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Abstract— Vector polygons are valuable survey data, serving
as crucial outputs of national geographical censuses and a
fundamental data source for detecting changes in geographical
conditions. Current remote sensing image change detection meth-
ods rely on comparing images but overlook abundant historical
vector results, struggle with model generalization, and lack ade-
quate samples. Consequently, change detection remains a manual
process primarily, unable to meet the requirements for automated
and efficient monitoring of standardized geographical conditions.
Hence, this article proposes a change detection method for
land cover vector polygons based on high-resolution remote
sensing images and deep learning. Initially, the enhanced simple
linear iterative clustering (SLIC) algorithm is applied to seg-
ment dual-temporal images from identical regions. Subsequently,
an annotated dataset is generated using a multiscale extraction,
cropping-with-inpainting approach. Next, datasets derived from
pretemporal and posttemporal images are used for training and
testing, respectively, and the training set is purified by using two-
classifier cross-validation. Finally, an improved object-oriented
convolutional neural network (CNN) model performs fine-grained
scene classification. The change rules and postprocessing method
are then integrated to identify changed vector polygons. To val-
idate the effectiveness and superiority of the proposed method,
we conducted experiments on land cover change detection using
datasets from two study areas. The results indicate that the
proposed method achieves precision and recall rates of 91.89%
and 94.44% on Dataset 1, respectively. Similarly, in Dataset
2, the precision and recall rates reach 87.59% and 91.41%,
respectively. These findings demonstrate the method’s efficacy in
detecting changed vector polygons, reducing manual intervention,
and enhancing detection efficiency.
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I. INTRODUCTION

WITH the steady increase in the global population and
the rapid progress of the social economy, there is a

persistent alteration in land surface types and land use patterns.
Land cover change detection through remote sensing imagery
involves comparing images of a specific region over different
temporal periods to identify alterations in land cover [1]. High-
resolution remote sensing imagery enables the monitoring of
large-scale land changes over time [2]. Consequently, land
cover change detection has emerged as a fundamental task
within the remote sensing discipline, finding extensive appli-
cations in land surveying [3], [4], urban research [5], [6], [7],
ecosystem monitoring [8], [9], [10], disaster detection [11],
[12], and others.

Since the development of change detection methods using
remote sensing images, there has been significant research
and application in this area. As a result, various change
detection methods have been derived. From an analytical-unit
perspective, change detection can be broadly categorized into
pixel-based and object-oriented methods [13]. The traditional
pixel-based methods usually analyze the spectral differences
of pixels directly through arithmetical operations, such as
subtraction or division on a pixel-by-pixel basis, and then
apply threshold method and cluster analysis to extract the vari-
able pixels. However, this approach often overlooks contextual
information and is susceptible to “salt and pepper” noise [14].
On the other hand, object-oriented methods integrate spectral,
texture, and structural information of pixels in the vicin-
ity, offering noise-resistant solid capabilities. Consequently,
object-oriented methods exhibit certain advantages when deal-
ing with high-resolution images with complex features and
high redundancy [15].

Feature extraction plays a crucial role in object-oriented
change detection. Traditional methods for feature extraction
encounter challenges in constructing features and adapting
models. In recent years, deep learning approaches have signif-
icantly enhanced the accuracy of interpreting remote sensing
images by automatically extracting ground features and model-
ing. This advancement opens more possibilities for object-level
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change detection methods [16]. For instance, Zhang et al. [17]
proposed a deep learning-based framework for object-level
change detection using a detector guided by dual correla-
tion attention. Shu et al. [18] introduced a dual-perspective
change contextual network that improves the extraction pro-
cess of changing features by fusing dual-temporal features
and employing context modeling to enhance the integrity of
changing objects. Although deep learning has great poten-
tial in image analysis, its application in change detection
faces several challenges due to the inherent complexity of
high-resolution remote sensing images, such as the diversity
of ground objects, image noise, and seasonal variations, and
the dependence of deep learning models on large numbers
of high-quality training samples. Specifically, these challenges
include, but are not limited to, accurate boundary detection,
data imbalances, high labeling costs, and significant demands
on computing resources. Therefore, most of the current change
detection methods based on deep learning are difficult to apply
to practical tasks directly.

The selection of a data source plays a crucial role in change
detection. While most existing research focuses on using
image data, there is a scarcity of studies that combine vector
and image data for change detection methods. Vector data,
which contain boundary and category information of ground
objects, are a valuable data source in various applications
such as land surveys. Unlike image data, it provides essential
assistance for tasks such as image segmentation and ground
object recognition [19]. Feng et al. [20] employed a category
vector map to segment images at multiple scales. They ana-
lyzed the change possibilities using the results of coarse-to-fine
segmentation and pixel preclassification. Finally, they utilized
the rotation forest classifier for classification and determined
the change area by applying the majority voting rule. How-
ever, this method failed to identify the changed direction or
determine the type of altered ground objects. Zhang et al. [21]
proposed a change detection method based on vector data
and the isolation forest algorithm. This method avoids errors
caused by the mean value introduced in traditional index
methods and provides a more detailed description of local
changes. However, its effectiveness relies on the assumption
that the proportion of various ground object change maps
is small. Wei et al. [22] replaced historical remote sensing
images with vector data. They introduced a spatial outlier
index of texture elements based on locally accessible density
to detect abnormal samples and changed objects in recent
images automatically. However, the efficiency and accuracy
of this approach may be compromised when detecting alter-
ations in high-rise buildings within urban areas. In conclusion,
the theory and technology behind change detection methods
integrating vector and image data still need to be fully mature,
demanding further research.

In order to address the issues above, this study proposes
a novel method for detecting changed vector polygons using
high-resolution remote sensing imagery and deep learning. The
key contributions of this research are outlined as follows.

1) A framework for detecting changes in vector polygons
based on high-resolution remote sensing imagery and
deep learning is proposed. The framework enables an

end-to-end application from preprocessed imagery to
change detection, requiring only dual-temporal remote
sensing images and the land cover vector data corre-
sponding to the former temporal image. This method
offers a comprehensive bottom-up solution.

2) In dataset construction, a strategy is introduced for
building a sample library based on superpixel segmen-
tation and vector polygons. Initially, an enhanced SLIC
algorithm, which integrates both vector polygon con-
straints and texture features, is employed for improved
segmentation. Capitalizing on these superpixels and cor-
responding land cover vector data, a multiscale sample
cropping and patching scheme is designed. Supported by
the DeepFill v2 model and an automatic purifier, a large
quantity of high-quality samples can be harvested.

