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Abstract— Predisaster information storage is crucial for
effective disaster response. The discussion regarding deep
learning-based light detection and ranging (Lidar) semantic seg-
mentation technology for indoor small items has been ongoing in
recent years. However, the methods applicable to large-scale out-
door Lidar datasets for predisaster information storage remain
limited. This study aims to propose a novel deep learning-based
network for city-scale Lidar semantic segmentation to support
predisaster information storage, called channel attention and
normal-based local feature aggregation network (CNLNet). This
network is designed to segment common urban land cover
objects, including buildings and vegetation. This network incor-
porates surface normal information and the channel attention
(CA) mechanism into the RandLA-Net backbone. Ablation stud-
ies have been devised to assess the performance of these two
features. During the preprocessing step, color information from
optical images is fused with Lidar data. The findings demonstrate
that CNLNet can enhance the accuracy of the RandLA-Net
backbone by improving mean intersection over union (mIoU)
by at least 1%–2%. Including one of these two features also con-
tributes to the backbone’s improved accuracy. Notably, CNLNet
outperforms other well-known networks in terms of accuracy
with the test of the public Sementic3D dataset. This study
further reveals that the proposed network excels in building
segmentation, a crucial facet of predisaster information storage.
Moreover, the results show that spatial resolution, whether at
0.5 or 10 m per pixel for optical images, has limited influence
on outcomes. One theoretical contribution of this study is the
demonstration of the advantages of integrating either surface
normal information or a CA mechanism to enhance large-scale

Manuscript received 11 October 2023; accepted 18 November 2023. Date
of publication 5 December 2023; date of current version 19 December 2023.
This work was supported by SmartSat Cooperative Research Centre under
Grant P2.30s, whose activities are funded by the Australian Government’s
CRC Program. (Corresponding author: Linlin Ge.)

Chang Liu and Linlin Ge are with the School of Civil and Environmental
Engineering, Faculty of Engineering, University of New South Wales, Sydney,
NSW 2052, Australia (e-mail: chang.liu17@unsw.edu.au; l.ge@unsw.edu.au).

Wei Xiang is with the School of Computing, Engineering and Mathematical
Sciences, La Trobe University, Melbourne, VIC 3086, Australia (e-mail:
w.xiang@latrobe.edu.au).

Zheyuan Du is with the School of Civil and Environmental Engineering,
Faculty of Engineering, University of New South Wales, Sydney, NSW
2052, Australia, and also with the Minerals, Energy and Groundwater
Division, Geoscience Australia, Canberra, ACT 2601, Australia (e-mail:
z.du@unsw.edu.au).

Qi Zhang is with the School of Engineering and Design, Technical Univer-
sity of Munich, 80333 Munich, Germany (e-mail: rachelqi.zhang@tum.de).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TGRS.2023.3339475, provided by the authors.

Digital Object Identifier 10.1109/TGRS.2023.3339475

outdoor Lidar semantic segmentation. Labeled Lidar datasets
have been created for training. The practical contribution is
that it can optimize disaster response by efficiently facilitating
predisaster information storage.

Index Terms— Deep learning, light detection and ranging
(Lidar), predisaster, semantic segmentation.

I. INTRODUCTION

THE frequency of destructive natural disasters is on the
rise due to the increasing occurrence of extreme weather

events attributed to climate change. Natural disaster man-
agement has gained significant global attention recently [1].
To avoid the disastrous and chaotic aftermath, pre-emptive
measures are valuable before the impact of a disaster. Predis-
aster information storage allows postdisaster decision-makers
to strategize rescue routes and determine suitable locations for
temporary housing, thus enabling swift disaster response.

As a component of predisaster information storage, the
retention of predisaster urban land cover visualization data
is invaluable for disaster analysis reconnaissance [2]. These
data should be stored and periodically updated to expedite
postdisaster analysis and management processes. However,
conventional in situ data collection methods have sev-
eral issues, including being labor-intensive, time-consuming,
costly, and potentially dangerous. Remote sensing technology
offers a swift and efficient alternative for urban land cover
visualization data collection due to its capacity to acquire
extensive data on a large scale with relative ease.

Light detection and ranging (Lidar) has recently gained
significant attention in remote sensing because of its 3-D
information and higher vertical accuracy with better pen-
etration than conventional photogrammetry. Compared with
conventional in situ urban data collection methods, Lidar
usually spends less time, which helps operators save time and
labor costs [3]. Due to the rapid development of deep learning,
there has been a burgeoning interest in its application to remote
sensing-based Lidar semantic segmentation in recent years [4].
Therefore, a deep-learning-based Lidar semantic segmentation
could solve rapid predisaster land cover visualization data
collection and storage.

