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Searching Region-Free and Template-Free Siamese
Network for Tracking Drones in TIR Videos

Bo Huang , Zeyang Dou , Junjie Chen , Jianan Li , Ning Shen , Ying Wang , and Tingfa Xu

Abstract— With the growing threat of unmanned aerial vehicle
(UAV) intrusions, the topic of anti-UAV tracking has received
widespread attention from the community. Traditional Siamese
trackers struggle with small UAV targets and are plagued
by model degradation issues. To mitigate this, we propose a
novel searching region-free and template-free Siamese network
(SiamSRT) to track UAV targets in thermal infrared (TIR)
videos. The proposed tracker builds a two-stage Siamese archi-
tecture with the former providing detection of the first-frame
ground truth by using a cross-correlated region proposal network
(C-C RPN) and the latter providing detection of previous-frame
predictions via a similarity-learning region convolutional neural
network (S-L RCNN). In both stage, global proposals are
acquired by region of interest (ROI) alignment operation to
break the limitation of searching region. Then, a spatial loca-
tion consistency function is introduced to suppress background
thermal distractors and a temporal memory bank (TMB) is
utilized to avoid template update degradation problem. Further,
a single-category foreground detector (SCFD) is designed to
independently predict the position of the UAV target. SCFD
can re-initialize the tracker without the given target in the
first frame, which can help to recover the tracking failures.
Comprehensive experiments demonstrate that SiamSRT achieves
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the best performance compared to the most advanced algorithms
in the anti-UAV tracking missions.

Index Terms— Anti-unmanned aerial vehicles (UAVs), Siamese
network, single-category foreground detector (SCFD), temporal
memory bank (TMB), thermal infrared (TIR).

I. INTRODUCTION

RECENTLY, unmanned aerial vehicles (UAVs) have
received a lot of attention due to their flexibility, porta-

bility, and a large number of applications, including aerial
photography [1], intelligent monitoring [2], reconnaissance,
and rescue [3], [4]. As the technical barriers and difficulties in
modifying UAVs continue to diminish, UAVs are being used
with increasing frequency to carry out illegal missions such
as physical attacks (via explosives) and cyber-attacks (hacking
a critical infrastructure) [5]. As a result, anti-UAV technolo-
gies, notably vision-based, have been extensively promoted to
counter the potential threat of drone intrusion.

Visual object tracking, especially in thermal infrared (TIR)
mode, as a fundamental step in computer vision, paves a
promising path for subsequent research on anti-drone missions.
Along with the significant progress of deep learning technol-
ogy, Siamese networks light up the task of visual object track-
ing, by providing the strong capacity of learning powerful deep
features [6], [7]. SiamFC [8] initially introduces the Siamese
network with two shared branches for visual tracking and
adopts the correlation layer to learn a decision making-based
similarity evaluation. Currently, Siamese trackers have sig-
nificantly advanced the state-of-the-art tracking performance
on multiple well-established benchmarks and competitions by
incorporating the regional proposal networks (RPNs) [9], [10],
attention mechanisms [11], [12], [13], correlation filters [14],
[15], [16], residual structures [17], [18], [19], region con-
volutional neural networks [20], [21], [22], and transformers
[23], [24]. Nevertheless, these trackers are designed for RGB
tracking. While the potential of TIR tracking in some special
scenarios such as night and fog should not be ignored. As is
obvious, TIR tracking technique is better suited to the low-
light scenarios, thus catering to all-weather requirements.

When tracking UAVs in TIR videos, targets tend to be
smaller in scale than conventional tracked objects. Traditional
tracking methods, which search the target in a neighborhood
several times the size of the target object, are very prone to
tracking failures in the face of small-scale UAVs, due to the
fact that the target can easily escape outside the searching
region. Thereby the full-image search strategy is urgently
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Fig. 1. Overview of the SiamSRT network, which contains a template branch and a testing branch. The proposed network takes the whole images as inputs
and extracts the 256-channel Swin transformer features. The feature extractor is then followed by a two-stage global tracking, where the first stage employs
the C-C RPN network to perform cross correlation matching on the first-frame ground truth and the second stage utilizes the memory bank and the S-L RCNN
matcher to incorporate previous high-confidence results for a comprehensive similarity prediction. In addition, an SCFD is adopted to implement independent
UAV detection to correct possible errors. Finally, the optimal bounding box is output by multiple classification predictions and regression predictions.

needed to avoid such local suboptimal solution stemming from
the rapid movement of small-scale drone targets. In addition,
the issue of updating the Siamese fashion for long-term drone
tracking also has to be considered, which is a trade-off problem
between model adaption and degradation. Traditional methods
employ a fixed learning rate to update the template so as to
improve the model’s adaptation to target deformations. Such
updating mechanism will be more and more unreliable over
time and eventually leads to model degradation. How to tackle
these problems remain challenging and ill-solved.

In this article, we propose a robust searching region-free
and template-free Siamese network (SiamSRT), to track UAV
targets in TIR videos. In particular, we apply a searching
region-free strategy that takes the whole image as input to
achieve global optimal solution, and adopt a template-free
strategy that involves all of the historical predictions to pre-
vent model degradation. The proposed network architecture is
shown in Fig. 1. Similar to the typical Siamese framework,
SiamSRT contains two branches, i.e., a template branch, and
a testing branch, which share weights. Among them, the
template branch is initialized in the first frame and then
remains fixed in subsequent frames. The testing branch inputs
the searching image and constantly produces the newest
candidate proposals by the cross-correlated region proposal
network (C-C RPN), which consists of a cross correlation
encoder and an RPN head. Following the first stage C-C
RPN network comes a similarity-learning region convolutional
neural network (S-L RCNN) matcher, which contains a tempo-
ral memory bank (TMB), a similarity-learning (SL) encoder
and a RCNN head. Along with the S-L RCNN, there is a
single-category foreground detector (SCFD), which enables
the tracker independently to independently detect drones.