3) To enhance the accuracy of remote sensing scene clas-
sification, we employ an improved object-oriented CNN
(IOCNN) model that classifies the superpixel cropping
units. By integrating both first- and second-order fea-
tures, a more discriminative feature representation is
achieved, leading to enhanced model efficiency and
classification accuracy. Furthermore, a change decision-
maker is introduced, incorporating various change rules.
This decision-maker compares and postprocesses the
sample prediction results with land cover vector data,
enabling the effective extraction of changed vector
polygons.

II. RELATED WORK

The change detection framework presented in this article is
established on the foundations of deep learning technologies,
superpixel segmentation, and prior-assisted vector polygons.
In this section, we will explore recent works that relate to
these three aspects.

A. Deep Learning-Based Change Detection

In recent years, deep learning technology has demonstrated
significant proficiency in feature extraction and representation,
thereby revolutionizing the field of remote sensing image
analysis. This technological advancement has found extensive
applications in areas such as land cover extraction, target
detection, data fusion, and change detection. Specifically, deep
learning-based multiclass change detection methods can be
categorized into two primary types: direct classification and
postclassification comparison. Unlike binary change detection,
which solely determines the presence or absence of changes,
multiclass change detection offers granular insights into spe-
cific “from-to” change types [23].

The direct classification approach aims to identify both the
region and category of changes using an end-to-end neural
network architecture. Two principal types of such end-to-
end change detection networks exist: early fusion and late
fusion [24]. Early fusion architectures integrate bitemporal
images as multichannel inputs, tailored to fit semantic seg-
mentation networks. Prevalent architectures such as fully
convolutional networks (FCNs) [25] and U-Net [26] are
not only expedient for semantic segmentation tasks but also
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well-suited for change detection due to their encoder–decoder
configurations. Numerous enhanced U-Net variants, such
as MSCDUNet [27], M-UNet [28], LWCDNet [29], and
CLNet [30], have been developed for change detection and
have demonstrated commendable performance. In contrast,
late fusion approaches utilize separate bitemporal images as
inputs and commonly employ a Siamese network as the
backbone architecture comprising identical subnetworks with
shared weights. For instance, Zhang et al. [31] introduced
a global-aware Siamese network (GAS-Net) that leverages a
global attention module and a foreground awareness module
to achieve effective change detection. Similarly, Zhu et al. [32]
proposed a twin global learning framework (Siam-GL), incor-
porating twin networks, G-H sampling mechanisms, and
change mask constraints to achieve high-accuracy, robust
semantic change detection. Notably, the efficacy of these
direct classification methods is contingent upon the availabil-
ity and quality of training samples, which are particularly
challenging to obtain for “from-to” variation types, espe-
cially in the context of data-intensive convolutional neural
networks (CNNs) [33].

Typically, the postclassification comparison approach
encompasses two fundamental stages: initial classification
and subsequent postprocessing. Initially, bitemporal images
undergo classification, the results of which serve as the basis
for change detection through further comparative postpro-
cessing. This renders the outcome highly contingent upon
the accuracy of the initial classification. Despite its reliance
on classification accuracy, the method’s intuitive simplicity
and reduced classification space have led to its widespread
adoption [34]. For instance, Wan et al. [35] proposed a
multisource change detection technique that integrates multi-
temporal segmentation with composite classification, viewing
change detection as a specialized form of classification. Build-
ing on this foundation, they later introduced an enhanced
version employing collaborative multitemporal segmentation
and hierarchical compound classification to bolster classifica-
tion accuracy [36]. Similarly, Dahiya et al. [37] presented a
postclassification comparison method predicated on artificial
neural networks, demonstrating high detection accuracy on the
Hyperion EO-1 dataset.

The methodology presented in this article aims to detect
changed vector polygons and fundamentally operates as a
binary change detection framework guided by multiclass
change detection. Initially, samples from two epochs of
imagery are generated through superpixel segmentation and
multiscale cropping, serving, respectively, as the training and
prediction sets for the classification network. Specifically, the
first epoch of imagery, along with vector data from the same
epoch, forms the training set, while the second epoch of
imagery, combined with vector data from the first epoch,
makes up the prediction set. By examining the classification
prediction results for the samples from the second epoch,
it is possible to identify regions that have experienced land
cover changes and determine the specific types of changes.
Ultimately, a change decision-maker is employed during post-
processing to detect vector polygons that meet the predefined
change criteria.

B. Superpixel Segmentation-Based Change Detection

The term “superpixel” describes a cluster of adjacent pixels
in an image with similar attributes, such as color and texture.
Utilizing a reduced set of superpixels as the focal point for
image processing can substantially enhance computational
efficiency in subsequent tasks [38]. Current superpixel seg-
mentation techniques fall into two principal categories: graph
theory- and clustering-based methods.

In graph theory-based approaches, each pixel is treated as
a node in an undirected graph, with the similarity between
adjacent pixels represented as edge weights. Superpixels
are formed by minimizing a predefined cost function [39].
Notable examples include the normalized cut (N-Cut) [40]
and lazy random walk (LRW) [41] algorithms. The N-Cut
algorithm aims for balanced graph segmentation through
global optimization and normalized cutting costs, while the
LRW algorithm emphasizes local structure and employs iter-
ative optimization to produce superpixels of variable size and
number. However, these graph theory-based methods generally
suffer from high computational complexity and lack the ability
to regulate superpixel compactness.

Conversely, clustering-based methods conceptualize super-
pixel segmentation as a clustering issue, offering advantages
in terms of speed, compactness, and controllability. Notable
clustering-based algorithms include simple linear iterative
clustering (SLIC) [42], linear spectral clustering (LSC) [43],
and simple noniterative clustering (SNIC) [44]. SLIC leverages
k-means optimization for localized searching in color and
spatial dimensions, LSC utilizes a kernel similarity metric and
a weighted K-means objective function in a high-dimensional
feature space to achieve normalized graph partitioning, and
SNIC uses noniterative methods to directly classify pixels
based on color and spatial coordinates. Among these, SLIC
is most commonly employed due to its simplicity, efficacy,
and computational efficiency [45].

Currently, superpixel segmentation serves as a prevalent
preprocessing technique in object-level change detection.
Zhan et al. [46] introduced a bilinear CNN (BCNN) inte-
grated with the SLIC superpixel algorithm, aiming to reduce
annotation requirements and enhance detection performance.
Li et al. [47] developed a superpixel-by-superpixel clustering
framework (SSCF) that employs both SLIC and the Gaus-
sian mixture model (GMM) to refine the detection of subtle
changes in hyperspectral image change detection (HSI-CD)
and mitigate confusion surrounding varying degrees of change
along decision boundaries. Furthermore, Zhang et al. [48]
formulated an end-to-end superpixel enhanced change detec-
tion network (ESCNet), which amalgamates differentiable
superpixel segmentation with deep CNNs, allowing for more
precise localization of change regions in very-high-resolution
(VHR) images. The aforementioned studies collectively under-
score the significant progress made in superpixel segmentation
technology for object-level change detection.