Unlike 2-D imagery, Lidar point cloud data belong
to non-Euclidean geometry data. Therefore, semantic
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segmentation methods for 3-D data cannot simply be
decreased to 2-D segmentation. Reducing the dimensionality
from 3-D to 2-D inevitably results in the loss of information.
To design deep learning methods suitable for 3-D semantic
segmentation while retaining the inherent 3-D data, the
development of point-based networks began in 2017.

In 2017, PointNet directly took points as its input, which
was the first point-based network. It learns features with a
shared multilayer perceptron (MLP) [5]. Nevertheless, the
local structures and the mutual interactions between fea-
tures cannot be extracted by a shared MLP in PointNet [5].
To learn richer local geometry in point clouds and capture
a broader context for each point, several methods have been
introduced to develop PointNet, such as neighboring feature
pooling. In particular, PointNet++ was proposed soon after
the generation of PointNet to categorize points hierarchically
and progressively learn from larger local regions. It achieved
better results than PointNet according to the conducted exper-
iments [6]. Following PointNet++, Jiang et al. [7] introduced
a PointSIFT module to stack and encode the point information
from eight spatial orientations using a three-stage-ordered
convolution process.

Given the rapid advancements in point-based deep learning
methods for 3-D semantic segmentation, certain scholars have
commenced discourse on the topic of large-scale outdoor Lidar
semantic segmentation (LOLSS). For instance, RandLA-Net
was proposed for LOLSS as a lightweight network for saving
processing time [8]. It applies random point downsampling to
attain a high level of efficiency in memory and computation.
A local feature aggregation (LFA) unit was further proposed
to capture and retain geometric features. However, there is
still a lack of enough studies for large-scale scenarios. Most
advanced networks are still only designed for small or indoor
scenes [5], [6].

Moreover, there remains a significant gap in the full-fledged
development of semantic segmentation techniques aimed at
storing predisaster land cover information. Specifically, several
possible methods have not been fully discussed for disaster-
related research, and deep learning networks have not been
extensively trained to account for the potential occurrence
of natural disasters in the geographical areas highlighted in
the selected datasets. Therefore, there is a lack of efficient
and accurate Lidar semantic segmentation methods that can
classify predisaster large-scale land cover classification.

In order to solve these problems, this study aims to provide
a deep learning LOLSS network by creating a dataset tailored
to the targeted task to store the 3-D information of predisaster
large-scale outdoor land cover objects.

II. METHODOLOGY

A. Data and Study Extents

This study chose four own labeled places and one public
dataset to test the proposed network. The own labeled places
include Kapiti Coast, Tasman, Nelson, New Zealand, and
Kumamoto, Japan. These four places were chosen because
they are both tectonically active urban areas near the sea.
These sites present challenges for in situ observations and pose

TABLE I
ORIGINAL LABELED CLASSES OF THE DATA

multiple natural hazard risks [9]. Moreover, three of them have
already been the sites of significant natural disasters. Continu-
ous heavy rain caused severe landslips and flooding in Tasman
and Nelson in August 2022 [10], and a severe earthquake
occurred on April 16, 2016, in Kumamoto [11]. In this study,
we specifically chose datasets collected in proximity to the
timing of these floods and before the earthquake event.

The original labeled classes from these own labeled datasets
are listed in Table I. All unlabeled point clouds were ignored
during experiments. The original Lidar point clouds of these
places do not include color information, so this study needs
to add corresponding colors to Lidar data in the preprocessing
step. The color information of red, green, and blue (RGB)
bands from optical images is a viable choice for finishing this
task. Therefore, this study collected optical images from the
same places of the Lidar datasets to fuse 3-D Lidar and 2-D
images. The detailed preprocessing steps for each place are
introduced in Section II-B.

Lidar data and optical images with RGB bands of these
four places are shown in Table II. Sentinel-2 (S2) images
of all places were collected. KOMPSAT-3 (K3) images for
the 2016 Kumamoto pre-earthquake Lidar data were also
collected to test the influence of image resolution on the
performance of the proposed network (refer to Section II-D).
Since the Lidar data of the datasets were collected by different
organizations, their parameters are different. Considering this,
the Kapiti Coast, Tasman, and Nelson datasets were applied
for both deep learning training (and validation) and testing
stages, while the Kumamoto dataset was only utilized in the
testing stage to test the generalizability of the networks trained
with the other datasets.

Semantic3D is a large-scale open-source dataset. It was
chosen to compare the accuracy of the proposed method and
other well-known deep learning networks for Lidar semantic
segmentation.

