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Abstract— In supervised learning, deep learning models
demand a large corpus of annotated data for object detection
and classification tasks. This constrains their utility in humani-
tarian emergency response. To overcome this problem, we have
proposed an unsupervised dwelling counting from very-high-
resolution (VHR) satellite imagery by combining a variational
autoencoder (VAE) with an anomaly detection approach.
When VAE applied in earth observation images for dwelling
localization and counting, we observed two critical limitations:
1) the balance between reconstruction and good latent code,
where the favor of good reconstruction of dwellings leads to weak
anomaly score maps that fail to properly localize dwellings and
2) limited spatiotemporal invariance of the learned latent code.
When the model is trained with datasets obtained from different
geography and time, it fails to properly localize dwellings. For
the first problem, we introduced self-supervision by creating
synthetic anomalies. For the second problem, we introduced
latent space conditioning. The approach is tested on nine VHR
images obtained from six forcibly displaced people settlement
areas. Results indicate that combining VAE with an anomaly
detection approach has reached an area under the receiver
operating characteristic curve value ranging from 0.70 at complex
settlements to 0.98 at relatively less complex settlement areas.
Similarly, a mean absolute error (MAE) value of 56.67 toward
5.03 is achieved for dwelling counting. Joint training of combined
datasets with latent space conditioning and self-supervision
enabled the achievement of results better than classical VAE, with
improved spatiotemporal transferability of the model with more
crisp and strong anomaly maps. Overall implementation code
will be available at https://github.com/getch-geohum/SSL-VAE.
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I. INTRODUCTION

AHUGE number of the global population has been dis-
placed from their home and staying either in temporary

settlement areas for internally displaced persons (IDPs) or in
refugee camps, which we hereafter inclusively term forcibly
displaced population (FDP) settlement sites. According to the
United Nations Higher Commission for Refugees (UNHCR),
by the end of the year 2022, there were around 108.4 million
forcibly displaced people [1]. It is reported that those FDPs
are hosted in more than 13 000 FDP settlement areas [2],
distributed across the globe with different geographical set-
tings. Hence, dwelling information is crucial to monitor camp
and temporary settlement expansion by FDP influx, estimate
residing populations, and provide adequate humanitarian emer-
gency assistance. For the past decade, Earth observation (EO)
technology has played a significant role in providing first-hand
information to support humanitarian emergency assistance [3],
[4], [5]. In this aspect, the proliferation of various sensors,
especially in the optical domain, has enabled precise moni-
toring of FDP settlement areas with fine spatial granularity
without much temporal latency. Notable methods include
camp mapping and settlement expansion using an object-based
image analysis (OBIA) and rule set approaches [6], [7]. This
has enabled information retrieval to the level of detecting
individual dwelling instances [4], [8], [9], classification of
dwelling types and corresponding counts [4], [6], [9], and
further estimation of the resident population using dwelling
information as proxy indicator variable [4]. Despite the per-
formance of these semiautomatic approaches, skilled expert
knowledge and context-specific curated rule sets are still
needed. The latter is challenged by the short response time
required for information generation and delivery to assist
operational humanitarian emergency response. This challenge
gains complexity since, nowadays, monitoring needs to be
done more frequently in time and at larger geographic scales
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(e.g., due to increased VHR data availability and the dynamic
nature of FDP settlement areas).

Currently, deep learning models have shown great perfor-
mance in classification [10], segmentation [11], [12], and
object detection tasks [13], [14], [15], which paves the way
for automatic information retrieval pipelines. Benefiting from
advances in deep learning for computer vision, there are
promising works dedicated to dwelling extraction from tem-
porary settlements for humanitarian emergency response [16],
[17], [18], [19], [20], [21]. Despite the strong performance
of supervised computer vision models in various fields, they
have known limitations that constrain their full-fledged usage
in operational humanitarian emergency response. The first one
is intensive data demand for model training and testing in a
supervised setting. One of the critical elements in operational
humanitarian emergency response is the speed of information
retrieval for decision-making. Supervised models demand a
bulk of annotated data, which is time-consuming and, some-
times, quite challenging and impractical to prepare under time
pressure. More importantly, even after supervised training
of the model using images and corresponding annotations
obtained from a specific geography with a given time stamp,
the model would fail to have similar skills to undertake
intended tasks on datasets obtained from different times and
geography. This lack of generalization under distribution shift
is caused by changing object, and scene characteristics are
another well-identified limitation of deep learning.

In situations where ground-truth annotations exist in a spe-
cific geography and or time and there are no annotations in the
target site, model skills can be transferred using unsupervised
domain adaptation [22], [23], [24] and multisource training
approaches, such as transfer learning by fine-tuning (retrain-
ing) [16] and metalearning [25]. These strategies assume the
availability of a sufficient amount of data either for joint train-
ing or fine-tuning during the transfer of the model. Situations,
where no annotations are available, constitute the worst case
scenario; they are nonetheless very common during the occur-
rence of unexpected natural and man-made disasters that foster
the establishment of new FDP settlements. Under operational
humanitarian response, data-related challenges demand vision
models that can quickly train and scale with unavailable or
very scarce annotations. For this, (self)-unsupervised learning
strategies were found as ideal workflow options, especially for
image reconstruction, an objective, which is useful for other
downstream tasks.

Self-supervised learning approaches in EO focus on learning
representation from unlabeled data as pretraining following
contrastive [26], [27], [28], [29], [30] and generative [31],
[32], [33] approaches. Learned representations can be used
for downstream tasks supported by fine-tuning with curated
labels in scene classification [26], [27], [29], [31], [32] and
semantic segmentation [28], [29], [30] tasks. This two-step
strategy is also leaning toward semisupervision and knowledge
distillation [34]. These workflows could not be directly applied
to unsupervised localization and counting dwellings because
transferring the learned representations to downstream tasks
still requires supervision (annotations). This motivates the need
for strategies that do not demand annotations to learn the
image representation and, at the same time, have a strong

reconstruction ability suitable for automatic visual anomaly
detection (the downstream task in our study). Therefore, vari-
ational autoencoders (VAEs) seem the ideal candidates. Other
innovative approaches implement self-supervision for detect-
ing visual anomalies (e.g., [35], [36] on non-EO images) with
specific patterns and textures that could easily be leveraged as
contextual information for self-supervision. Even though those
approaches are valid to adopt, they have limitations that restrict
their application to EO datasets. First, contextual information
generation is mainly driven by patterns in the image; EO
datasets (especially dwellings) do not have any distinct spatial
pattern. Second, plain autoencoders are not robust enough to
provide proper reconstruction for out-of-distribution samples.