Specifically, SiamSRT employs a searching region-free
strategy that makes the network compatible with arbitrary
scale images as input, and then adopts the more powerful
Swin transformer [25] as the feature extractor. The S-L RCNN
matcher encodes the prediction results of the previous frames
into the searching proposals to make optimal decisions in
the face of the drastic target appearance deformation. In the
matcher, a template-free strategy is utilized to address the
limitation of Siamese template updates. In order to minimize
the loss of target information in the process of model updating,
SiamSRT concatenates high-confidence prediction results of
the TMB into feature matrices, called sequential experts. Then,
we cross-code the sequential experts with candidate proposals
into the RCNN head, that is, each expert contributes to the
prediction of the target in the current frame, so as to maximize
the retention of target information and effectively solves the
updating problem of Siamese templates.

Juxtaposed with the S-L RCNN matcher is the SCFD. One
very fortunate attribute in our anti-drone tracking missions is
that the targets being tracked are all drone foreground objects.
The detector implements the UAV foreground prediction based
on original RCNN head, which can not only output the
classification score to identify whether the target is a drone
or not but also output the regression score to locate the
drone target. The detector estimates the target independently
for each frame and is not plagued by the target appearance
changes, which facilitates the recovery of tracking failures.
It is worth noting that SFCD shares the feature extractor and
RPN proposal generator with the S-L RCNN matcher, so the
whole framework can be trained simultaneously in an end-to-
end manner. To cope with similar UAV-like thermal regions
in infrared images, we utilize the spatial location consistency
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constraints to suppress these background thermal noises in
candidate proposals.

In summary, there are three major novelties in this SiamSRT
network. First, we build a two-stage searching region-
free Siamese tracking framework, which performs coarse
localization using C-C RPN network and then fine-tunes the
position using S-L RCNN network. Second, we introduce
a template-free memory bank into the S-L RCNN network
that fully utilizes previous predictions to inspire the current
tracking task, solving the model degradation puzzle. Third,
we implement an SCFD into the decision-making stage, which
delicately exploits the UAV foreground semantics to repair the
tracking failures.

II. RELATED WORKS

Currently, the mainstream trackers are divided into two main
categories: correlation filter-based and Siamese network-based
ones. In the following, we first briefly review the development
of these two tracking frameworks, and then introduce the most
related works for two techniques tackled in this article, i.e. TIR
tracking and anti-UAV tracking.

A. Correlation Filters

Bolme et al. [26] first introduce correlation filters into
the tracking field by presenting a minimum output sum of
squared error (MOSSE) filter that enables tracking with an
extremely high speed of 669 frames/s. Inspired by MOSSE,
a vast number of followers have improved the performance
of correlation tracking from various aspects such as feature
representations [27], [28], scale variations [29], boundary
effects [30], [31], and kernel tricks [2], [32]. In these algo-
rithms, SRDCF [31] employs a spatial weight function to
penalize the filter coefficients to address the unwanted bound-
ary effects, whereas BACF [30] achieves filter learning to
real-world samples by multiplying a binary mask matrix.
ASRCF [33] combines these two trackers and employs an
adaptive weight regularization term to adjust the spatial weight
function, achieving decent accuracy improvement. STRCF
[34] introduces a temporal regularization term to avoid the
filter degradation problem. Yuan et al. [35] propose an adaptive
spatial–temporal context-aware (ASTCA) correlation tracker
by combining STRCF and ASRCF and apply it to a UAV view-
point tracking task. Huang et al. [15] introduce an adversarial
learning generative network to generate instance-negative sam-
ples and encode them into the correlation filter objective
function to further improve tracking performance.

B. Siamese Networks

In contrast to correlation filters, Siamese networks can
enhance the feature representations of the target through
offline training with massive image pairs. Bertinetto et al. [8]
propose the first Siamese network tracker, called SiamFC,
which utilizes a fully convolutional structure and a cross
correlation layer to achieve SL between the template and
searching images. SiamRPN [9] and SiamRPN++ [10] intro-
duce the RPNs into Siamese tracking and localize targets

through classification and regression prediction. GlobalTrack
[20] and SiamRCNN [21] introduce the RCNN structure
into the Siamese network, which guarantees the accuracy
of the predicted bounding boxes through a two-stage fine-
tuning. Yuan et al. [36] propose an effective self-supervised
learning-based tracker, which fully utilizes the principle of
forward–backward tracking consistency between consecutive
frames to improve tracking accuracy under a Siamese correla-
tion tracking framework. SiamATL [37] implements the online
updating of the Siamese fashion via an attentional transfer
learning strategy to cope with target template degradation
under long-time occlusion. The ALT tracker [38] presents
an active learning method for deep visual tracking, which
can select and annotate the unlabeled samples to train a
higher-quality Siamese model.

C. TIR Tracking

TIR tracking can compensates for the degradation issue of
RGB tracking when encountering some challenging scenarios,
such as foggy days and nights. Therefore, in order to release
the power of the infrared tracking, Liu et al. [39] propose a TIR
pedestrian tracking dataset for the TIR pedestrian tracker eval-
uation. What’s more, Liu et al. [40] develop another large-scale
TIR object tracking dataset, named LSOTB-TIR, to bridge
the absence of infrared tracking training datasets. Besides the
TIR datasets, the trackers specifically designed for infrared
tracking has also received a lot of attention. MCFTS [41]
proposes a correlation filter-based ensemble tracker, which
utilizes multilayer convolutional features pretrained for the
TIR targets. Li et al. [42] propose a hierarchical spatial-aware
Siamese network for TIR tracking, which uses hierarchical
convolutional features to acquire richer spatial and semantic
feature representation for the TIR objects. Yuan et al. [43]
present a spatial–temporal memory network to address occlu-
sion and similar target interference in TIR tracking tasks.
Liu et al. [44] propose a Siamese TIR tracking framework
with a similarity computation structure with multiple levels,
where one computes the global semantic similarity and the
other computes the local structural similarity for the TIR
objects. Zhang et al. [45] adopt image-to-image translation
models to transfer the abundantly available labeled RGB
images to synthetic TIR ones, which well solves the problem
of insufficient infrared training data.

