram
fit results. Among all the ice habits, only the optimal ice
habit and Large Plate Aggregate have h values of less than
0.2 across all scattering channels, indicating a good fit between
the simulated and observed TBs. In addition, ICON Snow
consistently demonstrates worse h values than the above
two habits. In contrast, 8-Column Aggregate, Large Column

Aggregate, Spherical Graupel, Soft Sphere, and Evans Snow
Aggregate do not have h values below 0.3 in any scattering
channel, suggesting a poor fit between the simulated and
observed TBs.

Table IV presents a comprehensive comparison of the
measures across all scattering channels, where rms is used
for 1TB<240 and skewness and mean are employed for the
histogram fit. Notably, the optimal ice habit and Large Plate
Aggregate consistently yield the most favorable values for
the three measures. The strength of the optimal ice habit
lies in its ability to effectively capture the spatiotemporal
variability of ice habits, which is not a feature found in other
ice habits, including Large Plate Aggregate. This inherent
capability stems from the physical mechanisms governing
crystal formation and growth, as discussed in Section III-C,
which enables the simulations to realistically represent a
wide range of ice-scattering situations rather than just specific
scenarios.

In this study, the performance difference between the opti-
mal ice habit and Large Plate Aggregate is insignificant,
mainly due to the limited focus on developed tropical cyclones
over the ocean. As shown in Fig. 6(c), the optimal ice habit
of developed tropical cyclones predominantly comprises Large
Plate Aggregate, particularly in areas where ice particles grow
through aggregation. Furthermore, in window channels with
frequencies below 200 GHz, scattering within these areas
significantly influences the resulting TB values. Hence, using
only Large Plate Aggregate to represent the entire cloud
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TABLE IV
COMPARISON OF FIT MEASURES BETWEEN RTM-SIMULATED AND GMI-OBSERVED TBS. TO PROVIDE A COMPREHENSIVE OVERVIEW OF THE

STATISTIC SCORES, AN AVERAGE VALUE IS CALCULATED ACROSS ALL SCATTERING CHANNELS. FOR THE 1TB<240 AND SKEWNESS, THE
RMS VALUE IS USED INSTEAD OF THE MEAN

may be a reasonable and efficient option for this specific
precipitation system and within this frequency range. However,
it is unrealistic and unsuitable for all kinds of cloud conditions.
Notably, the regions with the most significant differences in
simulated TBs between the optimal ice habit and Large Plate
Aggregate were the edges of the cyclones (as detailed in
the Appendix), where Large Plate Aggregate demonstrated a
stronger scattering intensity. This finding suggests that there
is a considerable difference between the two approaches,
particularly in terms of the horizontal inhomogeneity of ice
habits. Meanwhile, Ekelund et al. [62] showed that for a
mesoscale convective system, which includes a deep con-
vection core and some cirrus, Large Column Aggregate and
Evans Snow Aggregate are the best-matched habits at GMI
channels exceeding 166 GHz. In addition, for frequencies
above 200 GHz, scattering signals are mainly influenced by
smaller ice particles in the upper troposphere as these smaller
ice particles saturate the scattering and water vapor absorption
occurs at higher altitudes, as described in [93]. In such cases,
using only Large Plate Aggregate can lead to errors in the TB
simulations, resulting in inaccurate outcomes.

D. Extending Frequency to 664 GHz

No measurements are currently available at frequencies
above 200 GHz for validation. However, promising progress
in this regard has been made with the upcoming launch of the
Ice Cloud Imager (ICI) instrument aboard the Meteorological
Operational Second Generation (MetOp-SG) satellite B. The
anticipated launch of the ICI instrument in 2025 will expand
the frequency coverage from 183 to 664 GHz, significantly
enhancing the capability to detect small ice particles within
anvil clouds, as described in [94] and [95].

This study further conducts TB simulations using the spec-
ifications of the ICI sensor’s 664 ± 4.2-GHz V-pol channel.