C. Prior Knowledge-Based Change Detection

The intrinsically data-driven nature of deep learning
often constrains model performance when training data are
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Fig. 1. Workflow of the proposed change detection approach. (a) Image Segmentation aided by vector polygons. (b) Automatic generation and purification
of samples. (c) Fine-grained classification. (d) Change detection and postprocessing.

inadequate. However, the incorporation of prior knowledge
can serve as an auxiliary mechanism to enhance both model
performance and generalizability, particularly in scenarios
with limited data or incomplete labels [49]. For instance,
Zhu et al. [50] developed a knowledge-guided land pattern
depicting (KGLPD) framework that leverages OpenStreetMap
(OSM) data and prior knowledge to enhance land-use clas-
sification accuracy significantly. Similarly, Lv et al. [51]
introduced a multiscale information attention neural network
guided by the change gradient image (CGI), which markedly
improved the model’s change detection capabilities. Moreover,
Bai et al. [52] formulated an edge-guided recurrent CNN
(EGRCNN) that capitalizes on prior boundary information
to refine the accuracy of building change detection. These
studies illustrate that the integration of prior knowledge, such
as geographic or spatial structure information, allows models
to more precisely identify both land cover types and their
changes, thereby advancing the accuracy of remote sensing
image analysis.

III. METHODS

The study establishes a comprehensive framework for
detecting changes in vector polygons within high-resolution
remote sensing imagery, as illustrated in Fig. 1. The method-
ology is built as an end-to-end processing pipeline involving
four key phases. Initially, we use dual-temporal high-resolution
remote sensing imagery and land cover vector data as inputs.

These are subjected to superpixel segmentation using a modi-
fied SLIC algorithm. Next, high-quality samples are generated
through multiscale cropping based on each superpixel unit,
along with further refinement via image inpainting and sample
purification. These samples are then used for fine-grained
image classification via an IOCNN. Finally, a change decision-
maker applies various rules to identify and locate changes
within the vector polygons. Further details for each module
are elaborated on in Sections III-A and III-D.

A. Image Segmentation

Image segmentation quality directly impacts the results of
change detection in object-oriented tasks. Superpixel segmen-
tation is a widely used method for image oversegmentation,
wherein pixel regions with similar features, such as color,
brightness, and texture, are merged into a smaller set of super-
pixels. This technique effectively reduces the complexity of
subsequent image processing [53]. The SLIC algorithm [42] is
a rapid method for generating uniform and compact superpix-
els. By incorporating color information and spatial proximity,
SLIC effectively preserves image boundary features. However,
SLIC does not guarantee complete consistency of land cover
types within superpixels and requires improvement when deal-
ing with complex scenes. To address this issue, we introduce
a novel approach: a boundary-constrained SLIC algorithm
combined with texture features. This approach leverages vector
boundaries as prior knowledge and significantly improves
image segmentation accuracy, as demonstrated in Fig. 2.
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Fig. 2. Steps of vector-constrained region SLIC (as an example of grassland).
(a) Original image and corresponding land-cover vector polygon. (b) Initial-
izing seed points. (c) Fine-tuning seed points. (d) Clustering.

The specific details of the algorithm are given as follows.
1) Initialize Cluster Centers: Given the number of super-

pixels (K ), iteratively place seed points such that the distance
from each seed point to the region boundary and other seed
points is maximized to achieve uniform placement of seed
points in the region. The formula for calculating the seed point
(P) is given as follows:

P = argmaxx

(
min
(
∥x − y∥2

))
(1)

where y represents the points on the region’s boundary and
the coordinates of the placed seed points, and x denotes the
coordinates of the unplaced seed points. Each piece of vector
polygon is regarded as an independent region. Since the shape
and size of polygons are not uniform, the seed points in each
polygon are calculated by the preset superpixel size to make
the generated superpixel uniform and compact. As shown
in (2), N is the total number of pixels in the region, and C0
signifies the segmentation size standard. Assuming that each
superpixel is a square of uniform size, its side length can be
represented by S, S = m ×C0, and m is a constant to measure
the size of the superpixel better

K = N ∥ (m × C0)
2. (2)

2) Iterative Update: The distance between each pixel in the
region and K seed points is calculated. In the SLIC algorithm,
the distance metric is represented by a 5-D feature vector,
denoted as Dk =

[
lk, ak, bk, xk, yk

]T . Here, lk , ak , and bk

represent the color components of the three channels in the
International Commission on Illumination (CIE) color space,
respectively, while xk and yk denote the pixel coordinates.
To improve the quality and accuracy of image segmentation,

we introduce a texture feature metric, LBPk . Local binary
pattern (LBP) is an algorithm describing texture features. Its
fundamental principle involves comparing the central pixel’s
gray values with its neighborhood’s surrounding pixels. The
comparison result is then encoded in binary form, serving
as the local texture feature of the current pixel [54]. The
calculation formula for the LBP algorithm is given as follows:

LBPP,R =

P−1∑
p=0

s
(
gp, gc

)
· 2p (3)

s(a, b) =

{
1, a ⩾ b
0, a < b

(4)

where P represents the number of pixels sampled in the
neighborhood, R denotes the radius of the neighborhood, gp

signifies the gray value of the neighborhood pixel, gc means
the gray value of the center pixel, and s(·) corresponds to the
binary expression of the gray level.

Texture features can effectively describe image details,
enhance boundary connectivity, and mitigate noise interfer-
ence. Introducing texture feature measurement, a 6-D feature
vector, D′

k =
[
lk, ak, bk, xk, yk, LBPk

]T , is constructed. Con-
sidering spatial, color, and texture features enhances the
accuracy and robustness of image segmentation. The specific
measurement formula is given as follows:

ds =

√(
x j − xi

)2
+
(

y j − yi
)2 (5)

dc =

√(
l j − li

)2
+
(
a j − ai

)2
+
(
b j − bi

)2 (6)

dt =

√(
LBP j − LBPi

)2 (7)

D =

√
d2

c + wd2
s + ud2

t (8)

where ds , dc, and dt are the spatial distance, color distance, and
texture distance from the pixel to the seed point, respectively,
while w and u are the closeness coefficients, which measure
the weight of these distances in the total distance metric.
To enhance clustering convergence speed and ensure segmen-
tation quality, we define a circular search area around the seed
point with a radius of 2S [55]. Then, we compute the shortest
distance between each pixel within this area and the seed point.
Furthermore, we apply an iterative clustering approach using
the K-means++ algorithm [56] until reaching the maximum
number of iterations or achieving convergence.