Section II-A1 introduces detailed information on the three
datasets from New Zealand. Section II-A2 introduces the
Kumamoto dataset collected before the 2016 Kumamoto
Earthquake. Section II-A3 introduces the Semantic3D that is
applied in this study.

1) Kapiti Coast, Tasman, and Nelson in New Zealand: The
49 selected patches of point cloud data from New Zealand
were selected in this study, as shown in Fig. 1. The 26, 7, and
16 are from Kapiti Coast, Tasman, and Nelson, respectively.
The number of Lidar data was chosen because of considering
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TABLE II
DATA INFORMATION

Fig. 1. Locations of datasets in New Zealand: (a) Kapiti Coast; (b) Tasman;
and (c) Nelson.

the number of Semantic 3-D data [12] applied in RandLA-
Net [8] since this study is developed from RandLA-Net. The
training, validation, and testing data are shown in indicolite
green, olivine yellow, and sugilite sky colors in Fig. 1. The
dataset contains five classes labeled by experts from the
data provider, as shown in Table I, including ground, low
vegetation, medium vegetation, high vegetation, and buildings
[13], [14]. All these labels are kept in this study as the
information of all these classes is necessary for recovery plans.

This study chose S2 images for color fusion because it is
free and easy to access. After checking all S2 data with the
date near the dates of Lidar collection, the dates of S2 images
were chosen, as shown in Table II. The images of other dates
either contain several clouds or are in the dark.

2) Kumamoto Pre-Earthquake Dataset: A mainshock of the
7.0-MW Kumamoto earthquake struck on April 16, 2016. Four
types of pre-earthquake data in Kumamoto were utilized in
this study, as shown in Fig. 2, including a Lidar point cloud
[Fig. 2(a)], a building outline shapefile [Fig. 2(b)], an optical
image from K3 satellite [Fig. 2(c)], and an optical image
from S2 satellite [Fig. 2(d)]. The color from blue to red
shown in Fig. 2(a) represents the increase in elevation. The
original labeled classes in the Lidar point clouds were ground,
low vegetation, medium vegetation, and high vegetation. The

Fig. 2. Data in the Kumamoto pre-earthquake dataset: (a) point clouds;
(b) building outlines; (c) K3 image shown in RGB bands; and (d) S2 image
shown in RGB bands.

building class is an integral part of predisaster information
collection, but the original Lidar dataset did not have this
class, so the building footprint information was added to the
Kumamoto dataset during the preprocessing, which will be
introduced in Section II-B2. Optical images from two satellites
with different resolutions to test if the image spatial resolution
will influence the accuracy of the proposed network. K3 is
0.5 m per pixel, and S2 is 10 m/pixel.

3) Semantic3D Dataset: Semantic3D dataset is one of
the most popular open-source point cloud datasets for deep
learning semantic segmentation. Eight labeled classes from
this dataset were chosen in this study, including natural terrain,
high vegetation, low vegetation, buildings, hardscape, scanning
artifacts, and cars. Four point clouds were selected for the
network test according to the design of the RandLA-Net
backbone.

B. Data Preprocessing: Data Fusion of Lidar Data With
Satellite RGB Data

The main task of this step was to incorporate color infor-
mation into Lidar data. Although the Lidar coordinate systems
varied among different datasets, this study disregarded these
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Fig. 3. Workflow of Kapiti Coast data fusion with adding RGB information.

differences during training. However, it is essential to ensure
that the coordinate systems of satellite images and Lidar
data within the same dataset are consistent. Therefore, all
other data, regardless of whether they were in projected or
geographic coordinate systems, were transformed to match the
coordinate system of the Lidar data.

1) Preprocessing of the Three Datasets in New Zealand:
Some preprocessing steps were applied before training the
deep learning network, as shown in Fig. 3. Since the orig-
inal Lidar point data do not have colors, this study fused
2-D optical images and 3-D point clouds to obtain the color
point cloud using feature manipulation engine [15]. First, the
point clouds were loaded. Second, the color optical data were
reprojected to the same coordinate system as the Lidar. The
optical image was collected from S2, and only RGB bands
were applied in this study. Then, the point cloud and the RGB
image were fused to obtain the colorized point cloud.

2) Preprocessing of Kumamoto Pre-Earthquake Data: The
original noncolor Lidar dataset contains only four classes with-
out the building class. Since information about the building
class and colors is essential for this study, both color bands
and building outlines were fused into Lidar point clouds in
feature manipulation engine, as illustrated in Fig. 4.

The first fusion is adding building outlines in Lidar. The
coordinate system of building outline polygons was repro-
jected to the coordinate system of the Lidar data, and then,
point clouds in building outlines were classified as “building.”

