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Abstract— Physical characteristics of precipitation, like tem-
poral and spatial variability, jointly with coverage and costs
of conventional meteorological devices for quantitative rainfall
estimation (i.e., rain gauges, disdrometers, weather radars) make
the precipitation monitoring a complex task. However, real-
time rainfall maps are an important tool for many applications,
dealing with environment, social activities, and business. Recently,
the use of “opportunistic” methods to estimate rainfall has been
investigated, highlighting the possibility to exploit inexpensive
opportunities to augment information about precipitation. This
article deals with smart low-noise blocks (SmartLNBs) convert-
ers, which are commercially available interactive digital video
broadcasting (DVB) receivers designed to be used as bidirectional
modems for commercial interactive TV applications. In the last
few years, an algorithm that converts the SmartLNB raw data
into attenuation values, from which the rainfall rate is obtained,
has been developed and evaluated. The aim of this article is
to describe the improvements of the rainfall estimation from
SmartLNBs brought by significant changes in the data acquisition
from SmartLNB and by algorithms’ update. One year of data
collected in Rome and Tuscany (Italy) are analyzed to test the
performance of SmartLNB in estimating rainfall accumulation
with respect to co-located rain gauges and disdrometer in the
new configuration. Comparing SmartLNB and disdrometer data
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in Rome, we obtained root mean square error (RMSE) equal
to 7.3 mm, normalized mean absolute error (NMAE) equal to
51%, with a correlation coefficient of 0.67, that can point out
the maturity of the technique.

Index Terms— Microwave (MW) satellite link, rain retrieval,
rainfall attenuation.

I. INTRODUCTION

INTEREST in precipitation measurements is growing for
their impact on many disciplines and applications. Real-

time rainfall monitoring is an important tool to be used for
agriculture, water resource management, erosion, and energy
production. It also plays a key role in short-term weather
forecasting, and prediction of wildfire risk, early warning
about flooding risk, and triggering of landslides.

The need for rainfall rate measurements is additionally
motivated by the significant role that precipitation has in
climate change, both in terms of intensity and spatial and
temporal distribution. Recent years have witnessed a change
in rainfall regimes almost everywhere [1], and the risk related
to extreme precipitation is both significant and increasing.

Measuring the rain fallen can be challenging with con-
ventional point measuring devices, due to the high temporal
and spatial variability of precipitation, and requires a dense
network of devices. Historically, rain gauges were the first
devices used to provide local precipitation data, yielding
accurate and direct measurement of rain accumulation (in
mm). However, these devices collect data for the specific point
of installation, not necessarily correlated with the surrounding
areas. To improve the accuracy of spatial rainfall estimates
obtained from rain gauges, it may be convenient to consider
a network of rain gauges, which turns out to be inefficient
due to its spatially inhomogeneous density [2]. Disdrometers
are another category of point-measurement devices, yielding
estimates of the drop size distribution (DSD) from which
the corresponding rainfall rate is computed [3]. Some dis-
drometers also provide hydrometeors’ fall velocity and size,
allowing to distinguish different types of precipitation (rain,
graupel, hail, or snow). However, similar to raingauges, they
are point-devices with no capability to extract spatial rainfall
distribution. On the other hand, weather radars can provide
spatial features of precipitation with high spatial and tem-
poral resolution, but the retrievals can be affected by many
errors [4], [5].
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Recently, the use of opportunistic signals to estimate rainfall
has been investigated [6], aiming to expand the available
measurement devices without adding new expensive infras-
tructures. The idea behind these new techniques is to exploit
the existence of opportunistic microwave (MW) communica-
tion links distributed throughout the territory, even if installed
for other purposes, and to measure the attenuation of the signal
along the MW link caused by the presence of rain. Indeed,
liquid and mixed-phase hydrometeors attenuate the power of
the carrier signal and, subsequently, it is possible to convert
a rain attenuation measurement into an instantaneous rainfall
rate by means of specific inversion algorithms. Available MW
links can be the terrestrial ones used for cellular communica-
tions and the Earth-to-satellite links used mainly for television
signals broadcasting.