D. Anti-UAV Tracking

With the popularity of drone applications, the potential
threat of drone intrusion has gradually increased [5]. Tradi-
tional anti-drone defense systems achieve control and defense
against illegal intrusion of drones by using spectrum detec-
tion, radar detection, radio interference suppression, etc.,
[46]. These systems tend to be costly and inflexible, making
it difficult to cope with high-frequency anti-UAV tracking
requirements. Jiang et al. [5] present a large-scale anti-drone
dataset that contains more than 300 video pairs with both
infrared and visible light modalities. In addition, they have
also organized several anti-drone competitions to help develop
anti-drone defense systems [47]. Zhao et al. [46] propose a
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visible light mode anti-drone dataset, called DUT anti-UAV,
which consists of a detection dataset with a total of 10 000
images and a tracking dataset with 20 videos. Huang et al. [22]
propose an effective spatio-temporal attention-based Siamese
network for anti-drone missions, which achieves robust UAV
tracking in TIR scenarios by posing spatial and temporal
constraints on searching candidate proposals. Yu et al. [48]
propose a unified transformer-based anti-UAV tracker, which
designs a multiregion local tracking module to tackle target
appearance variation and a global detection module to tackle
frequent disappearance.

III. PROPOSED METHOD

Fig. 1 presents a detailed flowchart of the SiamSRT frame-
work. The framework starts with Swin transformer feature
extraction and then follows the two-stage detection. The first
stage provides detections of the ground truth given in the
first frame, the second stage implements detections using
high-confidence predictions from previous frames and addi-
tionally adopts an SCFD to repair tracking failures. In this
section, we elaborate in detail on the design of our SiamSRT
architecture module by module.

A. Transformer Feature Extraction

Transformer has demonstrated high accuracy and robustness
in visual tracking tasks [24], [49], [50], [51]. In Siamese
feature extraction subnetwork, we adopt the Swin transformer
architecture as the backbone.

1) Self-Attention: The basic block in a standard transformer
architecture is the attention mechanism, which applies an
attention function for mapping a query and a set of key-value
pairs to an output. Denotes the query Q, keys K , and values
V as the inputs, where the keys and values are packed
together for uniform calculations. In computing self-attention,
the similarity between the query and key is computed as

Attention(Q, K , V ) = softmax
(

QK T
√

dk
+ B

)
V (1)

where dk is the key dimensionality, and B is the relative
position bias.

2) Swin Transformer Block: The single-head self-attention
can be extended into multiple-head version, which allows
the model to jointly learn various aspects of information
from different representation subspaces at different positions.
This expansion can be achieved by concatenation and linear
projections

MultiHead(Q, K , V ) = Concat(H 1, . . . , H h)W O (2)

where H i = Attention(QW Q
i , K W K

i , V W V
i ). W Q

i ∈ Rdm×dk ,
W K

i ∈ Rdm×dk , W V
i ∈ Rdm×dv , and W O

∈ Rhdv×dm are
parameter matrices for the projections. Take it a step further,
Swin transformer is built by replacing the multihead self-
attention (MSA) module in a transformer block by a module
based on shifted windows, with other layers kept the same.
In this work, we keep the default parameters from Swin
transformer [25] in the configuration of the feature extraction
module.

B. Two-Stage Searching Region-Free Siamese Network

The two-stage Siamese network has presented excellent
performance in target tracking [20], [21], [22]. The structure
of SiamSRT consists of a cross-correlated RPN (C-C RPN)
module and a similarity-learning RCNN (S-L RCNN) module.
The C-C RPN module performs the first-stage of detection that
encodes the target information into the search branch using
the cross correlation layer and generates possible proposals
for calculating the classification and regression losses. The
S-L RCNN module implements the second stage of detection,
which encodes the similarity between the of aligned template
and each candidate proposal, and then inputs the proposal list
into the RCNN head to compute the final predicted score.

1) Cross-Correlated RPN: Siamese tracking network inter-
acts with the template branch and the search branch through
a cross correlation operation [8], which is formulated as

Corr(ϕ(x), ϕ(z)) = ϕ(x) ⊗ ϕ(z) + b1 (3)

where ⊗ denotes cross correlation. ϕ(z) and ϕ(x) denote the
template and searching feature maps, respectively. b1 denotes
the bias which takes value b in every location. The bias terms
are often omitted for the brevity.

Our C-C RPN differs from traditional RPN in that it incor-
porates a cross correlation encoder before the RPN head. The
encoder enables information interaction between the search
branch and the template branch, and the encoding process is
shown in Fig. 2(a). Denote ϕ(z) ∈ RC×K×K be the template
features aligned by ROI layer and ϕ(x) ∈ RC×H×W be the
features of search image, respectively, where K × K denotes
the ROI-aligned output size, H and W denote the height
and width of the global feature map, respectively, and C
denotes the number of feature channels. We encode the target
information into the feature map of the search branch as
follows:{

φ(z) = ϕ(z) ∗ Filter(K , K )

Corr(ϕ(x), ϕ(z)) = (ϕ(x) ⊗ φ(z)) ∗ Filter(1, 1)
(4)

where ∗ denotes the convolution operation. Filter(K , K )

is a K × K convolution filter, which convert ϕ(z) to a
1 × 1 matrix. The target information hosted by φ(z) is then
encoded into the feature map ϕ(x) by a cross correlation
layer. We then convert the output back to C channels by a
1 × 1 convolution layer, i.e., Corr(ϕ(x), ϕ(z)) and ϕ(x) have
the same data structure.

The difference between (3) and (4) is that we introduce two
convolutional layers. Unlike traditional methods that crop out
fixed-size template and search images as input, our SiamSRT
takes arbitrary-size images as input to realize the global UAV
detection. However for cross correlation operations, we need to
scale the correlation kernel (or template) to a fixed size, so we
adopt an ROI pooling layer to extract the features of the refer-
enced UAV target. Since the search branch does not perform
the same ROI pooling operation, it will lead to a misalignment
problem between the template and search features. Therefore,
a K × K convolution layer is introduced to encode the target
information. To facilitate the subsequent computation, another
1 × 1 convolution layer is introduced to convert the number
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Fig. 2. Illustration of the cross-coding process. (a) Cross correlation encoder,
where ⊗ represents the cross correlation operation, and the coder encodes the
target information of the template branch into the feature matrix of the search
branch. (b) SL encoder, in which ⊙ means the Hadamard production, and the
coder encodes the target information into each candidate proposal.

of channels back to the original feature channels. Finally, the
cross-coded features Corr(ϕ(x), ϕ(z)) are fed into the RPN
head [52] for classification and regression.