3) Connect Component: After iterative optimization, there
may still be the problem of multiconnected or some superpix-
els being too small. To improve the connectivity, employing
the region-growing method to filter out fragmented and notably
small superpixels, subsequently merging them with their adja-
cent superpixels that possess the most similar gray value,
is essential.

This method uses the vector boundary to constrain the super-
pixel segmentation and further considers the texture features.
With the help of the vector boundary and texture features,
high segmentation quality can be achieved. At the same time,
by inheriting the land class attribute of the vector polygon, the
unity of the land class information in the subsequent samples
can be guaranteed as much as possible.
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Fig. 3. Multiscale cropping of images: (a) suggests that as the cropping
size expands, the likelihood of the sample incorporating additional land cover
classes also rises and (b) signifies that when the boundary of the image is
cropped, any areas that exceed the original image dimensions will result in
null values. Only the regions within the vector boundary are preserved when
cropping. Regions beyond the vector boundary are set to zero.

B. Automatic Generation, Inpainting, and Purification of
Samples

For deep learning methods, in order to obtain better classi-
fication results, in addition to selecting the appropriate model,
the quality and quantity of samples should also be con-
sidered. Currently, most traditional approaches for obtaining
scene classification sample data involve using web crawlers
or grid-cutting techniques on existing data to generate sam-
ples [57]. However, these methods often yield unlabeled
and unreliable data, requiring manual verification and visual
interpretation selection, resulting in inefficiency. This study
proposes an efficient automatic sample generation method to
address this issue. This method utilizes the centroid of a
superpixel as the center for sample clipping and combines
it with the corresponding geographic location and land class
information from vector polygons. By doing so, the proposed
method achieves the automatic generation and labeling of
a large number of high-quality samples. In addition, since
ground objects exhibit different characteristics at varying spa-
tial resolutions and obtaining comprehensive ground object
information at a single scale is challenging, our method
predefines a segmentation size denoted as C0. Multiple sizes
are then selected based on this predefined segmentation size to
crop and obtain samples of different sizes, thereby considering
the diverse nature of ground objects.

Fig. 3 illustrates the process of multiscale image cropping.
As the cropping scale increases, the likelihood of generating

samples that contain features from other land cover types also
rises. Moreover, when cropping samples along the edges of the
imagery, areas extending beyond the image boundaries may
result in null values (no data). To address these issues, the
study employs zero-padding and image inpainting techniques.
Specifically, areas within the sample, which either belong to
other land cover types or are null values, are first padded
with zeros, based on the boundaries of the vector polygons.
Subsequently, the repaired image of this portion is generated
using the pretrained DeepFill v2 model [58]. The structure
of the DeepFill v2 model can be observed in Fig. 4. As a
generative adversarial network (GAN) model, it comprises
two main components: the generator and the discriminator.
The generator utilizes a coarse-to-fine dual encoder–decoder
structure to restore image quality. At the same time, the
discriminator is a convolutional network using spectral nor-
malization [59] to assess the authenticity of the generated
image. Both components continually undergo iterative training
to enhance their performance, making image inpainting more
realistic [60].

Initial self-labeled samples can be obtained through multi-
scale cropping and image inpainting. The self-labeled samples
obtained from the anterior and posterior temporal images are
used for training and testing remote sensing scene image
classification, respectively. However, vector polygons might
have inherent inaccuracies at their boundaries and in terms
of land cover types. Consequently, labels inherited by sam-
ples from these vector polygons could be unreliable. While
the image patching technique has its merits, it also harbors
potential errors, and at times, the patching results might not
meet the desired standards. Thus, further purification of the
initial samples is necessary. As Fig. 5 illustrates, the purifi-
cation process is composed of two pretrained classification
networks, ResNet-50 [61] and EfficientNet V2-S [62], which
are used to classify the self-labeled samples. Subsequently,
the classification results are then cross-referenced with the
sample labels. A sample is considered “pure” and retained
for final training only if the predictions from both classifiers
are entirely consistent with the original label. Joint purification
of the samples using two classifiers can significantly enhance
their accuracy and reliability. It is important to note that the
purification operation is solely applied to the training data.

C. Fine-Grained Scene Classification Model

Traditional coarse-grained image classification methods
struggle to capture the intricate features in images due to
the complex structure, diverse scales, and irregular rotation
angles found in natural resource land cover scenes. Therefore,
there is a need to develop a network model capable of
extracting high-order features for fine-grained scene classi-
fication. Covariance pooling is frequently used in remote
sensing and geoinformatics to extract higher-order features.
Compared to traditional methods such as average or max
pooling, covariance pooling captures the interrelations between
image features by computing their covariance matrix, which
allows for a more comprehensive description of land objects
and spatial structures. This article proposes using an IOCNN
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Fig. 4. Architecture of DeepFill v2. It contains two parts: (a) generator: two-stage framework with gated convolution and contextual attention and
(b) discriminator: spectral-normalized markovian discriminator. Both pixelwise reconstruction loss and adversarial loss are considered in the training process.

Fig. 5. Flowchart of sample purification.

model [63] to capture higher order features. Building on first-
order features, the model employs attention mechanisms and
covariance pooling to extract second-order features. By fusing
both first- and second-order feature representations, the model
achieves enhanced feature representation capabilities, leading
to improved classification accuracy.

Fig. 6 shows the IOCNN network model. Initially, the
model employs a conventional deep neural network to extract
first-order features. Subsequently, the model utilizes the con-

volutional block attention module (CBAM) [64] and the
covariance matrix analysis module (COVM) to acquire second-
order features, which are then merged with the first-order
features. Finally, a fully connected layer is employed to clas-
sify the combined features. Compared to employing BCNN for
second-order feature extraction, using the covariance matrix
of the final convolutional features helps reduce the number of
model parameters and enhances the training efficiency. Since
this article primarily focuses on the classification of RGB
three-channel samples, the original model’s four-channel two-
input configuration is omitted. In addition, we employ the
ConvNeXt [65] model as the backbone network for first-order
feature extraction. Combining the advantages of CNN and
transformer architectures, ConvNeXt offers higher accuracy
and lower computational cost, making it one of the more
advanced network structures currently available.

In recent years, attention mechanisms have been proposed
to improve neural networks. The role of attention mecha-
nisms is to enhance the semantic representation of specific
input regions by assigning varying weights. Within computer
vision, one commonly used attention mechanism is the CBAM,
consisting of two submodules: channel attention and spatial
attention.

The channel attention module (CAM) compresses the global
spatial information, learns features in the channel dimension,
and adaptively adjusts the feature importance of each channel.
The whole process can be expressed as

Mcam(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (9)

where σ(·) represents the activation function, MLP(·)

denotes the shared multilayer perceptron, and AvgPool(·) and
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Fig. 6. Example architecture of the IOCNN.

MaxPool(·) signify the results of global average pooling and
max pooling in the spatial dimension, respectively.