In the case of terrestrial radio links, dedicated pairs of
antennas communicate with each other to transfer various
types of data. Consequently, rain measurements accuracy is
dependent on number, density and variety of directions of these
paths [5], [7], [8], [9]. MW links of cellular communication
networks guarantee a huge geographic capillarity which could
improve the rainfall estimation at local scales. It is possible
to obtain fairly accurate precipitation estimates relating to
the area of interest where the receiver is located, since the
MW path segment affected by rain is close to the terrestrial
terminal.

In the case of satellite links, one or more receivers com-
municate with a telecommunication satellite. Higher density
of receivers will enable higher accuracy and higher spatial
resolution rainfall retrievals. More detailed description of the
techniques using satellite-link signal attenuation measurements
for estimating rainfall accumulation and to obtain rainfall
maps can be found in [10], [11], [12], [13], [14], [15], and
[16]. Both Earth-to-satellite and terrestrial links constitute
complementary equipment for amplifying and improving the
rain observation coverage of the territory.

The activities of INSIDERAIN (from September 2020 to
December 2022) and NEFOCAST (from September 2016 to
July 2019) projects, funded by the Tuscany Region
Government (Italy), investigated and experimented in this
research field. During NEFOCAST project a rain retrieval
algorithm has been developed to obtain rainfall rate from com-
mercial interactive digital video broadcasting (DVB) receivers
called smart low-noise blocks (SmartLNBs) converters, and
a platform to collect, process and store SmartLNB data, the
NEFOCAST Service Center (NSC), was developed. Main
results of the project are reported in [15] and [17]. Dur-
ing INSIDERAIN a new technique for the acquisition of
SmartLNB data and several updates of the retrieval algorithm
have been developed.

The purpose of this article is the description of the new
INSIDERAIN retrievals, and its validation by comparison
between SmartLNB retrievals with disdrometer and rain
gauge data collected during 1-year experimental campaign
at CNR-ISAC in Rome and in several sites in Tuscany.
Compared to the NEFOCAST data analysis carried out in [17],
the new acquisition mode and the upgraded algorithm allow
SmartLNB to detect rather high rainfall rates, allowing the

study of very intense precipitation phenomena. A further
innovation compared to [17] is the presence, in Rome and
Tuscany sites, of new smart rain gauges developed by ETG
Srl, Italy, which are prototypes never used before, exploiting
innovative techniques for measurement and diagnostic, that
will be described and validated in the article.

This article is organized as follows. Section II deals with
the description of the experimental deployment and the devices
used in the campaign. Section III describes the rain retrieval
algorithm highlighting its novelty with respect to the previous
one, while Section IV explains the approach used in validation
analysis. Section V shows the analysis of disdrometer and ETG
rainfall data, with the aim of validating the ETG data and
justifying the use of rain gauges as comparison devices in
Tuscany. Section VI presents and discusses the main results
obtained comparing the SmartLNB-based estimates with the
conventional meteorological devices in Rome and in Tuscany.
Finally, Section VII points out the main findings which are
summarized and commented.

II. EXPERIMENTAL SETUP

The SmartLNB used in this study is an innovative
interactive satellite terminal produced by AYECKA Ltd.,
Israel (www.ayecka.com), which receives the Ku-band DVB
satellite second generation (DVB-S2) downlink signal from
EUTELSAT 10 A satellite, located at 10 ◦C East in the
geostationary Earth orbit (GEO). All SmartLNB receivers are
roughly oriented in the same direction and have the same
inclination. The direction is approximately North–South as
the longitude of the site area is between 10 ◦C and 12 ◦C
East, while the satellite is in a geostationary orbit at 10 ◦C
East longitude. The inclinations vary form 39.6 ◦C to 41.8 ◦C
depending on the site. The length of the liquid path varies
as function of the altitude of the zero degree isotherm.
Measurements carried out on ground by the SmartLNBs are
collected by the NSC via the return link through the same
satellite. These terminals provide every 5 min the log of the
instantaneous value of the signal-to-noise ratio (SNR), read
every 10 s and averaged every 30 s and operate in Ku-band
for the forward link. The data logger procedure running on the
terminals has been modified to adopt a “store and forward”
approach for data transmission: since the return link can
be sometimes unavailable (e.g., during heavy rain events),
if the terminal does not receive an acknowledgment of the
transmission, data are locally stored to be sent when the link
gets available again. In this way it is possible to improve
monitoring continuity and avoid data losses. In this work,
we deal with SmartLNBs installed in Rome and in several
cities in Tuscany.