2) Similarity-Learning RCNN: Further, we implement the
two stage of the S-L RCNN module, which introduces an
SL encoder into the traditional detection RCNN head. This
encoder will encode the target information into each search-
ing candidate proposal, and the similarity matching is then
reached through the collaboration between the encoder and
classification/regression. The encoding process is as illustrated
in Fig. 2(b). Let p(z) ∈ R1×C×K×K be the aligned ROI feature
of the UAV target z and p(x) ∈ RM×C×K×K the aligned
ROI feature of candidate proposals extracted from the search
branch x , where M is the number of candidate proposals.
We encode their similarity by the following:

q(z) = p(z) ∗ Filter(3, 3)

q(x) = p(x) ∗ Filter(3, 3)

Sim(p(x), p(z)) = (q(x) ⊙ q(z)) ∗ Filter(1, 1)

(5)

where ⊙ indicates the Hadamard production. We first perform
a 3 × 3 convolution with one pixel padding on p(z) and p(x).
Since q(z) and q(x) also have the same size, we encode their
correlations by the Hadamard production. As with the cross
correlation encoder, the number of channels is converted back
to c using a 1 × 1 convolution.

Based on the faster RCNN [53], the S-L RCNN of SiamSRT
is computed as follows: first, the network goes through the C-C
RPN network to obtain ROIs, and each ROI is pooled into a
fixed-size feature map. The SL encoder is then used to encode
the UAV template information into these aligned features. Fur-
thermore, the encoded features Sim(p(x), p(z)) are mapped to
a feature vector by two shared fully connected layers (FCs).
Finally, this feature vector undergoes two independent FCs
to realize softmax classification prediction and bounding-box
regression prediction, respectively. The calculation process of
S-L RCNN is illustrated in Fig. 3(a).

The searching region-free Siamese network is effective in
preventing locally optimal solutions caused by targets escaping
from the search region. The same knife cuts bread and
fingers, global search also has its side effects, for example,
there are more thermal distractors in global search due to
the introduction of massive background information. These
thermal noises make it easy for the traditional trackers to locate
the ROI onto similar background regions, and trackers are also
plagued with the model degradation problem. To address the
downsides associated with searching region-free tracking, our
SiamSRT introduces a spatial location consistency function
to suppress background thermal distractors and a TMB to
avoid template update degradation problem. Next, we will
introduce how these two techniques are implemented in the
online tracking process.

C. Template-Free Online Tracking

In actual TIR tracking, UAV targets are typically very small,
without prominent textures or fixed shapes, which make them
extremely difficult to be detected. To mitigate this problem,
we explore deeper into the spatio-temporal relationship in
drone infrared videos. From the spatial perspective, targets
are unlikely to show huge position changes in two consecutive
frames. In a follow-up frame of the tracking results with high
confidence, we consider it more valuable to detect targets
by searching them within a local neighborhood than from a
global context where a lot of thermal noise exists. From the
temporal perspective, we argue that the target states learned
from historical frames should be fully reused in the current
tracking task to avoid the degradation problem of a single
template.

1) Spatial Location Consistency: Define one high-quality
track consists of A continuous non-overlapping sub-track as
L = (l1, l2, . . . , lA). For each sub-track li , ∀i ∈ {1, 2, . . . , A −

1}, there exists the relation li,ei < li+1,si+1 , where si+1 and ei

indicate the start frame and end frame of the sub-track li+1
and li , respectively. We calculate the evaluation score of the
candidate proposals belonging to track L by the following:

Eva(p(x))

= wr sim_eva(p(x), gt)

+(1 − wr )sim_eva(p(x), lA,sA) + wl loc_eva(p(x), lA,eA)

(6)

where gt stands for the ground truth given in the first frame
and p(x) = [px1, px2, . . . , pxM ] denotes the search proposal
list of branch x in the testing frame. wr and wl are the
complementary ratios. sim_eva denotes similarity evaluation,
where it feeds the encoded features of Sim(p(x), gt) and
Sim(p(x), lA,sA) into the RCNN head and returns the detection
confidence scores. loc_eva is the location consistency evalua-
tion, where the intersection over union (IoU) is used to impose
neighborhood restrictions.

We consider that the target cannot undergo a sudden and
dramatic location change in two consecutive frames. When
the target is occluded, the neighborhood search tends to be
trapped in a local ROI region, and if the target reappears
outside this region, the tracker fails completely. Therefore,
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Fig. 3. Comparison of SL for single template and memory bank. (a) Similarity calculation process by S-L RCNN for one target template. (b) Memory bank
for storing historical prediction results. (c) Similarity calculation by S-L RCNN for a large number of prediction templates in the memory library.

global search is more effective against target occlusion, but
introduces more background noises, while local tracking limits
background noise to a greater extent, but it is difficult to
capture the target again after the target loss. Our decision
strategy wants to combine both of them, which conditionally
switches between local tracking and global search to make
the optimal decision. In the next frame of the high-confidence
prediction result, we first perform a neighborhood search,
loc_eva(lA,eA , p(x)) > 0.2, to find the promising predictions.
When finding a proposal pxi with sim_eva greater than the
given threshold, the neighborhood search is regarded as suc-
cessful and pxi will be added to the sub-track lA. Otherwise,
it means that no suitable target is found in the neighborhood,
the sub-track lA will be terminated. When the neighborhood
search fails, we set the output of the spatial consistency
evaluation loc_eva to zero, and Eva(p(x)) can still output the
computing scores from the global proposals, and we output
the global highest scoring proposal as the prediction result.
Thanks to the spatial location constraints, extensive proposals
with similar objectives are eliminated for decision making,
which greatly alleviates the interference of distractors.

2) Template-Free-Based S-L RCNN: To unleash the power
of temporally unveiled information, we introduce TMB to
fully utilize both the first-frame template and previous-frame
predictions for the optimal decision. To this end, we record
the aligned features of the target in the historical high-quality

predictions, denoted as p(z) = [pz1, pz2, . . . , pzG] ∈

RG×C×K×K , and the IDs of their corresponding frame
numbers, [#I D1, #I D2, . . . , #I DG], where G indicates the
capacity of the memory bank. We also call these estimated
targets as sequential decision experts. As shown in Fig. 3(b),
to cover as many possible states of the target as possible, the
high-quality predictions will be added directly to the memory
bank. To prevent an unlimited increase in the number of
templates, we make the maximum capacity of the memory
bank a manually adjusted parameter. If the capacity of memory
bank is fully occupied and a new high-quality prediction
comes, the memory bank will be updated by removing the
larger of the sequential experts with the minimum frame ID
interval. A simple illustration of the update process for a
memory bank with a capacity of 5 is shown in Fig. 4. In all
experiments, we set the maximum capacity of the memory
bank to 50, which is sufficient to cover the possible patterns
of the target in a long sequence.