However, the FASTEM-6 model provides realistic estimates
of the sea-surface emissivity only up to 200 GHz. To over-
come this limitation, this study utilizes the Tool to Estimate
the Sea-Surface Emissivity at Microwaves (TESSEM) model,
which is known for its capability of providing reasonable
emissivity values across a broad range of frequencies (refer
to [96]).

Fig. 12 presents the TB distributions obtained with Soft
Sphere, Evans Snow Aggregate, Large Plate Aggregate, and
the optimal ice habit corresponding to the P3 microphysics,
using the dataset from the 19 tropical cyclones detailed in
Table III. Below 200 GHz, the TB distribution of Large
Plate Aggregate closely resembles that of the optimal ice
habit, while Evans Snow Aggregate and Soft Sphere exhibit
relatively weaker scattering signals than the optimal ice habit
(see Figs. 9–11). However, at 664 ± 4.2 GHz, the TB
distributions simulated with the optimal ice habit are relatively
similar to those of Evans Snow Aggregate and Soft Sphere
rather than those of Large Plate Aggregate, as shown in
Fig. 12. This difference is related to the significant change
in the microphysical properties of ice crystals according to
the vertical cloud structure. According to past observational
studies, including [97], [98], and [99], large ice particles
predominantly exist as aggregates in the lower sections of
deep convective systems. Conversely, higher sections of deep
convective systems are dominated by smaller ice crystals aris-
ing from vapor deposition. Therefore, Large Plate Aggregate,
representative of ice particles grown through aggregation, may
not suitably represent the smaller ice crystals found at higher
altitudes.

Although no verifiable observations are currently available,
this result highlights the distinction between representing all
ice particles using Large Plate Aggregate and employing
the optimal ice habit. Future studies and advancements in
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Fig. 12. PDFs of simulated TBs at 664 ± 4.2-GHz V-pol obtained using
different ice particle habits: Soft Sphere, Evans Snow Aggregate, Large Plate
Aggregate, and the optimal ice habit corresponding to the P3 microphysics.
All the tropical cyclones listed in Table III are analyzed.

observational capabilities will provide further opportunities for
improvements and validation. These study results will serve as
valuable information for enhancing the accuracy and realism
of RTM simulations, contributing to a better understanding of
ice-scattering behaviors across a wide frequency spectrum.

V. CONCLUSION

This study improved the ice particle representation for
passive microwave radiative transfer simulations. It exceeds
the conventional “one-shape-fits-all” approach and adopts a
more complex and realistic representation of ice clouds. This
novel representation comprises a combination of diverse ice
habits based on their microphysical properties, which was
enabled by the flexibility of the P3 microphysics scheme.

The RMSE values of effective densities between four types
of P3 ice crystals (including small, unrimed, completely rimed,
and partially rimed crystals) and various ARTS ice habits (see
Table I) were compared, with the aim of selecting the optimal
combinations of ice habits that minimize the difference in the
effective density. Importantly, the selection of the optimal habit
depends on the crystal formation and growth mechanisms.
In other words, the optimal habit proposed in this study can
more effectively describe the spatiotemporal variability of ice
habits than earlier approaches. Furthermore, the P3 scheme’s
inherent flexibility was instrumental in yielding a realistic
representation of the ice habit distributions.

Moreover, an in-depth analysis of the scattering effects
of the optimal ice habit was conducted by comparing
the simulated and observed TBs at various scattering
channels (e.g., 89, 166, 183.31±7, and 183.31±3 GHz).
The tropical cyclone events observed by the GMI sensor
in the Northwestern Pacific Ocean in 2020 were analyzed.
Only cases meeting specific simulation error criteria (i.e.,
track error ≤ 120 km and MLSP error ≤ 20 hPa) were
considered to ensure a reliable analysis. The simulated TBs
were evaluated against the GMI-observed TBs.