Rainfall data obtained from the SmartLNB in Rome (Fig. 1)
are compared with those collected by the co-located dis-
drometer, which is a laser-based Thies Clima (TC) optical
device manufactured by Adolf Thies GmbH & Company
(www.thiesclima.com), Göttingen, Germany. The TC disdrom-
eter provides information on size and fall velocity of each drop
that falls into its measuring area, stores data over 1 min and
groups particles into 22 and 20 classes of diameter size and
fall velocity ranging from 0.125 to 8 mm and from 0.2 to
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Fig. 1. Instrumentation at CNR-ISAC in Rome.

10 m·s−1, respectively. Knowing the drop count matrix, the
DSD (in m−3

·mm−1) and the rain rate (in mm·h−1) can be
computed as

N (Di ) =
1

A vi 1t 1Di

20∑
j=1

ni, j

R =
6π

104ϱ

∑
i

vi D3
i N (Di ) 1Di

where Di is the i th diameter class (mm), A is the measuring
area of the disdrometer (45.6 cm2), 1t is the time interval
(60 s), ϱ is the water density (1 g·cm−3), 1Di is the diameter
class width (mm), ni, j is the number of particles detected in the
i th diameter class and j th fall velocity class, and vi is the fall
velocity computed with the relation in [18]. A filter criterion is
adopted to filter out the so-called spurious drops (such as the
ones due to splashing and wind effects) and then mitigate the
errors due to environmental factors. The drops with measured
velocities outside ±50% of the fall velocity [18] are discarded.

In the sites of Tuscany, the measurements obtained by
SmartLNBs are compared with those from co-located or
nearby tipping bucket rain gauges, which provide, at discrete-
time instants, measurements of the water quantity relative to
a time interval with a resolution of 0.2 mm. In particular, the
reference rain gauge in Florence is located in the same place as
the SmartLNB, while in Massa it is located near the SmartLNB
(GPS coordinates: 44.036599 N, 10.135836 E). In the sites
in Pisa, the comparison device is a rain gauge by ETG Srl
(www.etgsrl.it), Florence, Italy, located at 43.6678666667 N,
10.3477833333 E.

The new smart rain gauge developed by ETG introduces sig-
nificant innovative aspects compared to the tipping bucket rain
gauges currently on the market. Based on a 1000 cm2 catching
area and with 0.2 mm resolution, in accordance with WMO
standards, the new rain gauge is equipped with three reed
contacts positioned along the tilter’s arc of movement (Fig. 2).
The redundancy of the sensitive element will make possible
to check the correct movement of the tipping bucket in the
change of signal status (detachment from the rest position,

Fig. 2. Tilting bucket assembly in ETG rain gauge.

TABLE I
DATA AVAILABILITY TIMEFRAME FOR EACH TERMINAL

overturning, arrival in the new rest position), so as to eliminate
any erroneous readings due to any reed malfunctions. The
new smart rain gauge has also been equipped with a group of
self-diagnostic sensors (i.e., reeds positioned along the tilter’s
arc of movement, clogging, and temperature sensors) and an
electronic processing unit able to obtain the correct values
of the current quantity and precipitation intensity (cumula-
tive precipitation, measured and compensated rainfall rate,
moments of tilting), the reliability of the data detected, the
possible presence of functional anomalies of the machine, and
the need for maintenance (measurement system status, clog-
ging status, and heating system status). A specific correction
algorithm of the measured value as a function of the intensity,
implemented on the firmware of the electronic unit, guarantees
an error of less than 3% (Class A) in the entire measurement
range.

Table I shows the time intervals when rainfall data are avail-
able for each terminal. The distances between the sites where
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TABLE II
SMARTLNB SITE COORDINATES AND DISTANCE FROM COMPARISON DEVICES

Fig. 3. (a) Locations of the instruments used in this study: SmartLNBs are indicated with red dots and reference devices with blue marks as in the legend.
White lines indicate the distance between the instruments (third column in Table II), while yellow lines represent the ground projection of the slant path of
SmartLNBs, assuming the 0 ◦C isotherm at 2 km height. (b) Location of the sites in Italy.

