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Abstract— Radar imaging algorithms generally exploit linear
models of the electromagnetic scattering phenomenon. This
assumption leads to qualitative and computationally effective
data inversion schemes, which only account for direct scattering
from targets, whereas multipath signal contributions are
neglected. As a result, multipath ghosts, i.e., false targets
reconstructed at positions where no real target exists, affect
the radar images, thus preventing a reliable interpretation
of the observed scene. This article proposes a fully data-
driven deep learning (DL) approach based on a convolutional
neural network (CNN) and microwave tomography to face this
challenge. The approach achieves multipath ghost suppression
for the case of small targets in terms of probing wavelength.
In the proposed training scheme, the tomographic image
affected by ghosts represents the input of the network while
a ghost-free reconstruction is the output. Numerical simulations
addressing the detection of metallic rebars via ground penetrating
radar (GPR) are presented. As shown, the proposed ghost
removal strategy is effective and robust to variations of the
scenario parameters on which the network is trained. Finally,
an experimental validation shows the effectiveness of the
proposed strategy even in operative conditions.

Index Terms— Convolutional neural network (CNN), inverse
scattering problems, microwave tomography, multipath ghosts,
radar imaging.

I. INTRODUCTION

RADAR imaging exploits electromagnetic signals to
characterize the investigated scene [1]. This technology

has practical implications in a broad range of applications,
including remote sensing [2], subsurface imaging [3], [4],
biomedical imaging [5], through-wall imaging [6], [7], [8],
passive radar imaging [10], [11], and target localization and
tracking [8], [9].

In most cases, the raw radar data are not easily interpretable
and a focusing step is mandatory to obtain a reliable image
of the investigated domain. Focusing algorithms are mostly
based on linearized models of the electromagnetic scattering
phenomenon [12]. Popular examples include delay and sum
beamforming [13], [14], migration [15], [16], diffraction
tomography [17], [18], linearized microwave tomography
approaches (e.g., see [4], [19], [20], [21]), and sparsity and
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compressed sensing algorithms [22], [23], [24], [25], [26],
[27]. The aforementioned algorithms are known to provide
only qualitative information about the probed targets in terms
of position and approximate shape. However, unlike nonlinear
inversion methods (e.g., see [28]), they are very efficient
from the computation viewpoint, robust to noise on data, and
uncertainness about the reference scenario, and they do not
suffer from reliability problems caused by local minima [29].

A common feature of linear radar imaging strategies
is the fact that they model only direct scattering returns
from the targets, whereas multipath contributions due
to target–environment and target–target interactions are
neglected. As a result, when focusing the radar data with a
linear algorithm, the resulting radar images can be affected
by false targets, i.e., multipath ghosts, which completely
impair the reconstructions [30]. In this respect, some ghost
mitigation/identification strategies have been proposed based
on subarray processing [30], [31], [32], [33], hidden Markov
model [34], imaging dictionary [35], rotating array [36], and
Hough transform [37]. It should be stressed that, under a priori
knowledge of the scenario, multipath interactions between the
target and the surrounding environment can also be exploited
to enhance the imaging performance [38], [39], [40], [41],
[42], [43].

In recent years, deep learning (DL) techniques, originally
developed for image processing and computer vision tasks,
are gaining increasing attention in the radar community
due to their capability to solve effectively different tasks
(e.g., detection, localization, classification, and denoising).
As well known, these data-driven methods behave as universal
approximators, i.e., they use training data to learn mapping
a given input into a desired output. A representative but
nonexhaustive list of research/survey papers in this field is
given in [44], [45], [46], [47], [48], and [49].