The second fusion is adding color. K3 and S2 images were
reprojected to match the system of Lidar. Then, the reprojected
RGB bands from clipped optical images were fused with Lidar.
The fusion results were the reprojected colorized Lidar point
cloud dataset with the five classes.

C. Channel Attention and Normal-Based LFA Network

This study proposed a deep learning method called channel
attention and normal-based local feature aggregation network
(CNLNet) for LOLSS. The main improvements include adding
normal information and the channel attention (CA) mechanism
in the backbone.

CNLNet adds these two possible helpful approaches in the
backbone to increase the accuracy of LOLSS. Surface normal

Fig. 4. Workflow of Kumamoto pre-earthquake data fusion with adding the
building class and RGB information.

Fig. 5. Workflow of data preparation with adding surface information.

information is important in several point cloud applications.
The attention mechanism is widely confirmed effective in 2-D
or small-scale 3-D deep learning networks. However, they
are not always applied in large-scale predisaster scenarios.
Therefore, this study added these two to enhance the backbone
and developed a module in it.

1) Surface Normal Information Addition and Data Prepa-
ration: This section introduces how to calculate the surface
normal during data preparation. The collected, revised col-
orized Lidar data (refer to Section II-B) required further
processing for data preparation before the training stage.

Surface normal information is one of the essential properties
of a geometric surface, and it finds applications in various
research areas. For instance, in computer graphics, light ren-
dering depends on normal information to generate shadings
and other visual effects to look more realistic. Therefore, this
study evaluated the impact of surface normal information on
enhancing the accuracy of semantically segmenting large-scale
point clouds. The process of adding normal information
involves four main steps: data format transformation, voxel
grid downsampling, computation of normal estimation, and
data storage, as depicted in Fig. 5. Voxel grid downsampling
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Fig. 6. Architecture of the proposed with the amalgamation of the surface normal information and CA.

is necessary because using the original massive point cloud
data as inputs in the computer is impractical.

In the first step, in order to have the same data format
for all point clouds, the clouds with the “.las” format were
transferred to the “.ply” format. This is because the proposed
network was designed for processing point clouds in the “.ply”
version. The values of each color band in the “.las” format
were divided by 255 before transferring to the “.ply” clouds.
To calculate the normal on a point, the local surface must
be estimated to represent itself and its neighbors. Hence, the
coordinate values of each point were necessary. Since color
information was also needed in this study, both the coordinate
values and RGB color information were stored for the next
step.

In the second step, voxel grid downsampling was applied
to all points. The volume of the originally collected point
cloud data is exceptionally large in most situations. Thus,
the volume is always reduced by downsampling without
affecting the characteristics of a point cloud. This operation
can help to save processing time and avoid out-of-memory
during training networks. The grid size was 0.5 m in this
study.

Third, surface normal information was calculated. To add
surface normal information, this study applied Open3D,
an open-source Python library, to generate normals. This is
because Open3D has already encapsulated the function. The
built-in function “estimate_normals” finds K -nearest neighbor
(KNN) points within a radius and calculates the principal
axis of the adjacent points using covariance analysis [16].
The function chooses a point and its KNNs (i.e., 1 + K
points in total) to estimate a plane using the least-squares
method and then makes a vertical line of the plane through
that point, which is its normal vector. Specifically, the problem
of estimating the surface normal of a point is simplified as
an analysis of eigenvectors and eigenvalues of the covariance
matrix calculated from the nearest neighbor of the point.
In this study, the search radius was 0.1 m, and the maximum
nearest neighbor was 30 using KDTree search for neighbor-
hood search, which are default numbers in Open3D. Choosing

default numbers because these parameters are not the focus of
this study.

The normal orientation problem of surface normal cal-
culation should be noted. Two normal candidates with
opposite directions are produced from the covariance analysis
algorithm. Without knowing the global structure of geometry,
both can be correct, which could cause problems. Therefore,
Open3D tried to orient the normal to align with the original
normal if it existed. Otherwise, Open3D made a random guess.
Then, normal values were added to point cloud data.

In the fourth step, three types of outputs were stored,
as shown in the black rectangle of Fig. 5. In detail, after
producing the point cloud data from the third step, KDTree
files and projection files are also generated and stored for each
point cloud. Each KDTree file was named “XX_KDTree.pkl.”
KDTree files have the information of the nearest N points
around each downsampled point. Projection files have stored
the number of the downsampled points with the shortest
distance from each original point. The original points are the
points before the second step—downsampling. These numbers
were stored in files named “XX_proj.pkl.” Projection files are
necessary because point clouds need to be restored to the
original size after semantic segmentation for the downsampled
ones in the proposed network. The restoration needs these
numbers for nearest neighbor interpolation.