SmartLNBs are located and the ones of the corresponding
comparison devices are signed in Table II, together with the
distances between the reference instrument and ground projec-
tion of slant path, which represents the minimum measurement
distance between rain gauge and SmartLNB (the abbreviations
RM, FI, MS, and PI stand for Rome, Florence, Massa, and
Pisa, respectively). Fig. 3 shows the locations of the instru-
ments in the sites of Rome, Florence, Massa, and Pisa. Red
dots represent SmartLNBs, while blue marks indicates the
reference devices. White lines represent the ground distance
between the instruments (third column in Table II), while
yellow lines represent the ground projection of the slant path
of SmartLNBs, assuming the 0 ◦C isotherm at 2 km height.
It is possible to notice that shorter distances entail a tighter
correlation between the two measurements, thus yielding better
performance. In fact, as will be shown in the following, the
error indices are minimal in Rome, Florence-Scuola di Musica,
and Massa and greater in the other sites where rain gauges
and SmartLNB are not co-located. In addition, the difference
between the distances given in the last column of Table II

for sites IID and IIE in Pisa clarifies why the performance
of the SmartLNB at site IID is much better than that of
the SmartLNB at site IIE, although the distances between
rain gauge and SmartLNB are similar. Another important
consideration is that the SmartLNBs used in the article detect
precipitation roughly toward the south. For this reason, the
rain gauges used as reference devices are located south of the
SmartLNBs and as close as possible to the SmartLNB ground
path. However, the direction of movement of the precipitation
system, may affect the results and can be the subject of further
analysis.

III. RAIN RETRIEVAL ALGORITHM

This section deals with the description of the upgraded
algorithm which, together with the new acquisition mode,
allow SmartLNB to detect higher rainfall rates, as shown in
Section VI.

The opportunistic rain sensing method adopted in this study
relies on the readings of the received signal strength (RSS) of
MW downlinks from GEO telecommunication satellites. RRS
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readings are thus the input data used for the computation of
the attenuation introduced by the rain on the slanted wet path
of the signal, which is ultimately converted into an estimate
of the rainfall rate. Usually, RSS readings are provided by
the receiving device itself. For instance, most commercial
receivers for satellite broadcasting yield a measurement of
the SNR, expressed as η = Es/N0, where Es is the average
RF energy per modulation symbol and N0 is the one-sided
power spectral density (PSD) of the overall noise affecting the
received signal. The total additional attenuation A experienced
by the MW signal during the rain event (wet condition) with
respect to the pre-rain value (dry condition) can be obtained
as [15]

A = (ηdry/ηwet)(1 − ξ) + ξ (1)

where ηdry denotes the baseline level (suitably pre-calculated
or prestored during clear-sky days), ηwet denotes the cur-
rent RSS reading during precipitation, and ξ is a design
parameter dependent on many noisy contributions as from
cosmos, atmosphere, Earth, and the receiver’s electronics (see
[17, eq. (7)]). Different algorithms for the removal of other
than rain components in satellite links have been developed,
as in [6].

We assume then a stratiform precipitation, characterized
by sharp separations between overlaying tropospheric layers.
To this respect, ITU-R Rec. P.618 assumes a simple two-
layer model, made of: 1) the attenuating liquid layer (LL)
which starts from the ground level and extends up to the
rain height h R , containing only raindrops [23] and 2) the
non-attenuating ice layer (IL), made of frozen dry particles
above the rain height h R . The LL-induced attenuation (1),
suitably converted in dB (denoted as A[dB]), could be then
plugged into the popular power law expressing the atten-
uation experienced by a MW signal due to rain, assumed
uniform [10]

A[dB] = αRβ L (2)

where L is the length of the slanted wet radio path (in
km), R is the rain rate (in mm·h−1) within the LL, and α

and β are frequency- and polarization-dependent empirical
coefficients.

However, the approach in (2) reveals not accurate enough
for rain estimation as it overlooks the phase transition in which
the ice particles melt into raindrops. In our algorithm, we use
therefore a more accurate three-layer model depicted in Fig. 4,
wherein: 1) the LL is at the bottom, below the rain height h R

(we remark that here h R represents the height of 100% liquid
precipitation); 2) the IL is on top, above the 0 ◦C isotherm
height h0; and 3) an additional intermediate layer, named
melting layer (ML) and containing a combination of melting
ice and rain, is inserted between h R and h0. The attenuation
introduced by ML on MW signals was characterized according
to the outcomes of the studies available in [19] and it turned
out to be dependent on the signal frequency and on the height
within the ML. Equation (2), which describes the overall
attenuation introduced along the wet portion of the slanted
path, is then redefined as a function of both LL and ML