VAE [37] is one of the powerful models for unsuper-
vised learning with various application domains. Autoencoders
and VAEs [38] are used for various remotely sensed SAR
images for classification, scene understanding, and detection.
In scene classification, as summarized in [39], the main
utility of autoencoders with various architectures, especially
sparse autoencoders, was for learning proper feature repre-
sentation as a pretext task and further scene classification.
By leveraging the nature of VAEs for proper representation
of images in a compressed latent space, Xu et al. [40] and
de Oliveira et al. [41] performed SAR data compression,
while Ferreira and Silveira [42] used VAEs for automatic ship
detection from SAR images. The VAE model is also used for
learning low-dimensional satellite image representation [43]
for multispectral images, spectral feature extraction [44],
[45], and useful feature generation [46] from hyperspectral
images and wider application for further classification of those
images [43], [43], [44], [45], [46], [47]. For a similar task,
Chen et al. [48] have further combined adversarial training
using a self-attention mechanism to augment the performance
of VAEs for hyperspectral image classification. VAEs have
also been combined with a reinforcement learning strategy,
for satellite image captioning [49].

By leveraging the power of VAEs for proper learning of
normal image latent space representation and its capabil-
ity to reconstruct the input image from compressed latent
space, there are recent studies that used VAE for anomaly
detection. To note, Sinha et al. [50] implemented VAE to
detect avalanche deposits as anomalies from SAR imagery,
while Zhang et al. [51] has used VAE for anomaly detection
and background suppression from hyperspectral imagery. The
approach implemented in [51] for anomaly detection from
hyperspectral imagery is further improved by Wei et al. [52]
who combined adjacency matrix from graph regularized learn-
ing with VAE latent code. These studies, however, have not
addressed the localization and counting of individual objects
from high-resolution satellite imagery.

In this respect, a recent study by Gangloff et al. [53] has
addressed the proper localization of wild animals from aerial
imagery. As an extension of this work, the main objective
of this study is the unsupervised localization and counting
of dwelling objects from very-high-resolution (VHR) optical
satellite images obtained from FDP settlement areas. The main
contribution of this study is outlined as follows.

1) We have combined anomaly detection and VAEs for
unsupervised localization and counting of dwelling
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TABLE I
DATASET DESCRIPTION

objects from VHR optical satellite images. To the extent
of our knowledge, no study conceptualized buildings
or dwellings as an anomaly for unsupervised object
detection and counting.

2) Inspired by the concepts of the cutPaste algorithm [35],
we have customized synthetic anomaly generation for
remotely sensed data and implemented self-supervised
conditional variational training.

3) We have tried a joint training of multiple datasets with
latent space conditioning and ensure dataset invariance
of learned representation, which ensures the spatial and
temporal transferability of the model.

Given these contributions, the remainder of this article is
organized as follows. Detailed implementation of methods
related to data and study site together with synthetic anomaly
generation is provided in Section II. The implementation of
self-supervised conditional variational learning is provided in
Section III-C. Details about the model and experimental setup
obtained results are presented in Section IV. Results were
further discussed in Section V followed by conclusions and
remarks for further work, which are provided in Section VI.

II. METHODS

In this section, details about the data, study sites, and
implemented approach to synthetic anomaly generation are
provided.

A. Data and Test Sites

The study used multisource and multitemporal VHR satel-
lite imagery sensed from FDP settlements located in different
geographic areas (continent, climate, and background char-
acteristics). The images and corresponding annotations are
stored in an in-house image database [54], which is built as
part of a long-term engagement in EO-based humanitarian
emergency response. Annotations were generated both with
manual digitization and OBIA approaches. The overall details
of utilized imagery concerning the sensor, date, and resolution
are indicated in Table I. The FDP settlements are purposely
selected to test the performance of our proposed approach
in areas that have diverse backgrounds environmental char-
acteristics and varying levels of dwelling object complexity in
terms of the object properties (size and shape), spatial patterns
(density and distance to neighboring buildings), and spectral
characteristics, which mostly are governed by the material they
built from and location-specific biophysical factors.

As shown in Fig. 1, the dwelling objects in Minawao
and Nduta FDP settlements are dominated by standard

UNHCR tents that have round- or dome-shaped dwellings.
In Kutupalong, the FDP site is characterized by complex
terrain dominated by densely populated dwellings with diverse
spectral characteristics. With a relatively similar level of
complexity, a Degahaley FDP site is characterized by complex
dwellings occupying the landscape with an irregular spatial
pattern where vegetation is also an integral part of the back-
ground environment. Trees are planted as fences, and some
parts of dwelling rooftops are also covered by tree crowns.
Attenuation of dwelling objects with single-standing trees is
common in Nguenygiel and Nduta FDP settlements. Zamzam
has unique dwelling structures where a cluster of dwellings is
situated within a fence or wall. The dwellings were also a mix
of a few bright dwellings with corrugated iron sheet rooftops
and dominant low-contrast dwellings. For each image patch
used for testing, corresponding annotations were obtained from
the same database as images [54]. These annotations are made
either by manual digitization by people with domain expertise
or the OBIA approach followed by proper postprocessing and
quality control.

Pléiades images obtained from Airbus are ortho-ready
images with proper geometric and radiometric calibration [25].
Those images were passed through correction for local terrain
effect and pan-sharpening to make use of high-resolution
panchromatic images. The images are processed by this cor-
rective pipeline before being stored in the database.