Following the above steps, the final outputs include col-
orized point cloud data in the “.ply” format, KDTree files,
and projection files. The information in point clouds contains
the RGB bands, three values of coordinate systems, and three
values of the corresponding normals.

2) Architecture of the Proposed CNLNet: The architecture
of the proposed CNLNet is shown in Fig. 6. It is a conventional
encoder and decoder architecture with skip connections. The
inputs contain three types of files, including point clouds,
KDTrees, and projected numbers of point clouds. The architec-
ture has four encoding and decoding layers. As shown in those
four encoding layers, only a quarter of the point features are
retained with the increased feature dimension after each layer
for downsampling. Random point sampling is applied for high
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Fig. 7. Architecture of the LFA module.

efficiency of memory and computation, as its computational
complexity is only O(1). After that, the point features are
upsampled gradually through a nearest-neighbor interpolation
in the four decoding layers [8]. The final output is obtained
through shared fully connected layers. The final output is the
predicted class of each point. To be noticed, this study adds
contents in red rectangles, including normal information and
CA in the LFA module. The details of the backbone including
LFA and CA are introduced as follows.

Datasets in New Zealand were applied for training, valida-
tion, and testing with the number of point clouds 38, 6, and 5,
respectively. Kumamoto data were only applied for the tests
because this area is too small to separate it into three parts for
training, validation, and testing.

3) RandLA-Net Backbone: The backbone of the proposed
network is RandLA-Net, that is, “random sampling and an
effective local feature aggregator” [8]. Although several net-
works showed promising results for small point cloud semantic
segmentation, most cannot directly scale up to large scenarios.
This is because of their high memory and computational
costs. The benefit of RandLA-Net is that it was designed
for large-scale point cloud semantic segmentation with less
memory and computation, which is suitable for predisaster
tasks. Therefore, this study chose it as the backbone.

RandLA-Net is a lightweight pointwise MLP network.
Point-based deep learning methods for semantic segmentation
can be roughly divided into pointwise MLP, point convolu-
tion, recurrent neural network (RNN)-based, and graph-based
methods [4]. MLP is a supplement of a feed-forward neural
network, including the input layer, the output layer, and the
hidden layers.

RandLA-Net designed an LFA module with shared MLP
preserving local geometric structures and other useful local
features. The LFA module has two key units: local spatial
encoding (LocSE) and attentive pooling (AP), as shown in
Fig. 7. The LocSE unit is applied for local geometric struc-
tures, and the AP unit is applied for saving those useful local
features. Their details are shown in Fig. 8. In the LocSE
unit, the KNN algorithm is utilized to find neighbor points
based on the pointwise Euclidean distances. K represents the
number of neighbor points. K is 16 in this study. After finding
the neighbor points, MLP is applied to encode the relative
point positions between every center point and its neighboring
points. Hence, the local geometric structures are encoded for
every center point to augment neighboring point features by
LocSE. After that, the AP unit is applied to aggregate the
neighboring point features. This unit applied shared MLP

TABLE III
DESIGNED NETWORKS OF ABLATION STUDY

followed by SoftMax function to learn a unique attention score
for every feature. Then, the features are weighted and summed.
RandLA-Net stacks multiple LocSE and AP units with a
skip connection as a dilated residual block. In order to avoid
overfitting during the training stage and keep computation
efficiency, only two sets of LocSE and AP are stacked [8].

4) CA in CNLNet: CA was added to the proposed net-
work to examine its effect on the final output. Adapting the
previous work of a multibranch network [17], CA applied
this study that deduces the channel number to 1 and then
recovers back to the original number. With this operation,
the relevance between each channel and key information in
channels can be more obvious and easier for the computer to
learn. The benefit of this attention mechanism is that it can
usually help to achieve significant improvement in accuracy
in terms of 2-D semantic segmentation [18]. Moreover, since
the accuracy needs to increase and LFA does not contain CA,
this study applied CA in 3-D semantic segmentation to test its
effects.

The novel proposed network consists of LFA and CA with
surface normals. CA is added into the LocSE unit of the LFA
module as shown in red rectangles of Fig. 8. The details are
explained in Fig. 9. K and d represent the number of neighbor
points and the feature dimension, respectively. First, the matrix
is transposed from (K , d) to (d, K ). Then, the transposed
is multiplied by the original matrix. The dimension of the
multiplication result is squeezed to 1 by max pooling and
restored to d by copying and subtracting an activation function.
The multiplication of the original matrix and the restored
one is operated after that. Last, the attentive result is the
sum.

D. Ablation Studies on Four In-House Labeled Datasets

The design of an ablation study with five evaluation metrics
for detecting the impact of information and CA on segmenta-
tion is introduced in this section.