Fig. 4. Geometry of the satellite wet link (three-layer tropospheric model).

parameters

A[dB] = αML RβML LML + αLL RβLL LLL (3)

where the subscripts denote the tropospheric layer the param-
eters refer to. In particular, the coefficients αLL, βLL, αML,
and βML and the lengths LLL and LML of the wet radio path
in the two layers can be derived as in [16]. Also, according
to the literature, we implemented an upgraded version of
the opportunistic rain rate estimator algorithm in which the
contribution of the ML to the overall attenuation A is made
significant only at low rain rates, as in [20].

Finally, the algorithm was further upgraded [21] so to take
into account also the partial intersections of the slant path
with randomly placed small-size rain cells, as in [10]. Further
details cannot, however, be provided as the rain retrieval
algorithm is protected by an international patent [22].

Due to implementation of the modifications above, the
equation describing the overall attenuation A (i.e., concerning
both LL and ML) to be solved in R turns out more involved
than (2), being a function of both LL and ML parameters.

IV. VALIDATION APPROACH

In this section, the approach used to evaluate the
precipitation estimation from the SmartLNB is described.

A. Definition of Rain Events

The analysis is carried out on precipitation events occurred
in 2022. The selection of the rain events is driven by dis-
drometer data in Rome and by rain gauges data in Tuscany.
Taking into account the differences between the measurement
methods of the two devices described above, it is appropriate
to differentiate the definition of event. In Rome (respectively
in Tuscany), a rain event is considered to last at least 60
(respectively 20) minutes with a maximum of 30 consecutive
no-rain minutes. If the rainfall amount is less than 1.5 mm,
the event is discarded. Furthermore, the 10 min preceding
and following the event itself are also considered part of the
event to avoid information loss deriving from any unlikely
but possible time shifts of few minutes between the two
devices, partially due to their different measuring principles.
Information about the number of events N for each site and
the average, maximum, and minimum values of the rainfall
duration d are provided in Table III.
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TABLE III
INFORMATION ON RAIN EVENTS AT EACH SITE

B. Analysis of Detection Capability

The analysis of the SmartLNBs detection capability con-
cerns the use of the contingency tables for each event and
the calculation of the related indices: probability of detection
(POD), false alarm ratio (FAR), and accuracy (ACC). The
contingency table consists of the following parameters: the
number of “hits” minutes H , when precipitation is detected by
both the SmartLNB and the reference device (i.e., disdrometer
or rain gauge); the number of “false alarm” minutes FA, when
precipitation is detected by the SmartLNB but not by the
reference device; the number of “missing” minutes M , when
precipitation is detected by the reference device but not by the
SmartLNB, and the number of “reject” minutes R, when both
instruments do not detect precipitation.

The following statistical indices are calculated using the
contingency tables. The POD index measures the probability
that SmartLNB correctly detects precipitation when precipita-
tion is actually present (i.e., detected by the reference device).
The FAR index is calculated as the ratio between the number
of no rain minutes wrongly categorized as rain minutes (false
positives) and the total number of actual no rain minutes. The
ACC index is how close rain measurements by SmartLNB are
to their true value (measured by the reference device).

In formulas

POD =
H

H + M

FAR =
FA

H + FA

ACC =
H + R

H + FA + M + R
.

Contingency tables are defined only for SmartLNB and dis-
drometer comparison. In fact, they are of little use when
using the rain gauge, as tipping bucket rain gauges do not
detect low instantaneous rain rate values, unlike disdrometers.
Tipping bucket rain gauges collect the number of tips that
occur every minute. Each tip corresponds to an amount of
water equivalent to 0.2 mm of rainfall, that is 12 mm·h−1

of rain rate. The disdrometer can measure even very low
precipitation intensities (>0.1 mm·h−1). Consequently, for low
intensity precipitation the TC provides a measurement every
minute and the rain gauge collects data only when a cumulated
precipitation of 0.2 mm is reached. However, this behavior
does not affect validation, which deals with total rainfall
accumulation.