Using a VAE for anomaly detection assumes that a trained
VAE can properly learn the latent representation of normal
images and reconstruct them back from latent code. During
the inference phase, the model is expected to yield less recon-
struction error on normal images and higher reconstruction
images in the anomalous part of the unseen images during
the training phase. Therefore, the proper definition of the
normality or abnormality of image chips is essential for data
preparation. Accordingly, by adopting the conceptualization
presented in [42], in this study, dwelling objects in FDP settle-
ments are anomalies, and image patches containing dwellings
are considered anomalous images. Based on this, training
images are images without any dwelling objects, while testing
images are images of chips with dwelling objects. Training
image chips were generated from empty areas near or on
the outskirts of FDP settlement areas. It should be noted that
there is a nonnull probability of encountering houses on the
outskirts of refugee settlements; therefore, at most care is given
to exclude any houses and building structures in those areas.
Testing data are prepared from images within FDP settlements.
Both testing and training image chips have a dimension of
256 × 256 pixels. For test datasets, annotations obtained in
the Environmental Systems Research Institute (ESRI) shape
file format were converted to binary raster with a similar raster
profile and coregistered with corresponding VHR imagery.
Then, both VHR imagery and rasterized annotations were
converted to image chips with similar dimensions to training
chips.

B. Synthetic Anomaly Generation for Self-Supervision

Unfortunately, VAEs might be able to reconstruct dwellings
although the latter has been hidden during the training phase.
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Fig. 1. Variations of dwelling properties within and between various FDP settlements. For visual quality, each image chip is scaled using channelwise
(min–max normalization).

We try to overcome this issue with self-supervised learn-
ing using synthetic masks. The use of synthetic anomalies
in self-supervised anomaly detection has shown promising
results. In this regard, Li et al. [35] have implemented the
cutPaste algorithm for the creation of synthetic anomalies.
Inspired by the cutPaste algorithm, Bauer [36] has created
synthetic anomalies that mimic defects. Both approaches have
proven their performance on the MVtec dataset [55] for
anomaly detection. However, direct implementation of this
strategy in EO datasets, especially for unsupervised dwelling
object counting, is not straightforward. This is mainly because
dwellings in the EO datasets neither have any distinctive
spatial pattern nor uniform shape and size, which makes it hard

to employ synthetic anomaly generation approaches based on
a distortion of the pattern by deformation [36] and masking out
some image section [55]. We were required to create synthetic
anomalies from the test dataset without using any ground-truth
annotations.

Therefore, based on expert knowledge, weakly anno-
tated synthetic masks were generated using the thresholding
approach on spectral bands and derived indices. For images
that have near-infrared (NIR) bands, first, the normalized
difference vegetation index (NDVI) was generated. As can be
understood from [56], bare land and built-up surfaces exhibit
a lower NDVI, mostly lower than 0.3 depending on the season
and vegetation characteristics. By enforcing this threshold, a
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Fig. 2. Synthetic anomaly creation. (a) First image patch is an anomalous input image randomly selected from the test set. (b) Second image patch is a binary
mask created from the anomalous image using NDVI thresholding. (c) Normal image without any dwellings, which is also randomly selected from a train
set obtained from image regions out of the premises of the FDP settlement. (d) Modified image where masked and cut-out dwelling pixels from anomalous
images are pasted on a normal image. During the training phase, synthetic masks and modified images can be used as a conditioning variable. Please note
that these are very easy and ideal use cases created with highly tuned NDVI threshold values and selected for visual clarity of the workflow.

2-D binary mask with coarse quality indicating the location
of dwellings in test datasets could easily be identified. Then,
dwelling objects will be cut out from the test image using
this mask and pasted on the normal training image chips as
follows.

Assume that we have a random anomalous image chip Xa

and a normal image chip Xn . The binary mask M indicates
the background pixels with 1; therefore, its complementary
M̄ indicates anomalous locations with 1. Then, the image
with synthetic anomalies X̄ is obtained as X̄ = (Xa × M̄) +

(Xn×M). As the position where cut-out dwelling objects were
pasted is known from M, M can be considered as a ground
truth obtained with self-supervision (see Fig. 2). For datasets
that did not have the NIR band, the binary thresholding could
be done on a grayscale image either on a selected single
channel of the image or any derived index that did not require
an NIR channel, which makes the approach versatile to apply
on any remotely sensed image. It should be noted that the
masks at this level are not expected to be crisp or show exact
dwelling footprints. However, even with inexact synthetic
anomalies, we can still resort to self-supervised training, which
forces the model to not properly reconstruct dwelling objects
during the training phase (see Section III-A for formulations
and usage of synthetic anomalies).

III. SSCVAE FOR UNSUPERVISED OBJECT
COUNTING FROM VHR IMAGERY

In this section, we will describe a new model, called
self-supervised conditional VAE (SSCVAE), and how it is
used in the context of unsupervised object localization and

counting. We follow the traditional unsupervised anomaly
detection approach. In deep learning-based anomaly detection,
the procedure requires learning the structure of “normality”
from image examples without anomalies [57]. Hence, as we
introduced in Section II-A, we have defined normal image
patches as image regions that contained either background
soil or any other land object except dwelling objects. On the
other hand, anomalous image patches are image regions that
contain both background and dwelling objects. It should be
noted that in a very strict sense, this could be assumed as
weak annotations but as far as these annotations were created
on the fly as contextual information using strategies detailed
in Section II-B, we chose to label the workflow as a self-
supervised approach. As indicated in [37], a classical VAE
can be trained on normal images to have proper reconstruction
skills by maximizing the evidence lower bond (ELBO) loss,
which is given as

L(θ, φ; x) = Ez∼qφ(z|x)

[
log pθ (x |z)

]
− βK L

(
qφ(z|x)||pθ (z)

)
(1)

where the first and second terms are the reconstruction
and Kullback–Leibler terms, respectively. During the training
phase, a normal image patch x is fed into an encoder network
parameterized with φ, which then produces a compressed
latent code z, sampled by reparametrization trick. z is then fed
to the decoder network, parameterized with θ , which recon-
structs x̂ . Note that in the original VAE, the Kullback–Leibler
divergence (KLD) term, which enforces a prior distribution
pθ (z) on the latent space, is introduced with β = 1. However,
in most real-world applications, the balance between the
reconstruction term and the Kullback–Leibler term needs to
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Fig. 3. Image reconstruction with and without self-supervision for randomly selected image chips from the FDP site with complex dwelling
structures—Dagahaley. The first image resulted from reconstructions made with classical VAE, while the second image resulted from self-supervised VAE
using synthetic anomalies and resultant masks. The first rows are for raw images, while the second rows are for reconstructed images.

be carefully studied [58]. In our experiments, we empirically
chose the optimal β value by a grid search approach on a
logarithmic scale.