The results demonstrate that the optimal ice habit pro-
posed in this study consistently exhibits high performance
across all fit measures, such as 1TB<240, skewness, and TB
histogram fit, signifying a substantial improvement in the

scattering calculations. In the comprehensive evaluation across
all scattering channels (refer to Table IV), no ice habits, with
the exception of Large Plate Aggregate, outperformed the
performance of the optimal ice habit when used exclusively.
Especially, the assumption of representing all ice particles as
spherical particles resulted in the considerable underestimation
of their scattering intensity due to their unsuitable scattering
properties (e.g., excessive forward scattering), as shown in
previous studies, such as [27], [28], [29], [30], and [31]. This
was pronounced at frequencies above 100 GHz, making it
one of the most inappropriate ice habits. The study results
emphasize the critical importance of realistically consider-
ing the representation of ice habits in microwave scattering
calculations.

In addition, the analyses were extended to frequencies
above 200 GHz, the observations for which are cur-
rently unavailable for validation but will be accessible
with the upcoming launch of the ICI instrument aboard
the MetOp-SG satellite. Preliminary simulations using the
ICI sensor specifications at 664 ± 4.2-GHz V-pol chan-
nel afforded intriguing differences in the TB distributions
of various ice habits, notably between the optimal ice
habit and Large Plate Aggregate. These results highlight
the growing necessity to consider the spatiotemporal vari-
ability of ice habits in microwave radiative transfer simu-
lations with the expansion of the observational frequency
spectrum.

Despite these advances, this study has certain limitations.
First, the proposed representation of ice clouds is intrinsi-
cally dependent on the P3 microphysics scheme, which may
constrain its applicability to other microphysics parameteri-
zations. Second, and crucially, the current range of available
ice habits in the ARTS scattering database is limited. This
is particularly noticeable in representing dense and strongly
rimed particles, as shown in Fig. 4. These particles do not
agree well with the Spherical Graupel habit, indicating a
difference in expressing the effective densities from the P3
scheme. It is necessary to strengthen the database to include
a wider variety of ice particle habits, particularly those of
rimed particles. Another critical concern is the lack of obser-
vational data that can quantify the changes in the ice crystal
microphysical properties, such as size and shape distribution,
in response to diverse environmental conditions. To overcome
these limitations, interdisciplinary collaborations in these fields
are highly important. Such joint research efforts will enable
a more physically based representation of ice clouds, further
improving the accuracy of RTMs.

In conclusion, this study takes a significant step forward
in enhancing the realism and accuracy of passive microwave
RTMs. It highlights the need for the continuous refinement
of RTMs in coordination with advancements in observational
capabilities and modeling techniques. The study results will
help improve the understanding and forecasting of weather,
climate, and water cycle patterns.

APPENDIX

In this Appendix, we present a further analysis of TB
differences and microphysical details of the tropical cyclone
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Fig. 13. Comparison of simulated TBs of the 166-GHz V-pol channel and corresponding microphysical properties for tropical cyclone “HAISHEN” captured
at 09:20 UTC on September 3, 2020. (Left) TB difference between the optimal ice habit and Large Plate Aggregate. (Right) Averaging profiles of rime fraction
(black lines) and IWC (gray lines) for 1TB ≥ 10K (solid lines) versus 1TB within ±2K (dotted lines), conducted only where the IWP is over 0.5kg/m2.

“HAISHEN” depicted in Fig. 9. The left figure of Fig. 13
illustrates the simulated TB differences between the optimal
ice habit and Large Plate Aggregate. Our findings indicate
that TB differences (1TB) are generally within −2 K to 2 K
in most areas. However, significant differences are noted at
the edges of the cyclone’s rain bands: the optimal ice habit
shows higher TBs, suggesting less scattering, compared to
Large Plate Aggregate. The right figure of Fig. 13 displays the
profiles of rime fraction in areas with high 1TB (≥ 10K) and
those with minimal differences (±2K). The results show that
areas with 1TB above 10 K have much lower rime fractions,
often below 0.1, indicating that Large Plate Aggregate has
a stronger scattering intensity, especially where there is little
riming at the cyclone’s edges.
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