C. Analysis of Accuracy

The performance of the SmartLNB in providing accurate
rainfall measurements is evaluated by comparing the rainfall
accumulation (in mm) per event provided by SmartLNB
with that measured by rain gauge or disdrometer. All the
disdrometer/rain gauge or SmartLNB rainy minutes between
the beginning and the end of a given event are considered
to compute the total cumulated precipitation of that event.
Graphical representation of the cumulative precipitation using
scatterplot is provided. In addition, correlation coefficient,
root mean square error (RMSE), normalized mean absolute
error (NMAE), and normalized bias (NB) are calculated. The
correlation coefficient measures the correlation between two
variables, that is the degree to which they are linearly related.
It assumes values in the range from −1 to +1, where ±1 indi-
cates the strongest possible agreement and 0 the strongest
possible disagreement. RMSE is the standard deviation of the
residuals and gives information on how concentrated the data
is around the line of best fit.

In formulas

RMSE =

√
(Y − X)2

where Y is the vector representing SmartLNB data and X is
the vector of reference data. The NMAE is a normalization of
the mean absolute error (MAE).

In formulas

MAE =
1
N

N∑
i=1

|Yi − X i |

NMAE =
MAE

Ȳ
.

N being the sample size.
The NB allows to evaluate the quality of the difference of

the two datasets: negative NB values indicate an underesti-
mation of SmartLNB with respect to the disdrometer or rain
gauge, while positive NB indicate an overestimation of them.
In formulas

NB =

∑N
i=1 Yi∑N
i=1 X i

− 1.

V. COMPARISON OF TC AND ETG RAINFALL DATA

In this section, precipitation measurements obtained from
the TC disdrometer of CNR-ISAC in Rome are compared with
those provided by the co-located ETG rain gauge. ETG rain
gauge is a new smart prototype included in the measurement
campaign to evaluate its performance. ETG is applying design
and implementation changes to the rain gauge to improve
its precipitation estimates. Therefore, the following analysis
aims to validate the measurements of the ETG rain gauge
and to justify the use of the disdrometer and the rain gauge
as reference device for comparison with SmartLNB in Rome
and in the Tuscany sites, respectively. The selection of the
rain events is driven by the disdrometer data. The ETG
rain gauge data are available from March 24, 2022. Events
preceding this date are not analyzed. In the following, Rcum
denotes the cumulated precipitation in mm. As an example,
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Fig. 5. Time series of cumulated precipitation from TC disdrometer and ETG rain gauge for four different rain events. (a) March 30, 2022 rain event.
(b) November 22, 2022 rain event. (c) December 2, 2022 rain event. (d) December 14, 2022 rain event.

Fig. 6. Scatterplot between event-based cumulated precipitation estimated
from TC disdrometer and ETG rain gauge in CNR-ISAC (Rome).

Fig. 5 shows the time series of the rainfall accumulation
by TC disdrometer and ETG rain gauge for four different
events.

TABLE IV
PERFORMANCE OF THE ETG RAIN GAUGE IN ESTIMATING

RAINFALL ACCUMULATION WITH RESPECT
TO TC DISDROMETER

Fig. 6 shows the scatterplot between event-based cumu-
lated precipitations estimated by TC disdrometer (x-axis)
and ETG rain gauge (y-axis). The color bar represents
the number of rainy minutes collected by the disdrometer
during the events from March 24, 2022 to December 31,
2022.

The performance of the ETG rain gauge in estimating
rainfall accumulation is illustrated in Table IV through the
values of correlation coefficient, RMSE (in mm), NMAE
(in %), and NB (in %) between cumulated precipitations
measured by TC disdrometer and ETG rain gauge.

With few exceptions, the agreement between the data mea-
sured by the ETG rain gauge and those provided by the TC
disdrometer is very good.
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Fig. 7. CNR-ISAC (Rome). (a) Scatterplot between event-based cumulated precipitation from TC disdrometer and SmartLNB. (b) Scatterplot between
event-based mean value of rain rate from TC disdrometer and SmartLNB. (c)–(f) Time series of cumulated precipitation from TC disdrometer and SmartLNB.

TABLE V
CONTINGENCY TABLE PROCESSED ON ALL RAINY EVENTS FOR

DETECTION ANALYSIS OF SMARTLNB WITH RESPECT TO TC
DISDROMETER IN ROME

VI. EVALUATION OF THE PRECIPITATION ESTIMATION
FROM SMARTLNB

In this section, we compare the SmartLNB rainfall retrievals
with the data provided by the TC disdrometer in Rome and
the rain gauges in Tuscany.