The spatial attention module (SAM) compresses and pools
the features of each location, performs feature learning in the
spatial dimension, and focuses on key information in different
spatial locations. The whole process can be expressed as

Msam(F) = σ
(

f 7×7({AvgPool′(F), MaxPool′(F)
}))

(10)

where f 7×7(·) represents the 7 × 7 convolutional layer, {·}

denotes concatenation in the channel dimension, AvgPool′(·)
and MaxPool′(·) signify the average pooling and max pooling
in the channel dimension, respectively.

Despite the weight enhancement of the region of interest
by the CBAM module, the features obtained are limited
to first-order statistics. To improve the features’ expressive
capability, acquiring second-order statistics is necessary. The
network utilizes a module for covariance matrix analysis to
extract second-order statistics from the feature maps, com-
prising covariance pooling and matrix power normalization as
two sequential steps. Covariance pooling converts the feature
map into a covariance matrix primarily. The process involves
centering the matrix around the mean of each random variable,
followed by multiplying the centered matrix with itself to
derive the covariance matrix. For a given feature map Rh×w×d ,
obtained from the CBAM module, transform it to a matrix
Xn×d , with n = h × w. The covariance matrix is computed
using the following procedure:

Cov = X Î X T (11)

Î =
1
n

(
I −

1
n

ii T
)

(12)

where Î represents the center matrix, I denotes the identity
matrix, and i means the column vector with all values 1.

Based on the covariance matrix, a metalayer is employed
to compute approximately the matrix square root to fulfill the
eigenvectors’ normalization requirement. The metalayer com-
prises three components: prenormalization, Newton–Schultz
iteration, and postcompensation. Prenormalization ensures the
convergence of the iteration by dividing the covariance by its
trace. The Newton–Schultz iteration is a cyclic approximation
procedure used to compute the covariance’s square root. Post-
compensation restores the covariance matrix’s original scale
by multiplying the covariance matrix’s square root with its
own trace [66]. Specifically, given initial values, Y0 = A and

Z0 = I . For k = 1, 2, . . ., N , the formula for calculating the
matrix power normalization is given as follows:

A =
1

tr(Cov)
Cov

Yk =
1
2

Yk−1(3I − Zk−1Yk−1)

Zk =
1
2
(3I − Zk−1Yk−1)Zk−1

C =

√
tr(Cov)YN

(13)

where tr(·) represents the trace of the matrix, tr(Cov) =∑
i λi , λi denotes the eigenvalue of the covariance matrix,

and the final calculated second-order pooling feature is C ∈

Rd×d , which represents the statistical correlation between each
channel.

While second-order features can capture higher-level image
information, first-order features also contain essential basic
information from the original image. In some cases, this
basic information is indispensable. Considering both the first-
and second-order features can yield more comprehensive and
accurate image features, thereby improving the model’s gener-
alization ability. Hence, this model utilizes the maximum value
of the first- and second-order features as the final feature and
employs the cross-entropy function as the loss function. The
specific calculation formula is given as follows:

loss(x1, x2, y) = −log

(
exp
(
max(x1, x2)

[
y
])∑

j exp
(
max(x1, x2)

[
j
])) (14)

where x1 and x2 are the first- and second-order features, y is
the true class of the input image, and j is the sample index
in each batch.

D. Change Detection and Postprocessing

This article presents a change detection method that uti-
lizes two remote sensing images and a single vector dataset.
Foremost, we generate the sample and prediction datasets
that correspond to the two images. These datasets are used
as the training and prediction sets for scene classification,
respectively. Subsequently, the vector polygons associated with
the changed dataset are utilized to locate and identify the
changed areas, thereby accomplishing the change detection
task.

In practical applications, various tasks may have distinct
criteria for changes in different ground classes. For instance,
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Fig. 7. Flowchart of change detection and postprocessing. (FFID is the
unique identification field of polygons.)

specific applications necessitate the absence of buildings
on cultivated land but permit the presence of some grass.
To accommodate diverse requirements, we perform postpro-
cessing using a decision-maker. The specific rules are outlined
in the following:

NA

N
> ϕ (15)

where NA represents the number of samples predicted as class
A in this vector polygon, N denotes the total number of
samples in this vector polygon, and ϕ signifies the threshold.
After applying various postprocessing rules, the vector poly-
gons that satisfy the change rules are selected. This process
allows for the completion of change detection between the
two images. Fig. 7 illustrates the entire process. We store
the sample prediction results in a database format, including
the name, predicted category, predicted probability, initial
category, and other attributes. Subsequently, using the unique
identifier FFID of the vector polygon, the samples within the
same vector polygon are grouped as a single unit, and samples
with inconsistent initial and predicted categories are filtered
out. Finally, the changed vector polygons are located according
to the decision-maker.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed method,
we selected two pairs of dual-temporal remote sensing
images with varying resolutions as the research dataset. The
experiment was performed on a server running Windows
10 operating system. The server was equipped with an Intel
Xeon CPU E52640 v4 @ 2.4-GHz processor, 48 GB of mem-
ory, and an NVIDIA Quadro P4000 GPU. The network model
was developed using the PyTorch architecture and Python
version 3.7. The experimental process consists of the following
steps: dual-temporal image superpixel segmentation, automatic
generation and purification of samples, scene classification,
change detection, and postprocessing.

A. Study Area and Data Sources

Dataset 1 was sourced from the Yangxi River area in Huis-
han district, Wuxi city, Jiangsu province, China. It comprises
two phases of RGB unmanned aerial vehicle (UAV) images
and the corresponding land-cover vector data of the initial
phase image. The images have a resolution of 0.05 m and
cover an area of 6.5 km2, as depicted in Fig. 8. Fig. 8(a)
and (c) displays the UAV images and their corresponding
vector data captured in this area in June 2019. Moreover,
Fig. 8(b) presents a drone image of the same area in June
2020. The vector data are manually drawn from the original
time period and exist in the form of polygons. It contains
unique identification fields, such as FFID, and attributes, such
as land cover categories. The land cover types in this region
primarily encompass six categories: building, forest, water,
cropland, grass, and road. Notably, cropland and grass exhibit
the most significant changes. Superpixel segmentation employs
the segmentation size criterion to regulate the number of seed
points. An optimal number of seed points exists to avoid
oversegmentation or undersegmentation, yielding unsatisfac-
tory results. For this particular study area, we established the
segmentation size standard (denoted as C0) as 128, taking into
account the scale of objects given the resolution of the UAV
images. Subsequently, we conducted sample cropping using
three different sizes: 64, 128, and 224.