When we repeatedly solve the similarity evaluation of each
sequential expert pzi with respect to the search p(x), then
we need G this repeated computation, which is a huge waste
of computational resources. For fast computation, we select
several top-performing N proposals p(x) ∈ RN×C×K×K with
high confidence scores output by the first-stage C-C RPN
detection. Since the SL encoder is a mirroring process, we can
treat p(z) as a proposal list as well and then encode the search
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Fig. 4. Illustration of the update process of the memory bank. The capacity
size of the memory bank is 5, the frame IDs of the currently stored features
are {#1, #4, #10, #15, #19}, and their corresponding intervals are {3, 6, 5, 4}.
When the result of the 25th frame is a high quality prediction, we add it to the
template library and recalculate the frame interval to {3, 6, 5, 4, 6}. Finally,
we remove the larger-frame feature with the minimum frame interval and
update the frame interval to {9, 5, 4, 6}.

proposals p(x) into p(z). By SL and concatenating, we obtain
an encoded feature matrix Sim(p(z), p(x)) ∈ RG×N×C×K×K .
Thus, we can calculate the evaluation score for each candidate
proposal pxi as

Eva(pxi ) =
1
G

G∑
j=1

α j sim_eva(pz j , pxi ) (7)

where pz j denotes the j-th decision-making expert, while α j

denotes a temporal weighting factor. Equation (7) indicates
that numerous previous predictions are involved in scoring
candidate proposals in the current tracking task, which tackles
the template update issue. As illustrated in Fig. 3(c), all these
scores are generated directly through one sharing RCNN net-
work, which does not introduce additional computation cost.
Considering spatial consistency, the final prediction scores are
computed as follows:

Eva(pxi )

= wr sim_eva(gt, pxi ) + wl loc_eva(lA,eA , pxi )

+(1 − wr )
1
A

A∑
j=1

1
e j − s j + 1

e j∑
t=s j

sim_eva(l j,t , pxi ) (8)

where the first term re-detects the first-frame template, the
second term imposes the spatial constraints, and the third term
performs the detection of historical high-quality prediction
results. The confidence scores for all three items range from
0 to 1. It is worth noting that since we consider extensive
historical high-quality predictions in L , an error in one sub-
track li will not cause the model to fail completely.

D. Single-Category Foreground Detector

Although we utilize extensive sequential decision experts to
avoid model degradation, heavy occlusion may also pollute the
template library causing complete tracking failures. Therefore,
when a high-confidence sub-track li is broken, we require a
global repair strategy to drive the tracker back to the correct

trajectory. Therefore, we introduce an independent detection
module, an SCFD, into SiamSRT to mitigate the effect of
target loss.

First, we assign a binary class label (of being the fore-
grounds or backgrounds) to each search proposals. The
proposal boxes with IoU overlap higher than 0.7 with the
ground-truth box are given a positive label; while other back-
ground proposals are given a negative label. We construct a
two-stage SCFD which takes these labeled proposals as the
training set and then predicts the probability of each proposal
being a foreground target. In this work, the foregrounds are
UAV targets, so training our SCFD can also be considered as
training a drone detector. The SCFD shares the same feature
extraction and RPN network with the Siamese tracking frame-
work. As a result, SCFD does not introduce much additional
computation. Then the proposal list p(x) generated by RPN
network is fed into the RCNN head for binary classification,
and it will return the probability that the proposal is a drone.

It is worth noting that since the SiamSRT is designed
for anti-drone tracking, it does not excel at general target
tracking or multicategory tracking missions. For example, the
global detection of searching region-free strategy is designed
to cope with tiny UAV targets, which may not be useful for
tracking large scale targets. In addition, SiamSRT adopts the
SCFD to modify tracking failures, which does not necessarily
work when tracking semantically diverse generalized targets.
SCFD is a binary- or single-category detector, which only
gives the foreground target object and the background pixels.
In the task of anti-drone tracking, there is only one tracking
category, i.e., the drone target is the foreground, whereby
the SCFD can be treated as a drone detector. In generalized
tracking tasks, targets being tracked vary widely, which makes
it particularly difficult for this single-category detector to
learn unified semantics, hence SiamSRT struggles a lot when
confronted with the generic category of target tracking.

E. Loss Function

In order to learn stronger similarity semantic features,
SiamSRT does not include images of the previous frame in the
training process. For training the first stage C-C RPN network,
similar to [20], we adopt the binary cross-entropy (BCE) and
smooth L1 as the classification and regression losses to train
our model

Lrpn =
1
Nc

∑
i

Lbce
(

pi , p∗

i

)
+ λ

1
Nr

∑
i

p∗

i Lsmooth L1

(
ui , u∗

i

)
(9)

where pi denotes the predicted classification values and ui

denotes the predicted bounding-box regression offsets. p∗
i ∈

{0, 1} and u∗
i are the ground-truth label and target box, respec-

tively. (1/Nc) and (1/Nr ) are the normalization parameters for
classification and regression and λ is the balancing parameter
for these two terms.

With the multitask mission in the second phase of RCNN-
based decision-making module, we minimize the following
objective loss function in SiamSRT:

Lrcnn = Lsl(B, A) + Lscfd(B) (10)
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where the first term represents the SL loss between search
branch B and template branch A. The second term indicates
the single-category foreground detection (SCFD) loss for UAV
object. They adopt the same loss function structure, containing
a BCE classification loss and a smooth L1 regression loss.

IV. EXPERIMENTS

In this section, we first illustrate the implementation details
and evaluation metrics. Next, we conduct quantitative and
qualitative evaluations to demonstrate the effectiveness of our
method. Then, we describe the ablation studies of our method.
Finally, we verify the generalization ability of our method
on RGB datasets, LaSOT [54] and GOT10k [55], and TIR
datasets, PTB-TIR [39] and LSOTB-TIR [40].