TABLE VI
STATISTICAL INDICES OBTAINED BY CONTINGENCY

TABLES OF SMARTLNB WITH RESPECT TO TC
DISDROMETER IN ROME

A. Validation in Rome

The first step deals with the analysis of the SmartLNB
performance in detecting rainy events. Table V shows the
contingency table obtained considering all the rainy events.
The high number of “missing” minutes is due to the fact
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TABLE VII
PERFORMANCE OF THE SMARTLNB IN ESTIMATING

RAINFALL ACCUMULATION WITH RESPECT
TO TC DISDROMETER

that the disdrometer is able to detect very low rainfall data
(>0.1 mm·h−1), unlike the SmartLNB. Indeed, the average
value of rain rate provided by the disdrometer in “missing”
minutes is equal to 0.7 mm·h−1.

The statistical indices POD, FAR, and ACC related to
contingency tables are shown in Table VI.

As second step the SmartLNB-based cumulated precipita-
tion obtained in each event is compared with that obtained
from the TC disdrometer, to evaluate the SmartLNB perfor-
mance in providing accurate rainfall measurements. Fig. 7(a)
shows the scatterplot between event-based cumulated precip-
itation estimated by TC disdrometer (x-axis) and SmartLNB
(y-axis). The color bar represents the number of rainy minutes
collected by the disdrometer during the event.

Table VII shows the values of correlation coefficient, RMSE
(in mm), NMAE (in %), and NB (in %) between cumulated
precipitations measured by TC disdrometer and SmartLNB.

An overestimation of the SmartLNB retrieval with respect
to the disdrometer measurement is observed and is mainly
associated with two phenomena. For some events, as the ones
shown in Fig. 7(d) and (e), there is a small bias between the
two time series of instantaneous rainfall rate (although the
agreement between the trends is good), which causes a high
difference in terms of cumulated precipitation. The latter bias
can be due to a small error in the definition of the Es/N0
reference values in the SmartLNB retrieval algorithm.

The second aspect is that sometimes the SmartLNB overes-
timates the values of very intense rain rate peaks [Fig. 7(c)].

Although a possible overestimation of the peaks, it is worth
noting that the SmartLNB is able to detect high precipitation
values, obtaining an improvement compared to the analysis
carried out in [17]. Fig. 7(f) shows an event during which the
rain rate peak of 48.1 mm·h−1 measured by the disdrometer is
not detected by SmartLNB. However, this is a rare situation,
probably due to a saturation phenomenon.

The overestimation of rainfall peaks, although time local-
ized, and the small bias can lead to a significant overestimation
of the average value of the rainfall rate R per event. Fig. 7(b)
shows the scatterplot between event-based mean value of R
obtained by TC disdrometer data (x-axis) and SmartLNB ones
(y-axis). The color bar represents the number of rainy minutes
collected by the disdrometer during the event.

Finally, to summarize the main behavior of the SmartLNB
retrievals algorithm, with respect to the disdrometer, Fig. 8
shows a bar plot which highlights the total accumulation
rainfall (calculated on all the events) measured by the
two instruments for different precipitation intensity classes
(obtained by the disdrometer). The underestimation when
R varies between 0 and 2 mm·h−1 is caused by the
non-detection of low rain intensities by SmartLNB. In general,

Fig. 8. Bar plot of the total accumulation rainfall as the rainfall rate (measured
by TC disdrometer) varies.

Fig. 9. Scatterplot between event-based cumulated precipitation from rain
gauges and SmartLNBs in Tuscany.

the SmartLNB overestimates the precipitation data (especially
for medium intensities) and is able to detect very high rainfall
rate values.

B. Validation in Tuscany

The SmartLNB-based cumulated precipitation obtained in
each event is compared with that obtained from the rain gauge,
at each selected site in Tuscany. The performances of the
SmartLNBs in providing accurate rainfall measurements are
evaluated and illustrated in Fig. 9 and Table VIII.

Fig. 9 shows the scatterplot between event-based cumulated
precipitations estimated by rain gauge (x-axis) and SmartLNB
(y-axis), for each site in Tuscany (as described in the legend).

Table VIII shows the error values, obtained for sites where
it is possible to compare at least ten events, while the last
row of the table shows the results obtained considering the
complete set of data from all sites in Tuscany.