Dataset 2 was obtained from Guangling, Yangzhou city,
Jiangsu, China. It comprises two phases of RGB Gaofen-
2 satellite images along with the corresponding land-cover
vector data of the first phase image. The images have a
resolution of 1 m and cover an area of 265.36 km2, as shown
in Fig. 9. Specifically, Fig. 9(a) and (c) displays the region’s
GF-2 satellite imagery and accompanying vector data in 2021,
respectively. In addition, Fig. 9(b) presents a GF-2 satellite
image of the same region in 2022. The vector data were created
through manual delineation during the original period, similar
to Dataset 1. The land cover types within this region primarily
consist of building, forest, water, agricultural, and road. For
this study area, we set the segmentation size standard C0 to
64 and performed sample cropping at three sizes of 48, 64,
and 96.

B. Superpixel Segmentation and Sample Purification

Considering the performance of the experimental equip-
ment, we divided the original dataset into subsets of 5000 ×

5000 pixels. Furthermore, set the segmentation overlap rate
to 10% to ensure the effective detection of boundary poly-
gons. Each subset underwent superpixel segmentation using
the improved SLIC (ISLIC) algorithm. Then, we generated
self-labeled samples through multiscale cropping and image
inpainting. In the experiments, the maximum number of itera-
tions for the ISLIC algorithm is set to 10, with a compactness
value of 10. The parameters P and R for the LBP features
are set to 16 and 3, respectively. The purpose of the samples
varied depending on the period when they were generated. For
samples generated from the pretemporal image, a purification
process was conducted before utilizing them for model train-
ing and validation with a ratio of 6:4. Conversely, samples
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Fig. 8. Dataset 1 collected from the vicinity of Yangxi River, Huishan, Wuxi, Jiangsu, China. (a) UAV image in June 2019. (b) UAV image in June 2020.
(c) Vector data corresponding to the 2019 image. (d) Detail presentation of two phases of images. (e) Examples of land cover samples in Dataset 1.

generated from the posttemporal image were directly used as
the test set. In this study, cross-validation was performed using
two classifiers, ResNet-50 and EfficientNet V2-S, to purify
the samples. Purified samples are defined as those with
classification results consistent with the original label, thus
effectively improving the model’s classification performance.
For the test set, the sample name stored the label, center
coordinate, and subset number, allowing easy localization of
the vector polygon in which each sample resides based on
the center coordinate. As depicted in Fig. 10, our proposed
segmentation method accurately captures the boundaries of
vector polygons, producing uniform and compact superpixels.
This feature contributes to the generation of high-quality
samples.

C. Scene Classification

The accuracy of subsequent change detection is directly
influenced by the classification accuracy of the proposed
method [67], which serves as a postclassification compar-
ison approach. To validate the classification performance
of the IOCNN model, we compared it with several

other state-of-the-art models, including ResNet-50, Efficient-
Net V2-S, BCNN [68], PatchConvnet [69], PVTv2 [70],
WaveMLP [71], and ConvNeXt. Specifically, the BCNN model
employed a dual-stream ResNet implementation, PatchCon-
vnet used its S60 version, PVTv2 utilized its B2 version,
WaveMLP experiments were based on its S version, and Con-
vNeXt adopted its T version. We selected samples from two
periods in two datasets for training and testing, using overall
accuracy (OA) and kappa coefficient as evaluation metrics. All
models were evaluated under the same baseline conditions, and
the classification results are presented in Table I.

As we can see from Table I, the following holds.

1) In terms of both OA and kappa coefficient, the IOCNN
model outperforms other architectures. Specifically,
on Dataset 1, IOCNN registers an OA of 91.20% and
a kappa coefficient of 0.894, representing a 0.33%
increase in OA compared to the ConvNeXt model
(90.87% OA). On Dataset 2, the respective values for
IOCNN stand at 88.92% for OA and 0.862 for the
kappa coefficient. This underscores IOCNN’s advantage
in classification accuracy.
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Fig. 9. Dataset 2 collected from Guangling, Yangzhou, Jiangsu, China. (a) Gaofen-2 satellite image in 2021. (b) Gaofen-2 satellite image in 2022. (c) Vector
data corresponding to the 2021 image. (d) Detail presentation of two phases of images. (e) Examples of land cover samples in Dataset 2.

TABLE I
COMPARISON OF THE CLASSIFICATION METRIC OF DIFFERENT

MODELS FOR TWO DATASETS

2) Despite the BCNN possessing a high parameter count
of approximately 285.65M, its performance metrics do
not surpass those of IOCNN. This suggests that IOCNN
offers more efficient parameter utilization while retain-
ing high accuracy levels, thereby making it a viable
option for fine-grained classification tasks within com-
plex scenes.

3) It is noteworthy that model performance varies between
the two datasets. For instance, the Pyramid Vision
Transformer v2 (PVTv2) exhibits superior performance
on drone datasets (Dataset 1) compared to satel-
lite imagery (Dataset 2). This discrepancy is likely
attributable to PVTv2’s transformer architecture, which
excels in handling global information and long-range
dependencies—features that may be particularly ben-
eficial for high-resolution, complex drone datasets.
Nevertheless, IOCNN demonstrates consistent perfor-
mance across both datasets, highlighting its adaptability
to various dataset characteristics.

D. Postprocessing and Change Detection Results

Because most of the vector polygons are manually delin-
eated, the distribution of land classes differs from that of
remote sensing images. For instance, vector polygons repre-
senting buildings may include small forests, roads, and other
land classes. To avoid false changes caused by nonsubject
land class predictions, it is essential to develop a change
decision-maker that establishes distinct thresholds based on
different change criteria, catering to diverse requirements
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Fig. 10. Examples of superpixel segmentation results. (a) and (b) Outcomes
of Dataset 1. (c) and (d) Results of Dataset 2.

in change detection tasks. Fig. 11 illustrates the change
decision-maker employed in this research, which categorizes
change rules into two classes: “sensitive” and “nonsensitive.”
In the “sensitive” class, the threshold is defined by the
number of instances that comply with the rule, catering to
scenarios requiring stringent land cover change management.
For instance, if construction is strictly prohibited in cropland
areas, the rule “building/cropland > 0” can be set. In contrast,
for the “nonsensitive” class, the threshold is determined by
the proportion of rule-compliant instances within the entire
land polygon, accommodating more lenient land cover mod-
ifications. For example, if up to 20% grass coverage is
permissible within forest areas, the rule “grass/forest > 0.2”
could be implemented. By integrating multiple change rules,
well-defined change criteria can be established to meet diverse
detection requirements.