A. Implementation Details

The proposed approach is implemented on an Ubuntu
16.04 × 64 system with an Intel1 Xeon1 CPU (E5-2620 v4
2.10 GHz), an NVIDIA GPU (GTX1080TI), and a 32 GB
DDR4 RAM. In the Swin transformer [25] backbone architec-
ture, we set the shifting window size, query dimension, and
channel number in the hidden layer to 7, 32, and 96, respec-
tively. The selected layer numbers are {2, 2, 6, 2}. To make
the training converge faster, SiamSRT initializes the backbone
weights using the Swin transformer for object detection model
[25], which is pretrained using the COCO dataset [56]. While
the rest parts of SiamSRT are trained from scratch. A total
of 12 epochs are trained using the stochastic gradient descent
(SGD) [53] optimizer with the learning rate set to 0.01. For the
main experiments, we train our model using the training and
test-dev splits of the anti-UAV [5] dataset, and then evaluate
the model on the validation set, test set, and test-challenge set
of the anti-UAV dataset. For the generalization experiments on
RGB datasets, we train SiamSRT on the LaSOT [54] and GOT-
10k [55] training sets, respectively, and use the corresponding
models for evaluation on the corresponding datasets. As for
the generalization experiments on the TIR datasets, we train
SiamSRT using the LSOTB-TIR training dataset and test on
the PTB-TIR and LSOTB-TIR testing datasets.

B. Evaluation Metrics

We use precision plot (PP) and success plot (SP) to evaluate
the performance of the tracker through one-pass evaluation
(OPE) [57]. PP represents the percentage of frames whose
estimated locations are within a given threshold distance from
the center of the ground truth. SP measures the percentage
of frames for which the IoU ratios of the predicted and
ground-truth bounding boxes are greater than a given thresh-
old. In addition, we also employ the state accuracy (SA) metric
for performance analysis. The SA metric, defined in anti-
UAV [5], additionally introduces a ground-truth visibility flag
to calculate the average overlap ratio between the predicted
and ground-truth bounding boxes for all sequences. In our
experiments, an error threshold of 20 pixels is used to evaluate
tracking performance in the PP, and the area under the curve

1Registered trademark.

(AUC) for all the thresholds is adopted to rank the trackers in
the SP.

C. Quantitative Evaluations

In this subsection, we perform quantitative experiments on
anti-UAV [5] dataset, which contains 160 videos as the training
set, 67 videos as the validation set, and 91 videos as the test
set. In order to make a comprehensive evaluation, we compare
our SiamSRT method with 36 state-of-the-art trackers, includ-
ing 11 correlation filter-based trackers, DSST [29], KCF [32],
SRDCF [31], Staple [27], CSR-DCF [58], ECO [28],
BACF [30], STRCF [34], ASRCF [33], ARCF [59], Auto-
Track [60], and 25 deep learning based trackers, MDNet [61],
SiamFC [8], CFNet [14], SiamRPN [9], DaSiamRPN [62],
TADT [63], SiamRPN++ [10], ATOM [64], DiMP [65],
SiamFC++ [66], GlobalTrack [20], PrDiMP [67], Siam-
CAR [68], SiamBAN [69], Siam RCNN [21], ROAM [70],
Super_DiMP [71], KYS [72], TrDiMP [24], TransT [51],
STMTrack [50], HiFT [49], Stark [23], KeepTrack [73], and
SiamSTA [22]. The results of all compared trackers are
produced on our platform with the default parameter settings.

Fig. 5 shows the tracking performance of these men-
tioned trackers on the anti-UAV test set in terms of the
PP [Fig. 5(a)], SP [Fig. 5(b)], and SA [Fig. 5(c)] met-
ric. Since these three metrics follow similar variation trend,
with Staple algorithm being the worst and our algorithm
the best, we choose the numerical results of the SA metric
for the subsequent analysis: 1) ASRCF comes out on top
among correlation filter-based algorithms with an average
accuracy of 0.431, which is more than 28% worse than our
SiamSRT algorithm; 2) SiamRPN++ (0.426) performs better
than SiamRPN (0.416) indicating that a deeper network model
can slightly enhance tracking performance for UAV tracking
tasks; 3) the algorithms with transformer structures, such as
Stark (0.591), TrDiMP (0.547), and TransT (0.521), perform
well, which means that this new feature is promising for anti-
drone tracking; 4) the two-stage trackers, such as GlobalTrack
(0.643) and Siam RCNN (0.652), outperform SiamRPN series
and DiMP series algorithms owing to the fact that global
detection offers advantages over local search when handling
TIR similar target interference; and 5) SiamSRT obtains a
superb score of 0.716 for using spatio-temporal constraints
to ensure robust tracking and a memory bank to prevent the
model from degenerating.

D. Qualitative Evaluations

To better demonstrate the effectiveness and robustness of
the proposed tracker, in this section, we perform qualitative
experiments to analyze the performance against the most
common challenging factors in TIR tracking, i.e., LC, tiny
scale (TS), occlusion, fast motion (FM), scale variation, and
background clutter (BC). For simplicity and clearer presenta-
tion, we compare our tracker with six representative trackers,
including the correlation filter-based tracker ASRCF [33], the
one-stage tracker SiamRPN++ [10], the two-stage tracker
Siam RCNN [21], the transformer-based trackers TrDiMP [24]
and Stark [23], and the base tracker SiamSTA [22].
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Fig. 5. Results of SiamSRT and the compared algorithms on anti-UAV test set (a) PP, (b) SP, and (c) SA ranking. The numbers in the legend indicate
the average precision scores for PP, the AUC scores for SP, and average overlap ratios for SA. SiamSRT obtains best scores of 0.912, 0.703, and 0.716,
respectively.

1) Low Contrast: Since there is only 1-D grayscale infor-
mation in the thermal image, the LC makes it difficult to
discern the target from the background with the same heat
level. The targets undergo the LC challenge as shown at
the top of Fig. 6. In this situation, the UAV target and the
building background have the same heat level, so the target
is completely submerged in the background. All the trackers
except our SiamSRT lose the target, which indicates that
our algorithm has stronger discriminative power due to the
advanced feature extractor and decision maker.