Four networks were tested in the ablation study, as shown
in Table III. They were designed to demonstrate the benefit of
adding surface normal information or CA in the backbone. The
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Fig. 8. Structure details of the CA added to the modified LocSE and AP.

Fig. 9. Details of CA.

backbone added both normal information and the CA block is
Network 1. The backbone with only normal information or CA
was designed as Networks 2 and 3. The original RandLA-Net
backbone network was tested at last, which is Network 4. Each
point in data is represented by its coordinates, normal, and
color information in Networks 1 and 2. It is represented by
the coordinates and colors in Networks 3 and 4.

Five evaluation metrics were chosen. These five metrics
were calculated for testing the segmentation performance of
each network, including true positive (TP), false negative (FN),
false positive (FP), intersection over union (IoU), and semantic
segmentation accuracy (SSA). The summation of TP, true
negative (TN), FN, and FP is the whole number of points
in one point cloud. TP represents a point whose tested label
is the same as its true label. TN in each class indicates the
points that both its tested and true labels do not belong to that
class. In the results of a class, FN refers to the point that its
tested label does not belong to this class, but its true label
does. On the other hand, FP in results of a particular class
means the tested result is in this class but its true label does
not.

The IoU shown in (1) is a mathematical way to choose
the best network by checking the degree of similarity of the

output produced by the proposed networks with the ground
truth. The higher the IoU value, the better performance of
the chosen network. After observing initial results, this study
predominately discussed IoU rather than the other four metrics
(i.e., TP, FN, TP, and SSA). One reason is that IoU contains
TP, FN, and FP. Discussing IoU would be more helpful for
data analysis than only analyzing a single TP, FN, or FP.
Another reason is that several relevant articles utilized IoU
as the metric [10], [18].

SSA shown in (2) was not considered as the main metric
mainly because a high SSA score does not necessarily indicate
favorable result in this study. The number of each point cloud
is huge. If TP, FN, and FP were all very low in one class,
TN would be very high in this class. In such cases, even
if the SSA approaches 1, it would not necessarily mean
that the results are optimal. Hence, SSA serves only as a
supplementary metric for reference.

Mean IoU (mIoU) was also calculated for multiclass-based
semantic segmentation. The mIoU represents the average
between the IoU of all segmented classes over all the images
of each tested point cloud. All networks were trained ten times,
and the network that had the highest mIoU value for validation
data was chosen to be applied to the test data. It shows the
correctly segmented area over all the areas that the network
segmented

IoU =
TP

TP + FP + FN
(1)

Sematic Segmentation Accuracy =
TP + TN

TP + TN + FP + FN
.

(2)
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Fig. 10. Visualization results of ablation study for Kapiti Coast, Tasman, and Nelson datasets.

Besides ablation studies of the proposed network, this study
tested the influence of 2-D image resolution on segmentation
results. The Kumamoto pre-earthquake dataset was applied for
this test. This was because this dataset has two optical images
with different resolutions.

E. Comparison of the Public Semantic3D Dataset

To detect the performance of the proposed network, these
four networks were trained and tested on the public dataset
Semantic3D [12]. Only coordinates and RGB information with
eight labeled classes from the dataset were used to train
and test different methods. Some well-known and state-of-
the-art networks were also tested for comparison, including
PointNet [5], PointNet++ [6], and ShellNet [19]. The tested
point clouds were chosen according to the selected test datasets
provided by Hu et al. [8], which include four point clouds.

III. RESULTS

This section presents the semantic segmentation results of
the ablation studies, which contain results of the four networks
using five metrics with the test data.

As mentioned in Section II, this study set four datasets
as test data. Five classes were tested, including buildings,
ground, low vegetation, medium vegetation, and high vege-
tation. Visualization results and quantitative results are stated
in this section. Five point clouds were tested. The first two
tested point clouds are from Kapiti Coast. The third is from
the Tasman dataset, and the last two are in the Nelson dataset.

A. Hardware and Environment

In this study, one Nvidia RTX 2080Ti GPU card,
CUDA 11.3, Python 3.6, and TensorFlow 1.15 were applied.

Since TensorFlow versions 1 and 2 have huge differences,
it would be more convenient to use TensorFlow version 1 to
fit its version in the original RandLA-Net backbone. “Batch
size during training” is 2, and “Number of steps per epoch”
is 1000. It took 8 h to run in the GPU version with 100 epochs.

B. Results on New Zealand Datasets

Five patches of point clouds were chosen as the test data
from the three New Zealand datasets. Their visualization
results are shown in Fig. 10. Red, blue, dark green, bright
green, and orange represent buildings, ground, low, medium,
and high vegetation, respectively. Based on the visual observa-
tion, compared with the ground truths of the point clouds, most
buildings were recognized correctly, but most medium and
high-vegetation points were mistakenly recognized as ground
and low-vegetation points.