The changed vector polygons can be obtained through the
postprocessing of the decision-maker, enabling the detection of
changes between two images. Fig. 12(d) and (h) displays the
change detection results for both datasets. Visual interpretation
is utilized to verify the results and calculate the precision
and recall rates by tallying the changes, false detections,
and leak detections in the vector polygons. The experimental
results demonstrate precision and recall rates of 91.89% and
94.44% for Dataset 1 and 87.59% and 91.41% for Dataset 2.
Fig. 13 reveals part of the change detection results: Fig. 13(a)
depicts the transformation of cultivated land into forest land,
Fig. 13(b) illustrates a substantial conversion of cultivated
land to buildings, Fig. 13(c) demonstrates the appearance of
sheds potentially serving as shelters for building materials in
the grassland, and Fig. 13(d) demonstrates the emergence of
extensive building and road networks in the woodland. The
obtained results illustrate the effectiveness of the proposed

Fig. 11. Structure of change decision-maker.

change detection method in accurately identifying and quanti-
fying ground object changes within the vector polygons during
the given time intervals, resulting in high precision and recall
rates across both UAV and satellite datasets. Notably, this
method excels in areas characterized by complex topography
and occlusion.

E. Ablation Study

To rigorously evaluate the effectiveness and contributions of
each module within our proposed change detection framework,
we performed ablation studies on two distinct datasets, the
outcomes of which are tabulated in Table II. We estab-
lished a baseline model that employed the SLIC segmentation
algorithm, without any purification mechanism, and utilized
ResNet-50 for classification. The baseline model yielded pre-
cision and recall rates of 78.38% and 80.56% on Dataset 1 and
81.20% and 85.60% on Dataset 2, respectively. First, upon
incorporating the ISLIC algorithm proposed in this study, the
precision rate improved to 85.71% on Dataset 1 and 83.59%
on Dataset 2. Correspondingly, the recall rates increased to
88.33% and 87.45%, respectively. These results substantiate
the efficacy of ISLIC, which accounts for boundary constraints
and texture features, thereby enhancing boundary delineation
and sample homogeneity. Second, the integration of a sam-
ple purification mechanism led to further improvement in
the classification performance, boosting the precision rate to
86.49% on Dataset 1 and 84.76% on Dataset 2. The recall rates
attained were 88.89% and 88.90%, respectively. This uptick
underscores the vital role of sample purification in elevating
sample quality and classification accuracy. Finally, the employ-
ment of the IOCNN elevated the precision and recall rates to
91.89% and 94.44% for Dataset 1 and 87.59% and 91.41% for
Dataset 2, respectively. These results further corroborate the
robustness of the IOCNN model in handling high-resolution
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Fig. 12. Comparison of change detection results on two datasets. (a) SLIC + w/o purification + ResNet-50 (Dataset 1). (b) ISLIC + w/o
purification + ResNet-50 (Dataset 1). (c) ISLIC + purification + ResNet-50 (Dataset 1). (d) ISLIC + purification + IOCNN (Dataset 1). (e) SLIC +

w/o purification + ResNet-50 (Dataset 2). (f) ISLIC + w/o purification + ResNet-50 (Dataset 2). (g) ISLIC + purification + ResNet-50 (Dataset 2).
(h) ISLIC + purification + IOCNN (Dataset 2).

TABLE II
ABLATION STUDY RESULTS (%) WITH DIFFERENT

MODULES ON TWO DATASETS

remote sensing imagery. In summary, each module contributes
substantively to the overall performance enhancement of the
proposed framework, unequivocally validating the utility of
each component. Fig. 12 visually compares the ablation study
results on both datasets, showing improved detection accuracy
with the proposed method.

V. DISCUSSION

A. Comparison of Image Segmentation Methods

In order to verify the effectiveness of the proposed image
segmentation method, the boundary constraints and texture
features on the segmentation algorithm are tested by ablation
experiments. A subset of the region from Dataset 1 was
chosen as the experimental data, and the boundary recall
rate [72] was employed as an evaluation metric for assessing
the segmentation effect. The boundary recall rate serves as
a metric to quantify the alignment between the segmentation
boundary and the actual boundary. Its calculation formula is
given in the following:

BR =
TP

TP + FN
(16)

Fig. 13. Examples of change detection results. The findings presented in
(a) and (c) are derived from the results of Dataset 1, whereas the findings
in (b) and (d) are derived from Dataset 2. Each pair of images depicts the
prechange and postchange states, respectively.

where TP represents the number of correctly segmented
boundary pixels and FN is the number of incorrectly seg-
mented boundary pixels. The segmentation performance of
each method is shown in Fig. 14.

From the graph analysis, the following can be obtained.
1) The SLIC algorithm with boundary constraints

(BCSLIC) consistently achieves a higher boundary
recall rate. This effect is more pronounced when the
number of segmentation units is small, but as the
number of segmentation units increases, the effect
diminishes gradually. This reduction in effect may stem
from the discrepancy between manually drawn boundary
priors and the actual boundaries of ground objects.
While increasing the number of segmentation units
improves the accuracy of capturing detailed features
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Fig. 14. Boundary performance with different methods on Dataset 1.

of ground objects, these features might go beyond
the boundaries defined by the prior, exacerbating their
limitations.

2) Incorporating the LBP algorithm for texture feature
fusion further enhances the boundary recall rate of
the segmentation algorithm. As shown in the figure,
this enhancement is more prominent when the number
of segmentation units is moderate, enabling the seg-
mentation units to integrate color, spatial, and texture
information effectively. However, when the number of
segmentation units is too small, each unit encompasses
more pixels, amplifying the influence of texture fea-
tures and rendering the algorithm more vulnerable to
noise and local variations. Conversely, when the number
of segmentation units is too large, each unit contains
fewer pixels, diluting the role of incorporating texture
features and diminishing their contribution to boundary
detection.

3) Generally, segmentation algorithms that incorporate
boundary constraints and texture features tend to exhibit
superior boundary performance, thereby validating the
effectiveness of the enhanced segmentation method pro-
posed in this study. In addition, the segmentation results
depicted in Fig. 15 illustrate that the improved algorithm
better approximates the actual boundary of the ground
class while maintaining a more uniform and compact
distribution. This characteristic is advantageous for gen-
erating subsequent samples.

B. Effectiveness of Sample Inpainting

The superpixels generated by the segmentation process are
irregular and unsuitable for direct use in network model
training. Therefore, it is necessary to crop them into regular
samples. Considering the constraints imposed by vector poly-
gons and the clear division of ground objects, the samples
within the polygons can be directly clipped using the center
point of each superpixel and a preset size.

However, when clipping near the edges of the polygons,
there is a possibility of exceeding the boundary of the vector

Fig. 15. Visual comparison of segmentation methods. (a) Segmentation
results of the original SLIC. (b) Segmentation results of the improved method
in this article.

Fig. 16. Comparison of sample clipping methods. (a) Original segmentation
map. (b) Illustration of adaptive clipping. (c) Illustration of cropping combined
with inpainting.

polygons. This situation can result in the inclusion of addi-
tional land class information in the samples.