In this article, we investigate the performance of the
convolutional neural network (CNN) U-NET, originally
developed for biomedical image segmentation [50] and later
applied to inverse imaging problems [51], [52], to achieve
multipath ghosts suppression in scenarios where the targets
are small in terms of probing wavelength. Despite the possible
generalization of the proposed clutter filtering strategy in
different contexts (e.g., through-wall imaging), here we focus
on the detection of metallic rebars via ground penetrating
radar (GPR). This problem represents an interesting test
bed since the targets are usually located very close to
each other, and thus, the mutual interactions between them
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Fig. 1. Geometry of the radar imaging problem.

significantly affect the image quality. In the frame of GPR
data processing, various machine/DL strategies have been
recently proposed to characterize buried targets [53], [54],
[55], retrieve permittivity maps [56], or perform decluttering
of raw radargrams [57], [58], [59], [60]. As for decluttering,
the available DL strategies do not focus on target–target
interactions. Conversely, as a further novel contribution, the
DL strategy here proposed works on tomographic images
instead of radargrams. The network is trained on full-wave
simulated data by taking into account different possible
scenarios occurring in real applications. The effectiveness and
robustness of the strategy are assessed on simulated data first
and after through experimental tests.

This article is organized as follows. Section II describes
the mathematical formulation of the radar imaging problem.
Section III recalls the U-NET architecture and provides
details on its implementation as well as on the dataset
generation. Numerical and experimental results are reported
in Sections IV and V, respectively. Conclusions follow in
Section VI.

II. RADAR IMAGING FORMULATION

Let us consider the 2-D scenario shown in Fig. 1 where N
perfectly conducting circular scatterers are located in a lossless
and homogenous dielectric medium with relative dielectric
permittivity εrs. The scene is probed by a monostatic GPR,
i.e., by a transmitting (Tx) and receiving (Rx) antenna pair
located at r s and moving along the measurement line 0 at
z = 0. The antennas are modeled as infinite electric line
sources directed along y (TM polarization) and operating in
the angular frequency band � = [ωmin, ωmax]. We denote
with rn and rm the positions of target n and m, respectively.
Moreover, r is the position of a generic point within the
investigation domain D.

The targets are thin cylinders, i.e., their radius r̃ is small
in terms of the probing wavelength. In this case, they can be
approximately treated as point targets and their scattered field
can be written as

Es
(
r s, ω

)
≈ E lin

s

(
r s, ω

)
+ Emult

s

(
r s, ω

)
(1)

where E lin
s accounts for the direct scattering contributions and

Emult
s refers to the multipath due to the mutual interactions

between the targets. By considering only the first- and

second-order contributions, (1) is rewritten as [30]

Es
(
r s, ω

)
≈

N∑
n=1

ane− j2k Rn +

N∑
n,m=1
n ̸=m

bnme− jk(Rn+Rm+Rnm ) (2)

where k = (ω/c) is the propagation constant in the
medium (c is the wave speed); an is a complex coefficient
accounting for the impinging field; Rn,m = |rn,m − r s | are the
distances between the measurement point r s and the targets n
and m, respectively; Rnm = |rm − rn| is the distance between
targets m and n, and bnm is the amplitude of the multipath
term.

The linear model accounts only for the direct scattering
contributions and expresses the scattered field Es as

Es
(
r s, ω

)
≈

N∑
n=1

ane− j2k Rn . (3)

By adopting the linear distribution approach in [61], [62],
and [63], (3) is rewritten as

Es
(
r s, ω

)
=

∫
D

e− j2k|r−r s |γ (r)dr = Lγ (4)

where the unknown

γ (r) =

N∑
n=1

δ(r − rn) (5)

is the superposition of Dirac δ distributions having the support
coincident with the targets’ position.

Therefore, the radar imaging problem is formulated as
the inversion of the linear integral equation in (4), where
the operator L acts on a distribution space. An extension
of the singular value decomposition (SVD) approach to the
regularized inversion of linear operators acting on distribution
spaces has been reported in [61], [62], and [63].