Results for each class with the five metrics are shown
in A.TABLE I of supplemental materials. The first class is
the bare-ground class. The proposed Network 1 performed
best for the ground segmentation according to IoU results.
Networks 2 and 3 are nearly the same as the backbone.

The following three classes are the three vegetation classes,
including low, medium, and high. Medium-vegetation seg-
mentation results performed best among these three classes
in all networks according to their IoUs. In all low-vegetation
results, Network 4 performed best among the four networks
with the highest IoUs. The highest IoUs of medium- and
high-vegetation results were also the results of Network 1.
IoUs of low vegetation are always the lowest among the three
vegetation classes.

The fifth class is the building class. Network 1 always
performs best among all networks, but Networks 2 and 3 do
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Fig. 11. Visualization results of ablation study for 2016 Kumamoto pre-earthquake data.

not show any significant advantage over the backbone of
Network 4. IoUs of the tested point clouds from the Kapiti
Coast dataset in CNLNet are very high, which are 0.95 and
0.92, respectively. They are the top two highest among all
tested point clouds with the top two highest TP values.
A probable reason for this is that the number of point clouds
belonging to the building class in the Kapiti Coast dataset
accounts for a significant proportion of the total number of
building points.

After comparing the performance of each network for every
class, the result differences between the five classes should also
be mentioned. Compared with the other classes, the building
class always has the highest IoU among the five classes in the
results of each network, which most are higher than 0.90 in
some test results. It is convinced that the RandLA-Net back-
bone is suitable for building detection. Segmentation of ground
and low vegetation performed worst in results according
to IoUs. The likely reason is data imbalance. The numbers
of Lidar points in these classes are lower than those of
others.

C. Results of 2016 Kumamoto Pre-Earthquake Data

The 2016 Kumamoto pre-earthquake point cloud dataset
with both high and low resolutions of optical satellite images
was tested. The number of total points in this point cloud
is 1 438 042. As mentioned in Table II, the resolution of
the high-resolution image is 0.5 m/pixel, and that of the
low-resolution image is 10 m/pixel. Fig. 11 shows their visual-
ization results. Five classes were segmented. Red, blue, light
green, bright green, and orange represent buildings, ground,
low vegetation, medium vegetation, and high vegetation,
respectively. It can be easily found that most high-vegetation
points were mistakenly segmented as other classes, such as
low and medium vegetation.

Quantitative results of the 2016 Kumamoto pre-earthquake
data are shown in A. TABLE II of supplemental mate-
rials. The results of all the five classes are listed
in it.

The first test class is the ground class. All networks per-
formed not so well for this class no matter with high or low
resolution. The number of FP points is too high, no matter
which network. The second class is the low-vegetation class.
Similar to segmentation results for the ground class, IoUs
were nearly zero for all networks. Thousands of points were
detected as low vegetation wrongly. In other words, the FP
values of these two classes are high. Moreover, nearly no
TP points have been detected, as shown in the results of
the ground and the low-vegetation classes. The first probable
reason is that the information difference of segmentation labels
between the training data and these test data is large, which
are from different datasets. The second possible reason is that
the points from those two classes are too few to be detected
in these test data.

The next two classes are medium and high vegetation.
Although their IoUs were also nearly zero, the number of
their TP points was much higher than those of ground and low
vegetation. Besides IoUs, SSA results for medium vegetation
were higher than those for high vegetation, while the numbers
of FP points in medium-vegetation results were higher than
those in high vegetation for all these three networks.

The last class is the building class. The highest IoUs were
the building class results among all five detected classes in
all networks. This might be because the number of points
labeled as buildings are high in the training dataset. According
to IoUs, Network 3 performed the best, which shows that its
generalizability for building segmentation is the best of these
networks.

Among all segmented classes, the generalizabilities of all
tested networks in the ablation study are not ideal except
for the building class. There are some possible reasons.
Although the two datasets both have these five labeled
classes and colors, the labeled information of the classes in
the 2016 Kumamoto pre-earthquake dataset is much different
from those of the New Zealand datasets. As mentioned in
Section II-C, only New Zealand datasets are applied for train-
ing due to the small area of 2016 Kumamoto pre-earthquake
data.
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D. Results on Semantic3D

The results are listed in Table IV. Network 3 has the highest
mIoU of the tested eight classes. Networks 1–4 all achieve
acceptable results compared with the other networks.