As indicated in Section I, when applied to remotely sensed
images, we have observed that classical VAE has two limita-
tions.

1) Despite the latent space compression, the VAE can
easily reconstruct relatively bright dwellings that yield
anomaly score maps with poor quality to properly local-
ize dwelling objects (see Fig. 3 for comparison).

2) When the VAE is trained with the data collected from
different geographic areas and/or different times (see
Fig. 1 for some randomly selected image chips taken at
different times and places), the model is not properly
learning good latent code. In this work, we propose
a VAE model that tends toward spatial and temporal
invariance. This invariant nature of the model is intended
to leverage datasets across different geographic areas
and time stamps when there is no sufficient number of
normal images for a specific dataset.

For the first problem, we resort to self-supervision in a
conditional VAE model. For the second problem, we have
implemented latent space conditioning using dataset-level
labels (IDs) as a covariable. We now present how these two
approaches are combined. The concise graphical summary of
the overall pipeline is indicated in Fig. 4.

A. Self-Supervised Conditioned VAE Model

We now refer to our new model as SSCVAE, and we
present it mathematically. The model is composed of four main
variables.

1) t , a fixed covariable that represents the dataset the image
belongs to, with t ∈ {1, . . . , T } when the model is
trained on a total dataset that mixes T (sub)-datasets.

2) x , a vector of an independent random variable with real
values whose realizations correspond to the pixel inten-
sities; we have p(x) =

∑N
i=1 p(xi ), where i describes

the N image pixel.
3) z, a vector random variable with real values whose

realizations correspond to the hidden units of the latent
space; we have p(z) =

∑M
j=1 p(z j ), where j describes

the M latent hidden units.
4) y, a vector of independent Bernoulli random variable

(discrete values in {0, 1}); its realizations describe the
mask of the anomalies that provide auxiliary information
during training. As earlier, p(y) =

∑N
i=1 p(yi ), where

yi = 0 at a normal pixel position and yi = 1 at an
abnormal pixel position.

The SSCVAE is trained according to the following ELBO
that we have to maximize with respect to θ and φ:

Lx,y|t (θ, φ) = Ez∼qφ(z|y,x,t)
[
log pθ (x |y, z)pθ (y)

]
− βK L

(
qφ(z|x, y, t)||p(z)

)
(2)

where β is a hyperparameter, which has been discussed in
the previous paragraph. In the previous formula, it appears
that we will not directly use the conditioning on t in
qφ(z|x, y, t). The model is then composed of the generative
network

pθ (x, y, z) = p(y)p(z)pθ (x |y, z) (3)
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with 

p(y) =

N∏
i=1

B(yi ; πi )

p(z) = N (z; 0M , IM) =

M∏
j=1

N
(
z j ; 0, 1

)
pθ (x |y, z) =

N∏
i=1

CB(xi ; fθ (y, z))

(4)

where B,N , and CB refer, respectively, to the Bernoulli,
Gaussian, and Continuous Bernoulli distributions, while πi

indicates the conditional probability of a pixel to be foreground
or background. Notably, the output of fθ , a neural network
parameterized by θ , will play the role of the parameter of the
conditional likelihood CB distribution.

The inference network is written as

qφ(z|x, y, t) = qφ(y|x, t)qφ(z|x, y, t) (5)

with 
qφ(y|x, t) =

N∏
i=1

B
(

yi ; hφ(x)
)

qφ(z|y, x, t) =

M∏
j=1

N
(

z j ;
(
gφ(y, x)

)
j

) (6)

where hφ is a neural network that parameterizes the Bernoulli
distribution and gφ is a neural network with two outputs
in RM and (R+

∗
)M representing, respectively, the vectors of

the means and the variances of the independent Gaussian
distributions. Now that we have introduced the full model;
we focus successively on its two particular properties.

B. Self-Supervision

The main idea with self-supervision in VAE is to gen-
erate contextual information by leveraging prior knowledge
from vast unlabeled data during the training or pretraining
phase [59]. In related studies, this has been implemented in
different forms such as transformation [60], corruption [61],
partial masking [62], [63] of input images, and the introduction
of random noise and crafting of pseudolabels [64] that all
are designed to fit a specific application. In this study, self-
supervision is used to expose the model to anomalies as
early as during the training step. To do so, we augment the
training samples with real anomalies taken from the test set
by adapting the workflow from [35]; the details about this step
are described in Section II-B. Such an approach exhibits two
main advantages. The first is that the model has already been
exposed to the anomalies during the training phase; therefore,
the model outputs during the test phase will be more stable
and are expected to produce better anomaly score maps. The
second advantage is that we can theoretically force the model
to poorly reconstruct the anomalies that it has been exposed to
by adapting the loss function. This approach has been studied
in [36] in the context of simple autoencoders.

Interestingly, we can draw a link between the
autoencoder loss function [36] and the SSCVAE loss
function [see (2)]. In particular, the first term reads

Ez∼qφ(z|y,x,t)[log pθ (x |y, z)pθ (y)], and it will be classically
approximated by Monte Carlo sampling

=
1
L

L∑
l=1

log pθ (y)p
(
x |y, zl), where zl

∼ qφ(z|x, y, t)

=
1
L

L∑
l=1

M∑
i=1

logB(yi ; πi ) + log p
(
xi |yi , zl

i

)
(7)

with

B(yi ; πi ) =

{
1 − πi , yi = 0
πi , yi = 1.