2) Tiny Scale: Drones are usually very small in size and
are basically shot from a long distance, so TS situations
are common in UAV tracking missions. Video sequences in
the “3700000000002_153934_1” scene are used to test the
performance of these trackers to handle TS targets. TS makes
it difficult to extract effective semantic features, so the pow-
erful transformer feature-based algorithms Stark and TrDiMP

perform poorly, while SiamSRT shows clear superiority over
other trackers in handing this tracking issue due to the use of
spatio-temporal constraints.

3) Occlusion: The third row of Fig. 6 shows the video
sequences in which the targets suffer partial or short-term
complete occlusions. Occlusion pollutes the target appearance
model with updates and leads to irreversible errors. ASRCF,
SiamRPN++, and TrDiMP trackers fail to find the lost target
in all three sequences. On the one hand, they lack an effective
model update strategy, and on the other hand, they need
global detection instead of local search to cope with long-
term occlusion. SiamSRT uses memory bank to prevent model
degradation, and a combination of neighborhood search and
global detection to capture the target again, which results in
the superior performance of our algorithm against occlusion.

4) Fast Motion: The movement of the drone or the change
of the camera viewpoint will cause FM challenges. FM blurs
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Fig. 6. Visual comparison with six state-of-the-art trackers. Representative frames are shown for five video sequences: “20190925_134301_1_2,”
“3700000000002_153934_1,” “20190925_134301_1_6,” “20190925_200805_1_6,” and “3700000000002_140908_1” (from top to bottom). The main chal-
lenges illustrated in these figures are LC, TS, occlusion (OCC), FM, and BC, respectively.

or even deforms the target, and the tracker requires a wider
search range to ensure that it can capture the target again.
On the “20190925_200805_1_6” sequence, the rotating cam-
era causes a sharp violent of the target at frame #855, thus
resulting in an FM challenge. Only Siam RCNN and SiamSRT
can adapt to this change, which illustrates the robustness of
our algorithm.

5) Background Clutter: Some wild scenarios are very clut-
tered with a large number of similar targets. The bottom of
Fig. 6 presents the tracking performance in the face of the BC
challenge, where the predicted bounding box may drift to the
background as it becomes very difficult to recognize the target
object from the background by a rather simple model. Our
algorithm performs better in this case because the introduction
of an additional drone detector in the decision-making phase
makes the prediction more accurate.

E. Comparisons With Deep Trackers Re-Trained Using
Anti-UAV Dataset

To further demonstrate the superiority of the SiamSRT
algorithm, we re-trained several representative deep trackers
using the anti-UAV [5] training set for comparison, i.e.,
ATOM [64], DiMP50 [65], PrDiMP50 [67], SiamBAN [69],

TABLE I
COMPARISONS WITH DEEP TRACKERS RE-TRAINED USING ANTI-UAV

DATASET. THE NUMBERS SHOWS THE SA (%) SCORES ON ANTI-UAV
TEST AND VAL SET

SiamCAR [68], KYS [72], KeepTrack [73], and Stark [23].
We keep all default settings exactly when re-training these
compared trackers, and the experimental results are shown in
Table I. Specifically, the numbers in the brackets indicate the
tracking results of the original model without re-training with
the anti-UAV data. We can figure out that the comparative
trackers achieve more or less improvement by fine-tuning with
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TABLE II
COMPARISON OF PERFORMANCE OF DIFFERENT METHODS ON LASOT AND GOT-10K DATASET. RED FONTS INDICATE THE BEST PERFORMANCE, THE

BLUE FONTS INDICATE THE SECOND BEST ONES, AND THE GREEN FONTS INDICATE THIRD ONES

the anti-UAV training set, where SiamBAN acquires the most
substantial boost, yielding more than 10% performance gain
on both the test dataset and the Val dataset. Nevertheless, the
proposed SiamSRT significantly outperforms these algorithms,
surpassing the second-place algorithm, Stark, by more than
9.1% on the test set and 4.8% on the Val set.

F. Generalization Experiments on RGB Datasets

Although our trackers are designed to counter the drone
threat, it also has immense potentials in generic target tracking
missions. We test the generalization ability of SiamSRT on two
popular large-scale RGB datasets, i.e., LaSOT [54] and GOT-
10k [55]. According to the protocol evaluation criteria, we use
AUC, precision (P), and normalized precision (PNorm) to rank
the performance of trackers on LaSOT dataset. On GOT-10k
dataset, we employ the default evaluation metrics AO, SR50,
SR75, and submit the tracking results to the official evaluation
server for evaluation. We compare SiamSRT with 12 compet-
itive methods, ASRCF [33], ATOM [64], SiamRPN++ [10],
DiMP50 [65], SiamFC++ [66], GlobalTrack [20], ROAM
[70], SiamCAR [68], SiamBAN [69], Ocean [74], SiamGAT
[11], and TrDiMP [24].

Table II reports comparison scores, and our algorithm
achieves the best performance in four out of six metrics. When
tracking a generic object, the SCFD in the second stage can
be treated as a fine-tuned decision network. Since we have
encoded the first-frame template into the search branch in
the first stage, the SCFD also outputs the prediction results
of similarity matching. Therefore, our algorithm also demon-
strates excellent performance for generic target tracking. It is
worth noting that SiamSRT vastly outperforms the DiMP and
TrDiMP tracker on the anti-UAV dataset, while SiamSRT falls
slightly short of these two trackers on the LaSOT and GOT-
10k datasets. The reasons are as follows: 1) DiMP and TrDiMP
adopt local search centered on the target, which is prone to
lose small-scale UAV targets, while SiamSRT provides the
ability to globally capture UAV targets by using the entire
image as network input; 2) the SCFD employed by SiamSRT
will not be significantly useful for generalized target tracking
tasks on the LaSOT dataset and the GOT-10k dataset; and

3) DiMP and TrDiMP do not adopt suitable spatio-temporal
constraints to limit the background noise in TIR videos, while
the thermal noise suppression strategy utilized by SiamSRT is
not necessarily effective in visible light datasets.