However, Network 1 performed slightly worse than Net-
works 2 and 3 after adding both normal information and
CA in the backbone though it performed best in some class
results. The probable reason is that Network 1 was overfitted.
Overfitting might exist if the network is too complicated.
In total, the results demonstrate that both surface normal
information and CA have helped with large-scale outdoor
point cloud semantic segmentation based on the RandLA-Net
backbone. Each of them can improve mIoU by 1%–2% than
the backbone. This might be due to its overly complicated
structure. The network’s performance with adding both CA
and surface information (Network 1) is not as good as the
network with only adding one.

IV. DISCUSSION

This study designed ablation studies to demonstrate the
benefits of adding surface normal information and CA mech-
anism in LOLSS for predisaster information classification and
storage.

IoUs of the building class were always the highest in the
results in all own labeled datasets among all tested networks.
This reflects that these networks are all suitable for segmenting
buildings. Besides that, in the test of the Kumamoto dataset,
the building segmentation IoUs were significantly higher than
the results of other classes. The training and validation steps
did not contain Kumamoto data. Hence, the generalizability of
the trained network for building segmentation is the highest.
Moreover, the results for the Kumamoto point clouds with
different resolutions of optical satellite images were very
similar. It can be concluded that the optical satellite image
resolutions may have little influence on the performance of
the proposed model.

In addition to the analysis of the IoU of each class, the
overall IoU of all classes should be discussed. As mentioned
in Section II-D, the mIoU of each network was calculated to
analyze its performance considering the results of all classes.
The mIoU results for all classes in the five tested point clouds
are shown in Table V. It should be noted that mIoUs of
Kumamoto data are not discussed because IoU values of the
other four classes are nearly zero except IoU of the building
class due to the poor generalizabilities of these four classes.
Table V shows that mIoU values of Network 1 are always the
highest in these networks for all tested point clouds. Moreover,
the mIoUs of Network 2 are higher than those of Network 3,
so it shows that adding normal information might be more
helpful than CA to semantic segmentation.

Other metrics also demonstrated that the designed network
is suitable for segmenting buildings from the background. The
TPs of the building class in A. TABLE I and A. TABLE II
of supplementary documents are very high. The SSA of the
building class in A. TABLE I is nearly 1, and its SSA in A.
TABLE II is the highest among SSAs of all classes.

TABLE IV
RESULTS OF DIFFERENT METHODS ON SEMANTIC3D

TABLE V
MEAN IOU OF THE NEW ZEALAND TEST DATASETS

The results for Semnatic3D also demonstrated that the
designed network is suitable for predisaster land cover object
segmentation from the background.

Based on the abovementioned discussion, it can be con-
cluded that surface normal information and CA can improve
segmentation accuracy. The proposed CNLNet can improve
mIoU by 1%–11% compared to the backbone in different sce-
narios. Besides that, in contrast to the RandLA-Net backbone
and other well-known networks, each of these two types of
feature information (Networks 2 and 3) can help to improve
the accuracy of semantic segmentation. The network with
only adding surface information (Network 2) is more effective
between these two types of networks.

V. CONCLUSION

In this study, a network named CNLNet was proposed
to enhance the precision of deep learning-based LOLSS for
predisaster land cover information segmentation and preser-
vation. Surface normals and CA were added to this network.
A labeled large-scale land cover Lidar dataset was first created
in this study with considering potential natural disaster occur-
rences in the geographical areas highlighted in the selected
datasets, including Kapiti Coast, Tasman, and Nelson in New
Zealand and Kumamoto in Japan. Optical satellite images
were integrated as inputs. Compared with the state-of-the-
art RandLA-Net backbone and other renowned networks, the
findings demonstrate the benefits of surface normal infor-
mation and CA applied to LOLSS. Normal information can
provide more feature information, and CA can emphasize key
information in channels, so they can improve the accuracy
of segmentation results. Furthermore, the proposed network
exhibits the strongest generalizability for the building class.
Interestingly, the network that incorporated either surface nor-
mals or CA alone slightly outperformed the one incorporating
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both during the test on the open-source Semantic3D dataset.
The likely reason is that overfitting might occur if a network
is too complex. With the potential to save labor and mitigate
in situ risks, the practical implication of this method lies
in its applicability for urban land cover segmentation from
3-D Lidar point clouds, particularly for building segmentation.
The outcomes can be utilized for predisaster urban visual-
ization data information storage and update, thus expediting
postdisaster emergency response efforts. Further research is
suggested to find an approach to improve the segmentation
accuracy of separating classes other than buildings, such
as low, medium, and high vegetation. The normal to the
hyperplane is an important vector that separates different
classes of points. An incorrect normal vector would result in
a poorly performing classifier. Therefore, the setting of the
direction of surface normal could also be discussed in future
studies.
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