(8)

We can further write the reconstruction term as

1
L

L∑
l=1

M∑
i=1

{
log(1 − πi ) + log pθ

(
xi |yi , zl

i

)
, yi = 0

log(πi ) + log pθ

(
xi |yi , zl

i

)
, yi = 1

(9)

with zl
∼ qφ(z|x, y, t). By considering L = 1 as it is clas-

sically the case in the VAE literature [37], the reconstruction
term becomes

M∑
i=1

[
1yi =0 log(1−πi )pθ

(
xi |y, zl)

+1yi =1 log(πi )pθ

(
xi |y, zl)].

(10)

As we are dealing with images, we can rewrite the
previous expression by introducing the matrices Reci, j =

log pθ (xi, j |y, zl) and

Pi, j =

{
log

(
1 − πi, j

)
, yi, j = 0

log
(
πi, j

)
, yi, j = 1.

(11)

Finally, as indicated in Section II-B, let M, respectively,
M̄, be the binary mask indicating the normal image pixels,
respectively, modified image pixels, i.e.,

Mi, j =

{
0, yi, j = 0,

1, yi, j = 1
and M̄i, j = 1 −Mi, j . (12)

We can write

Ez∼qφ(z|y,x)

[
log pθ (x |y, z)pθ (y)

]
= ∥M̄⊙ (P + Rec)∥1 + ∥M⊙ (P + Rec)∥1.

(13)

We fall back on a self-supervised loss similar to that of [36],
up to the KLD term. The latter is a regularizing term proper
to the VAE model, which is missing in autoencoders.

C. Latent Space Conditioning Using Covariable

In this section, we describe, to the best of our knowledge,
an original use of a Conditional VAE model. The latter family
of models has been introduced in [65] and [66] and can
take very diverse forms. In our case, we want to address the
problem of anomaly detection when training the model on a
dataset that is an aggregate of subdatasets, i.e., satellite images
with different spatial locations and time stamps.

Recall the conditioning covariable t in the model [see (2)]
available at training time; it represents the subdataset that the
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Fig. 4. Overall workflow for self-supervised VAE for dwelling detection. Please note that the dotted green lines are also for the training phase during
self-supervision.

sample belongs to. Before going further, we need to be explicit
about the structure of the latent space. The SSCVAE has a
convolutional latent space, which means that the latent space
is composed of MC latent space images of size MW × MH ,
with M = MC × MW × MH (similar architectures have been
proposed in [53] and [67]). Now, if we have T subdatasets,
we then propose to divide the MC dimensions of the latent
space such that a training step of the SSCVAE model only
updates a particular subset Mt of latent dimensions with size
MC/T . This is what we call latent space conditioning.

Later on, at test time, the second step of our original
approach consists of test time averaging. The test sample
is fed into the encoder, and the corresponding latent space
is computed for the MC latent images, but then, before
reconstructions, all the MC latent images have their value set
to their average value (average computed on the latent pixel
level). We empirically found out that this approach enabled
reconstruction in a unified latent space, which seemed to
exhibit space and time invariance despite the heterogeneity
of the complete training dataset. However, the reconstructions
after this operation of the test time average still enable us to
recover the anomalies that we want to detect. At the same
time, it yields lower reconstruction error, and the latent space
exhibits a more Gaussian structure. As we will see, compared
with a classical VAE trained on such a heterogeneous dataset,
the SSCVAE shows performance gain both in localization and
counting.

D. Anomaly Score Generation and Dwelling Count

In this section, we describe how dwellings are localized
as anomalies using the input and the reconstructed image.
We here resort to the classical approach of unsupervised

anomaly detection: in the reconstructed image, dwelling
objects are supposed to disappear or be poorly reconstructed
as their representation is not learned. Anomaly scores were
generated using the structural similarity index (SSIM) [68],
which is provided in (14). The structural similarity accounts
for the contrast, brightness, and texture of the input and
reconstructed images at the specified sliding windows and is
provided as

SSIM
(
x, x̂

)
= SSIM(ri , pi )

=

(
2µrµp + C1

)(
2σpr + C2

)(
µ2

p + µ2
r + C1

)(
σ 2

r + σ 2
r + C2

) (14)

where µ, σ , and σ 2 indicate the mean, standard devia-
tion, and covariance of reconstructed r and predicted p
images, respectively, at pixel location i with a certain window
size. The proper window size is selected to balance the
strength of the anomaly score and crisp dwelling boundaries
(see Section III-D and Fig. 10 for visual understanding of
anomaly score sensitivity for window size w). It should be
noted that as SSIM values and image similarities are linear, the
anomalies are further computed as dissimilarities (1 − SSIM).

Provided that structural similarity works in a sliding win-
dow, it fails to yield distinct dwelling boundaries in patches
that contain densely packed dwellings and very small dwelling
structures. Plausible anomaly scores were also generated by
using channelwise mean absolute deviation (MAD) between
input and reconstructed images

MAD =
1
N

N∑
i=1

∣∣xi − x̂ i
∣∣ (15)

where N is the number of channels and x and x̂ are input and
reconstructed images for specific channel i . For visual quality
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TABLE II
DWELLING LOCALIZATION OF DIFFERENT VAE VARIANTS BASED ON AUC VALUE

TABLE III
DWELLING COUNTING PERFORMANCE OF DIFFERENT VAE VARIANTS BASED ON MAE VALUE

and fair comparison of different VAE implementations, the
MAD and SSIM anomaly scores were standardized to value
range [0, 1].