G. Generalization Experiments on TIR Datasets

In this section, we further conduct generalization experi-
ments on two TIR datasets, i.e., PTB-TIR [39] and LSOTB-
TIR [40]. PTB-TIR is a pedestrian tracking dataset containing
60 infrared video sequences for testing, and no training set is
provided. LSOTB-TIR is a large-scale generic tracking dataset,
which consists of a training subset and a test subset with a
total of 1400 TIR sequences (120 sequences for testing) and
more than 600 K frames. In this generalization experiment,
we utilize the LSOTB-TIR training set to re-train our SiamSRT
tracker and then evaluate it on the PTB-TIR and LSOTB-TIR
datasets. The compared algorithms include TIR trackers ECO-
tir [45], MLSSNet [44], HSSNet [42], MCFTS [41], RGB
trackers ECO [28], TADT [63], TGPR [75], CREST [18], UDT
[76], SiamFC [8], and DSiam [77]. The experimental results
on these two datasets are shown in Figs. 7 and 8, respectively.
On the PTB-TIR dataset, SiamSRT obtains scores of 0.750 and
0.554 in the precision and SPs, respectively, which falls short
of the ECO-stir algorithm and far exceeds the typical SiamFC
algorithm. On the LSOTB-TIR dataset, SiamSRT obtains a
precision score of 0.664 and an AUC score of 0.559, achieving
fourth place. There are two possible reasons why SiamSRT
does not perform outstandingly: one is that the strategy of no
search region does not have a significant effect on large-scale
targets in the TIR dataset; the other is that the foreground
detector does not work well for multiple categories of targets
either. Nevertheless, the experimental results demonstrate the
potential of SiamSRT for applications in other infrared target
tracking tasks in addition to anti-UAV tracking.

H. Comparison With Different Backbone Architectures

The choice of feature extractor is crucial, as it directly
determines the number of parameters and the type of layers,
which consequently affects the memory, speed, and perfor-
mance of the tracker. We compare the tracking effect of
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Fig. 7. Results of SiamSRT and the compared algorithms on PTB-TIR dataset (a) PP and (b) SP. The numbers in the legend indicate the average precision
scores for PP and the AUC scores for SP. SiamSRT obtains scores of 0.750 and 0.554, respectively.

Fig. 8. Results of SiamSRT and the compared algorithms on LSOTB-TIR test set (a) PP and (b) SP. The numbers in the legend indicate the average precision
scores for PP and the AUC scores for SP. SiamSRT obtains scores of 0.664 and 0.559, respectively.

using different network architectures as the backbone part,
including DarkNet53 [78], ResNet50 [79], ResNet101 [79],
ResNeXt50 [80], ResNeXt101 [80], and Swin-T [25]. Table III
reports the performance by SA metric on the anti-UAV
dataset. We observe that 1) residual series networks obviously
outperform dark networks; 2) our SiamSRT cannot benefit
from being equipped with a deeper ResNet101/ResNeXt101
network; and 3) ResNet, ResNeXt, and Swin-T networks
have similar tracking scores. We finally select Swin-T as our
backbone.

I. Componentwise Analysis of Different Modules
in the SiamSRT

To verify the effectiveness of different components of our
SiamSRT, we perform componentwise experiments on the
anti-UAV dataset to explore the effect of each incremental
module, i.e., C-C RPN, S-L RCNN, TMB, and SCFD. The SA

TABLE III
COMPARISON WITH DIFFERENT BACKBONE ARCHITECTURES. THE

SA (%) SCORES ON TEST SET AND VAL SET OF ANTI-UAV
DATASET ARE REPORTED

results for the test set and Val set are presented in Table IV,
and subsequent statements are described with numerical results
from the test set. As shown in the top row, the one-stage
tracker with only C-C RPN obtains a score of 55.62, exceeding
the traditional one-stage tracker SiamRPN by 14%, which
indicates that our cross correlation coding strategy is better
than that employed by SiamRPN. Method #2 is the simplest
two-stage tracker with C-C RPN as the first-stage prediction
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TABLE IV
EFFECTIVENESS OF IMPORTANT COMPONENTS IN THE SIAMSRT, I.E., C-C

RPN, S-L RCNN, TMB, AND SCFD. THE EVALUATION CRITERIA IS
THE SA (%)

and S-L RCNN as the second-stage prediction, which only
takes the target in the first frame as template and never updates.
Method #2 greatly exceeds Method #1 by more than 10%,
which also confirms the effectiveness and necessity of second-
stage detection. Method #3 further enhances the performance
by employing the TMB, in which the high-confidence previous
prediction results are stored, thus solving the problem of
balancing between model update and degradation. Method #4
does not perform cross-coding of the two branches in the
second stage, i.e., a separate RCNN is used in the second
stage for independent UAV foreground detection. It is very
interesting to note that the output predicted by Method #4 has
both the semantics of cross correlation in the first stage and
the semantics of the UAV foreground detection in the second
stage. Lastly, Method #5 represents our final approach.

V. CONCLUSION AND DISCUSSION

We have presented an effective SiamSRT tracking method
with outstanding performance in long-term anti-drone track-
ing. We build a two-stage network to detect the target
using the first-frame template and previous predictions. The
spatio-temporal knowledge is fully utilized in our network
through a spatial location consistency constraint and a tem-
poral template memory bank. The extensive experiments on
the anti-UAV, LaSOT, GOT-10k, PTB-TIR, and LSOTB-TIR
datasets demonstrate the effectiveness and robustness of our
method, compared with the state-of-the-art trackers.

Traditional trackers tend to overlook the fact that the
targets tracked are often foreground objects. In addition to
the template information in the first frame, the probability
estimation of the foreground object can also assist the tracker
in making judgments or correcting the tracker’s wrong predic-
tions, which is especially applicable in this anti-drone tracking
task. So, we introduce a single-category foreground UAV
detector to reduce the potential errors. Furthermore, trackers
of the Siamese fashion are always plagued by the online
updating issue, which is a trade-off between model adaption
and degradation. SiamSRT constructs a new type of two-stage
detection network to solve this problem. We do not update the
template in the first stage of C-C RPN detection, which means
that the target information of the first frame will be preserved
permanently and the tracker will not degrade easily. For
the second-stage detection, we extremely incorporate a large
number of high-quality tracking results into the decision of
similarity evaluation, which ensures that our tracker does not

miss any of the possible states of the target to accommodate
the target appearance changes. Therefore, our tracker has triple
guarantees: 1) matching with the target in the first frame; 2) SL
with prediction results from previous frames; and 3) UAV-like
appearance, these give rise to a highly accurate decision-
making outcome.
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