The correlation coefficient varies among the different sites,
ranging between 0.50 and 0.92, with an overall performance
of 0.70. This is due to the inhomogeneity of the data: in fact,
the events analyzed refer to different areas and time periods,
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TABLE VIII
PERFORMANCE OF THE SMARTLNB IN ESTIMATING RAINFALL

ACCUMULATION WITH RESPECT TO RAIN GAUGE

Fig. 10. Time series of cumulated precipitation by ETG rain gauge in Pisa
and SmartLNB in site IID for the December 15, 2022 rain event.

according to the availability of the data itself. Based on RMSE
and NMAE, the SmartLNB IIB has the best performance
(6.0 mm and 24%, respectively). In terms of bias, sites IIB
and IIC have positive values (23% and 14%, respectively),
while IID and IIE have negative NB values (−26% and
−61%, respectively). However, the overall bias is −18%. The
SmartLNB IIE in Pisa has the worst performance in terms
of the error indices considered. It is possible to notice that
shorter distances correspond to better performance. In fact,
a comparison of Tables I and VIII yields that the error indices
are minimal IIB and IIC and greater in the other sites where
rain gauges and SmartLNB are not co-located. In addition,
the difference between the distances given in the last column
of Table I for sites IID and IIE in Pisa clarifies why the
performance of the SmartLNB at site IID is much better
than that of the SmartLNB at site IIE, although the distances
between rain gauge and SmartLNB are similar.

Fig. 10 shows an example of good agreement between the
time series of the rainfall accumulation by SmartLNB and
ETG rain gauge, related to the site IID in Pisa.

VII. CONCLUSION

Recently, the use of “opportunistic” methods to estimate
rainfall has been investigated, aiming to augment precipitation
measurements by expanding available devices without adding
new infrastructures. The idea behind these new techniques is
to exploit the existence of opportunistic MW communication
links distributed throughout the territory, even if installed for

other purposes, and to measure the attenuation experienced
by the signals as a consequence of the presence of liquid and
mixed precipitation along the receiver-satellite path.

In this context, two projects funded by the Tuscany Region
Government (Italy), NEFOCAST and INSIDERAIN, have
been carried out with the purpose of developing and evaluating
a rain retrieval algorithm to obtain rainfall rate from interactive
domestic devices. In particular, INSIDERAIN is a follow-up
of the NEFOCAST project and provides significant changes
with respect to NEFOCAST retrievals.

To validate the new INSIDERAIN retrievals a 1-year field
campaign was conducted at CNR-ISAC in Rome and in
several sites in Tuscany. Comparing SmartLNB with disdrom-
eter and rain gauge data we found that the new acquisition
mode and the upgraded algorithm allow SmartLNB to detect
higher rainfall rates, ensuring the study of intense precipitation
phenomena, i.e., up to about 100 mm·h−1. The latter is an
improvement compared to the NEFOCAST analysis carried
out in [17]. A further innovation to [17] is the presence,
in Rome and Tuscany sites, of new smart rain gauges devel-
oped by ETG Srl, Italy, which are prototypes never used
before. The comparison of the ETG and disdrometer measure-
ments results in a correlation coefficient of 0.98 and NMAE
equal to 25%, highlighting the very good performance of the
new device.

We found that in terms of event cumulated precipitation
values the agreement between SmartLNB and disdrometer in
Rome is good, i.e., NMAE (RMSE) equal to 51% (7.3 mm)
and a bias of 23%. However, the SmartLNB overestimates the
precipitation intensities (especially for medium values, i.e.,
around 10 and 20 mm·h−1). The same comparison analysis
between rain gauges and SmartLNBs in Tuscany yields to
similar error values, i.e., an overall NMAE (RMSE) equal to
50% (8.3 mm). Regarding the sites in Tuscany the resulting
bias is positive in some cases and negative in others. Similar
results have been obtained in [17] where lower precipitation
intensity events have been analyzed.

Although the technology covered by this article has been
tested in two different projects obtaining good comparison
results, it is not yet mature for operation. Analysis over
longer periods and comparisons with multiple rain gauges
arranged along the satellite link are necessary to study the
effects of different acquisition geometry on the results. In [11],
an ensemble Kalman filter (EnKF)-based method is developed
to dynamically generate gridded rainfall fields, assimilating
precipitation from MW links.
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