Dwelling object counting is done after converting anomaly
scores to dwelling object instances. As anomaly score maps
are continuous intensity maps, the main challenge in counting
objects is drawing a single decision boundary that segre-
gates anomalies from the background from the foreground
(dwellings) pixels. Approaches such as threshold-based could
be applied but are highly challenging to optimize a single
threshold for the entire dataset. From the intention to create
a more objective approach, in this study, we have followed
a threshold-free, unsupervised clustering using a Gaussian
mixture model (GMM) [69], [70], which is also common
for unsupervised land cover classification [71], [72], [73] and
target detection [74] from the EO dataset. Initial cluster centers
were determined using k-means clustering with two classes
(background and dwelling). The implementation is forked
from [75]. Then, small false positives were removed using
morphological binary opening. This morphological operation
was mainly selected as there are false positives from the
background especially for dwelling instances obtained from
MAD-based anomaly score maps. Then, the cleaned binary
mask is converted to dwelling instances where dwelling count-
ing is performed.

E. Evaluation Metrics

The quality of anomaly maps to localize dwellings is
evaluated with a threshold-free area under the receiver oper-
ating characteristic (ROC) curve (AUC) [76], which is also
a common evaluation metric for unsupervised anomaly detec-
tion [77], [78]. The performance of dwelling count is evaluated

using mean absolute error (MAE) between counts from the
model and reference data, which is provided as

MAE =
1
N

N∑
i

∣∣yi − ȳi
∣∣ (16)

where yi and ȳi indicate the reference and predicted counts
per image chip, while N is the total number of image chips
in a specific dataset.

IV. EXPERIMENTS AND RESULTS

A. Model and Experimental Setup

A VAE is a model with an encoder–decoder architecture that
we now describe. For feature extraction, an encoder network
with ResNet [79] architecture with layer depth 34 is used as
follows. The first four layers of ResNet34 are stacked between
the entry and encoder exit layers. The entry layer consists
of a 2-D convolution with a kernel size of 7 followed by
batch normalization, Rectified Linear Unit (ReLU) activation,
and maxpooling. Then, in the classical VAE implementation
that we propose and in the VAE with self-supervision only,
the exit layer consists of both a unit kernel and strides
with padding size of 0 and yields a feature map with a
spatial dimension of MW × MH = 32 × 32 with depth of
2 × MC = 2 × 256 sized feature; with M = MC × MW × MH

being the total number of hidden random variables. The
latter feature map is then a vector representing the mean
and variance of a convolutional latent space (see Fig. 4).
In the proposed SSCVAE with latent space conditioning,
we set that one input from a particular dataset updates only
Mt × MW × MH latent random variables with half of them
accounting for the mean and the other half for the variance.
Therefore, for the SSCVAE, we have M = T × Mt ×
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Fig. 5. Spatial plots for unsupervised localization of dwellings using VAE and its variates using anomaly scores created from MAD and SSIM; SSCVAElc

stands for SSCVAE with latent space conditioning and the subscripts indicates the anomaly score generation approach followed.
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Fig. 6. Dwelling hard binary classes obtained after unsupervised clustering
of anomaly score maps. The first column is the input image, and the second
and third columns are anomaly scores from MAD and respective dwellings,
while the fourth and fifth columns are anomaly scores from SSIM and
respective obtained binary dwelling classes. The obtained mask was a result
of a postprocessing operation with a morphological opening for two iterations.

MW × MH ; hence, the relation MC = T × Mt given in
Section III-C. If we decided the depth of Mt = 4; for the
number of datasets T = 9, the dimension of latent space would
become MC = 36. Then, the latent space fed into the decoder
would have a size of 36 × 32 × 32.

For the decoder network, the same number of layers with
transposed convolution is used. This is mainly for spatial
upsampling and reconstructing an output image with the same
spatial dimension as an input image. The entry layer of the
decoder is composed of transposed convolution with a unit
kernel and stride and padding size of 0. Except for the
second layer that is only a transposed convolution, the rest
of the decoder layers are composed of transposed convolution
followed by batch normalization and ReLU activation.

The model is optimized with a learning rate of 10−4 and
stochastic gradient descent (SGD) optimizer. Following the

works of Fu et al. [80], we have tried to optimize β in (1)
using cyclic annealing. Though cyclic annealing produced
better performance than setting β = 1, annealing to a value
less than 0.01 does not improve the results (see Fig. 12).
We found that using a smaller and fixed β = 10−4 is better, and
the subsequent results presented in Section IV-B are obtained
using this value. Similar to our choice, setting minimal KLD
weight is also reported effective to yield minimum recon-
struction on the application of conditional VAE for language
translation [81]. It should be noted that all experiments are
run with a mixed dataset setup where each dataset obtained
from different geographies and time stamps (see Table I) are
combined as one.

To compare our results with other models in the literature,
we have selected one model from each of the follow-
ing anomaly detection approaches: reconstruction-based [36],
embedding similarity-based [82], and supervised density-
based [83], [84]. Then, we reimplemented the models with
some marginal modifications required to obtain the best
results. To train the supervised density-based approach, we fol-
lowed an iterative leave-one-dataset approach where the model
is trained on eight datasets and predicted on a left-out dataset.
Recall from Section II-A that we have at our disposal the
ground-truth locations for dwellings; however, the supervised
model is the only one in which the ground truths are used.
Note that while implementing [36], we did not apply Gaussian
filtering of anomaly scores as it reduced the performance.
Except for [82] that is run on a machine equipped with six
Intel Xeon Processor CPUs, the overall experiment is done
on a computer equipped with a single NVIDIA GeForce
RTX 3090 GPU.

B. Results

1) Anomaly Localization: When trained and tested on indi-
vidual datasets, VAE could properly localize dwellings. Such
a study (VAE trained with and tested on individual datasets)
has been made in [85]. When datasets obtained from different
places and times are combined and subjected to joint training,
the classical VAE fails to reach localization performances
obtained from training a model using individual datasets. This
is the setting studied in this article; in all the following, the
results are from mixed dataset training.