In order to address this issue, there are two commonly
employed approaches: adaptive cropping [73] and cropping
with inpainting. Fig. 16 illustrates the superpixel segmentation
simulation map. In Fig. 16(a), the red border depicts the
boundary of the vector polygons, the yellow line segment
represents the boundary of the segmented superpixel, and
the green point denotes the superpixel’s center. On the other
hand, Fig. 16(b) demonstrates the adaptive cropping technique,
which dynamically adjusts the size of the clipping area when
it exceeds the vector boundary, ensuring an appropriate size.
The precise adjustment method is given as follows:

S =

{
S0, dmin > S0
√

2 dmin, dmin ⩽ S0
(17)

where S0 is the preset crop size and dmin is the shortest
distance from the superpixel center to the vector boundary.
The cropping-with-inpainting method, depicted in Fig. 16(c),
enables the cropping window to extend beyond the vector
polygon’s boundary. It assigns zero value to the region outside
the boundary before feeding the incomplete image into the
image repair network for restoration. A comparison between
adaptive cropping and cropping with inpainting reveals a
significant difference. In the former, the cropping window fails
to encompass the entire vector polygon, possibly resulting
in the omission of particular ground objects. Conversely, the
latter ensures comprehensive sampling by fully covering the
vector polygon when using an appropriate preset size. To com-
prehensively account for varying scales of ground objects
and select appropriate sizes, this study employs multiscale
cropping in addition to repair-based clipping. This approach
aims to enhance the reliability of the cropped samples.
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Fig. 17. Example of image inpainting results. (a) and (c) Outcomes of Dataset
1. (b) and (d) Results of Dataset 2.

TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCE BEFORE AND AFTER

PURIFICATION OF THE TWO DATASETS

This article utilizes the DeepFill v2 network for image
repair, and the corresponding repair outcomes are presented
in Fig. 17. The results demonstrate that the inpainting process
successfully resolves the interference caused by land classes
outside the vector polygons’ boundary, thus validating the
feasibility of our approach.

C. Impact of Sample Purification on Scene Classification

Further purification is necessary due to errors in the authen-
ticity of the land class label for the vector polygons, as well
as some repaired samples not meeting the required image
quality. This inconsistency could affect the generated sam-
ples’ alignment with their respective land class labels. This
article employs ResNet-50 and EfficientNet V2-S classifiers
for cross-validation to achieve automatic sample purifica-
tion. Through purification, 13.53% of Dataset 1 samples and
9.95% of Dataset 2 samples were filtered out. To evaluate
the importance of sample purification, this study employed
prepurification and postpurification samples for training and
compared the model’s classification performance before and
after purification (refer to Table III for details). The results
indicate that sample purification improves the OA of Dataset
1 by 4.86% and Dataset 2 by 1.74%, further demonstrating
that suspicious training samples can be effectively excluded
through sample purification, improving accuracy and reliabil-
ity during model training.

D. Impact of Classification Model on Detection Accuracy

For the postclassification comparison method, the clas-
sification effect directly affects change detection accuracy.
To validate the IOCNN network model’s superiority in
this article, we compare its detection results with those of
ResNet-50 and EfficientNet V2-S (see Table IV for details).
The results indicate that the IOCNN model achieves the
highest detection accuracy in both datasets, while the ResNet-
50 model exhibits the lowest detection accuracy. Specifically,
in Dataset 1, IOCNN’s precision is 5.4% higher than

Fig. 18. Comparison of running times across different module stages.

TABLE IV
COMPARISON OF CHANGE DETECTION RESULTS FOR DIFFERENT

CLASSIFICATION MODELS

ResNet-50, and its recall rate is also 5.55% higher. In Dataset
2, IOCNN’s precision is 2.83% higher than ResNet-50, and its
recall rate is also 2.51% higher. These findings demonstrate
that models with higher classification accuracy tend to achieve
superior change detection accuracy.

E. Time Consumption

To comprehensively evaluate the performance of the pro-
posed method, we also examined the running time of each
major module. Fig. 18 displays the runtime of each module
on two different datasets.

From the figure, it is evident that the classification stage
generally requires the most extended period. This duration is
primarily due to the substantial computational resources and
time required for training and predicting with deep learning
models. Moreover, the training time is often determined by the
number of samples under identical model and baseline condi-
tions. The sample generation stage also demands a relatively
long time, especially on Dataset 2, where the running time
reaches 126 min. This extended time is mainly attributed to
the high computational cost of multiscale cropping and image
inpainting operations. The superpixel segmentation stage and
the change decision-making stage require relatively less time.
Superpixel segmentation takes 29 and 47 min on Dataset
1 and Dataset 2, respectively. The running time for the change
decision-making stage is 3 and 5 min, respectively. The speed
of the change decision-making stage is relatively fast because
it only needs to read the prediction results and find the vector
polygons that meet the conditions with the rules of the change
decision-maker.
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Although our method may not be the most time-efficient,
it achieves reasonable time efficiency while maintaining high
accuracy. Future work will explore the possibility of using
faster hardware and other potential optimization strategies to
further enhance the running speed of our method. Particularly
in the classification and sample generation stages, we will
consider employing more efficient algorithms or models to
reduce the required time.

VI. CONCLUSION

This article proposes a change detection method for vector
polygons based on high-resolution remote sensing images
and deep learning. This method divides the change detec-
tion process into three parts: segmentation, classification, and
detection. First, the dual-temporal remote sensing images
were combined with the land-cover vector data, respectively,
and the training set and the test set were automatically
generated using the boundary constraint SLIC with texture
features and the cropping-with-inpainting method. Then, the
training set was purified by two-classifier cross-validation,
and the IOCNN network classified the training set and the
test set. Finally, the changed vector polygons were detected
by combining the change rules. To verify the effective-
ness of the proposed scheme, we conducted several ablation
experiments and comparison experiments. The experimental
results show that the improved segmentation method can
segment more accurately boundaries than the original SLIC
algorithm. The cropping-with-inpainting method used in this
article can achieve complete coverage sampling within vector
polygons. The sample purification method can further improve
the accuracy of the model. The OA of the IOCNN model
reached 91.2% and 88.92%, respectively, in the classification
experiment of the two datasets, which has better classification
performance compared with other advanced models. Finally,
the results of visual interpretation show that the precision
and recall rate of Dataset 1 are 91.89% and 94.44%, and the
precision and recall rate of Dataset 2 are 87.59% and 91.41%,
respectively. It can be seen that the change detection method
proposed in this article can effectively detect the changed
vector polygons and further reduce the manual input compared
with the traditional method of manually updating the vector
polygons. In the future, we will conduct further research on
sample purification to achieve more demanding “nongrain”
monitoring research of cultivated land.
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