As can be indicated in Table II, except for the Zamzam-
2022 dataset, classical VAE has yielded lower localization.
This is true for both anomaly score maps obtained from MAD
and SSIM. Then, the localization performance is improved
by SSCVAE and further improved by the introduced latent
space conditioning using the dataset label as a covariable.
Beyond performance deviations among models, it is also
clearly observed that there is performance variation between
localization results obtained from different anomaly score
generation approaches: MAD and SSIM. For classical VAE,
for most datasets, MAD provided better AUC values than
SSIM, while for SSCVAE, AUC values obtained from anomaly
score maps generated from SSIM have yielded relatively better
localization results. It should also be noted that the SSIM
values could vary with SSIM (w) hyperparameter; therefore,
the results presented in Table II are using w values of
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Fig. 7. Comparison of reference and predicted dwelling counts for selected FDPs using (a) and (b) two anomaly score generation approaches for before and
after postprocessing, respectively. Please note that results were generated from SSCVAE with latent space conditioning. Overestimation and underestimation
patterns among SSIM and MAD are almost the same for VAE and SSCVAE.

11 × 11 pixels. The best localization results were obtained
from SSCVAElc, which range from the AUC values of 0.74 for
the Zamzam-2022 dataset to 0.98 for the Nguenygiel-2017
dataset.

As can be seen from Fig. 1, the Zamzam-2022 dataset
has fences and dwellings mostly made from mud (including
most dwellings) confused with an environment dominated
by dry bare soil, which has a spectral resemblance with
houses. This makes it quite hard for the models to properly
localize the dwellings. The minimum localization performance
for MAD-based anomaly score maps is also observed in
the same dataset. As can be seen from the spatial plot
map (see Fig. 5), the anomalies both from dwellings and
fences are quite strong. This also has its implication on the
proper counting of dwellings from anomaly score with further
clustering.

From anomaly score maps presented in Fig. 5, we can see
three clear patterns.

1) An important variation in the anomaly score quality
between classical VAE and the SSVAE. The anomaly

scores from classical VAE were poor; especially, the
one obtained from SSIM misses very bright dwellings,
while the one from MAD is not strong enough to iden-
tify dwelling objects from the background counterpart.
In addition to this, there is a strong attenuation from the
background.

2) A variation between MAD and SSIM-based anomaly
score maps where they have tradeoffs between strong
anomaly with background suppression and merging
closer dwellings in one way and anomaly scores with
clear boundaries between neighbor dwellings but with
relatively higher false alarm anomaly signals from the
background. This could have a strong implication on
the quality of generating hard binary classes useful for
counting dwellings (see Fig. 6).

3) An anomaly score variation due to the heterogeneity of
datasets. In datasets taken from relatively less complex
sites such as Minawao, Nduta, and Nguenygiel, obtained
anomaly scores from SSCVAE and latent space condi-
tioning counterparts using SSIM are way better than
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Fig. 8. Reconstruction error term for classical VAE and VAE with latent conditioning and test time averaging.

Fig. 9. Effect of postprocessing with the morphological opening on dwelling
output quality.

scores obtained in complex sites such as Dagahaley,
Kuletirkidi, and Zamzam.

2) Anomaly Counting: As indicated in Table III, similar to
localization results presented in Table II, dwelling counts also
vary among anomaly score generation strategies, datasets, and
the implemented VAE model variates. As expected, the best
count performance is obtained from a supervised density-based
approach [83], [84]. It should be noted that this approach
demands a large number of dot annotations. For example,
the Nguenygiel-2017 dataset that achieved an MAE of 2.56
(see Table III) has used 6224 dot annotated image chips
with varying numbers of dwelling objects per scene. Except,
in a few cases, the introduced self-supervision and latent

space conditioning have yielded better results than classical
VAE for dwelling object counting. The best object count is
obtained in less complex test sites where an MAE of 5.03 in
Minawao-2016 followed by an MAE of 11.0 in Nduta-2016
is achieved using SSCVAE with latent space conditioning.
Similarly, as indicated in Fig. 6, spatial plots obtained from
clustering of anomaly score maps exhibit quality variations
in terms of detecting all dwelling objects, proper delineation
of individual dwellings, and appearances of false positive
predictions.

3) Postprocessing: Note that the postprocessing step also
induces some bias in the final results. Accordingly, dwelling
counts obtained from score maps generated using SSIM pro-
vided relatively smaller MAE values than their counterparts
obtained from scores generated with MAD.

Beyond performance deviations, as can be seen from scat-
ter presented in Fig. 7 experiments, before postprocessing,
the MAD-based anomaly score yielded an overestimation of
counts, which is the result of attenuation from false positive
anomalies from the background. Counts obtained from SSIM
have relatively smaller underestimations mainly caused by
the windowing effect of SSIM, which merges dwellings in
very close proximity. Once the postprocessing is introduced,
the MAD-based anomaly scores provided almost closer MAE
values as morphological opening clears smaller false posi-
tive dwelling objects. Even though postprocessing improves
counts from MAD-based anomaly scores by a big margin, its
effect on counts obtained from SSIM-based anomaly scores
is not as favorable as MAD counterparts. It degrades the
performance of dwelling count performance. For example,
if we compare the results presented in Tables III and V
that are with and without postprocessing, respectively, for
some datasets (e.g., Dagahale-2017 and Kutupalong-2017),
SSIM-based dwelling count performance is slightly lower than
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Fig. 10. Sensitivity of anomaly score maps for SSIM window (w) size. As window size increases, the anomaly score is stronger and clearer in dwelling
locations, but the boundary between adjacent and closer dwellings becomes closer and closer where finally merging of closer dwellings happens.

Fig. 11. Examples of poor performance of the VAEs at bare bright surfaces, footpaths, and low-contrast dwellings for anomaly scores both for MAD and
SSIM taken from the Nguenygiel March 2017 and Minawao June 2016 datasets.

without postprocessing. Similar behavior could also be seen
from Fig. 7(b) for the Zamzam-2022 dataset where counts
from the SSIM-based approach after postprocessing are not
highly associated with the reference.

V. DISCUSSION

As can be understood from Table II and Fig. 5, the
implemented approaches, especially self-supervision and latent
space conditioning, have yielded better localization and count-
ing of dwellings. Compared to recent anomaly detection
works [86], [87], [88], though the datasets and anomaly local-
ization pipelines are different from this study, our approach has
reached the best localization performance where AUC values
reach approximately 98% for some datasets (see Table II for
Nguenygiel-2017 and Minawao-2016 datasets).

The impact of the quality of the anomaly score map has
a direct implication on the counting of individual dwelling
instances. As can be seen in Fig. 5, though the strength of
anomaly score maps obtained from SSIM is strong enough to
properly localize, during the segmentation, the closer dwelling
instances get aggregated and become larger dwellings. This,
in turn, leads to an underestimation of obtained dwelling
instances (see Fig. 7). It is observed that this spatial aggrega-
tion of closer dwellings is mainly attributed to the sensitivity
of the SSIM-based anomaly score generation approach (see
Table IV and Fig. 10). The converse has happened for anomaly
score maps obtained from MAD. Even though anomaly score
maps look visually good, the signal from the background
is not as weak as anomalies in the background of SSIM.
This fosters false positive dwelling classes and overestimation
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TABLE IV
SENSITIVITY OF AUC VALUES BASED ON SSIM

WITH DIFFERENT WINDOW SIZES

TABLE V
DWELLING OBJECT COUNTING WITHOUT

MORPHOLOGICAL POSTPROCESSING

(see Fig. 7) of counts. The anomaly score quality variation
among lp norm-based and SSIM anomaly score maps is also
reported by Bergmann et al. [78]. They have indicated that
SSIM provides salient and strong anomaly score maps with
observable boundary distortion of object edges but with better
localization results. Contrary to our finding, though they noted
minor sensitivity of SSIM values for window size, they, in gen-
eral, reported the stability of the SSIM approach for other
data and model hyperparameters such as input image patch
size and model latent dimension. Lack of crisp boundary in
anomalies and further segmented results for anomaly detection
is also reported in deep learning approaches that did not utilize
VAEs [57].

Here, it should be noted that dwelling count results could
also be affected by the type of postprocessing with the mor-
phological operation, including the kernel size for smoothing,
the number of iterations the operator could be applied, and
its interaction with specific dwelling types within a particular
dataset. A notable example is provided in Fig. 9 where
the quality and number of dwelling objects that appear in
the final layer vary as per the postprocessing number of
iterations. When the number of cycles the opening is applied
increases, the tiny dwellings cease to exist, while, without
postprocessing, more noisy false positive predictions appear.
This is mostly prevalent in outputs obtained from MAD-based
anomaly score maps. Therefore, keeping the right balance
between the number of iterations and window size with output
quality is an essential aspect.

The overestimation and the underestimation of dwelling
counts are also associated with the anomaly generation
approach but also with inherent characteristics and spatial
heterogeneity of dwelling objects across space and time
(see Fig. 1). The small dwellings that have lower contrast
with the background environment failed to be spotted in
the anomaly score (see Fig. 11). In addition to this, even
though contagious buildings appear with strong anomaly score
maps, they get merged and appear as single dwelling objects.

Fig. 12. KLD annealing with different β ceiling values.

More importantly, as the training involves datasets from differ-
ent places with different time stamps, there is also confusion
between dwellings in one dataset and resembling nondwelling
instances in another dataset. Then, these nondwelling targets
such as very bright surfaces and footpaths are flagged as
anomalous surfaces (see Fig. 11). False positive localization of
nonanomalous targets (better to say targets that are not of inter-
est) is also observed in recent anomaly detection works [86].
We also understood the contribution of the inherent complexity
of dwelling structures across space–time by only running the
experiment on relatively less complex datasets (Minawao-
2017, Minawao-2017, Nguenygiel-2017, and Nduta-2016),
and the performance of the model has shown moderate
improvement both in localization and counting (achieved MAE
of 4.81).

As argued in Section I and provided in Section II, even
though the anomaly score maps did not change by a large
margin, the latent space conditioning has enabled the creation
of a unified feature space. In addition to this, at the same time,
the reconstruction error has been reduced for the latent space
conditioning (see Fig. 8).

VI. CONCLUSION

In this study, we have demonstrated the application of
a VAE for unsupervised dwelling localization and counting
using VHR imagery obtained from FDP sites situated in
different geographical settings. The critical limitation of VAE
for joint training of images obtained from different places
at different time stamps, which is the easy reconstruction
of bright dwellings, is reduced by the introduction of the
synthetic anomaly as a conditioning variable during self-
supervision. As datasets obtained from different geographical
settings exhibit disparities in the latent space, the spatiotem-
poral invariance of the VAE latent code is achieved by
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introducing a latent space conditioning, i.e., using dataset
labels as a covariable. Although we observe a variation in
the results, mainly due to each dataset’s intrinsic complexity,
the introduced self-supervision and latent space conditioning
have yielded localization and counting that achieve an AUC
value of 98% and MAE value of 5.03 in less complex
datasets, respectively. Even though localization results are
quite remarkable, dwelling counts suffer from the conversion
from anomaly scores to dwelling instances. Therefore, in an
operational setting of humanitarian emergency response, our
approach could help generate first-hand estimates for the
number of dwellings. Then, these results need to be enhanced
by proper quality control and postprocessing such as filling
of false negative dwellings and cleaning merged dwellings
(especially for a product obtained from SSIM-based anomaly
score maps).

Given these promising results, further work could focus
on the following issues. As introduced self-supervision using
synthetic anomalies is proven to detect easy reconstruction
of bright dwellings, the introduction of semisupervision with
few curated labels that account for contrast and spectral
diversity of dwellings could boost the results. Second, to rein-
force the spatiotemporal invariance of learned latent code,
we will look into recent developments that assume the EO
dataset’s hierarchical nature with the motivation to model it
in hyperbolic latent space (for example, readers can consult a
recent work by Hamzaoui et al. [89] on the classification task
and [90] for concise review on current advances on hyperbolic
neural networks). Third, by leveraging semisupervision, the
introduction of a segmentation network to have an end-to-
end workflow that also learns the segmentation process while
optimizing the VAE could help to bypass the hurdles during
unsupervised clustering of anomaly score maps.
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