A truncated SVD (TSVD) inversion strategy is exploited
and the retrieved solution is expressed as [64]

γ̃ =

Pt∑
p=1

⟨Es, u p⟩

σp
vp. (6)

In the formula above, {u p, σp, vp}
∞

p=1 is the singular
spectrum of the operator L in (4), where σp are the singular
values, u p are the singular functions in the data space, and
vp are the singular functions in the unknown space. The
truncation index Pt acts as a regularization parameter and is
fixed in such a way as to achieve a suitable tradeoff between
resolution and stability of the solution. The amplitude of the
retrieved solution γ̃ , as normalized to its maximum value,
defines a spatial map, here referred to as a tomographic image
and denoted by I , wherein the targets appear as focused spots.

It is worth pointing out that, by inverting the data in (1) via
TSVD, the retrieved solution is written as

γ̃ = γ̃ lin
+ γ̃ mult

=

Pt∑
p=1

〈
E lin

s , u p
〉

σp
vp +

Pt∑
p=1

〈
Emult

s , u p
〉

σp
vp. (7)
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Fig. 2. Block diagram of the U-NET architecture for ghost removal in tomographic images.

Therefore, the tomographic image defined by (7) accounts
not only for the linear term γ̃ lin but also for the multipath
one γ̃ mult, which is responsible for the presence of multipath
ghosts affecting the reliability of the image.

The suppression of the multipath ghosts is the main scope
of the DL strategy detailed in Section III.

III. DEEP LEARNING-BASED GHOST FILTERING

A. U-NET Architecture

U-NET is a CNN characterized by a symmetric
encoder–decoder architecture [50]. According to Fig. 2, the
encoder (left side) extracts features from the input cluttered
image I through a series of convolutional and pooling layers
that gradually reduce data dimension while increasing the
number of feature maps. The decoder (right side) provides
a ghost-free image Î from the encoded features through
the use of a series of upsampling and convolutional layers
that gradually increase the spatial resolution of the encoded
features while reducing the number of feature maps. The
network architecture is organized into five levels and is
analogous to the one presented in [51]. In the encoding
path, the input image I with size 128 × 128 undergoes a
series of three 3 × 3 convolutions, each one followed by
a batch normalization (BN) and rectified linear unit (ReLu)
activation function (red arrows in Fig. 2). Each convolutional
layer extracts several feature maps that increase in the lower
network levels. Note that the image size is not decreased after
each convolution operation because zero padding is adopted.
A 2 × 2 max pooling (violet arrows) halves the spatial
dimension of each feature map when passing from one level

to the subsequent one. From the second level up to the bottom
one, the number of convolutions decreases to two per level,
each one still followed by a BN, ReLu activation function,
and max pooling. A dropout layer (light blue arrow) randomly
setting to zero a given percentage of the layer inputs [65] is
exploited between the fourth and fifth levels (in both encoding
and decoding paths) to prevent the network from overfitting.
At the bottom level, the size of the feature maps is equal
to 8 × 8.

The ascending path of U-NET starts with a 2 × 2
upsampling operation that doubles the size of each feature map
followed by BN and ReLu (green arrow). Half of the feature
maps are stacked (yellow arrow) with the corresponding
cropped feature maps coming from the descending path, and
then, a set of two 3 × 3 convolutions, BN, and ReLU is
applied. Following this logic, it is possible to come back to
the first network level. Here, a 1 × 1 convolution is applied
to transform the feature maps into a single image Ĩ , which is
subtracted from the input image I via the skip connection.
In this way, residual learning is performed to mitigate the
vanishing gradient problem [66]. In other words, the network
learns to image the ghosts through the feature map Ĩ , which
is subsequently subtracted from the input image to perform
ghosts’ filtering.

B. Learning Strategy and Implementation Details

The network is trained by providing a dataset consisting of
image pairs (I, I gt), where I is the image with ghosts and
I gt is a ground truth ghost-free image. As stated in Section II,
the radii of the rebars are small in terms of the wavelength;
therefore, their reconstruction can be approximated in terms
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TABLE I
U-NET TRAINING OPTIONS AND HYPERPARAMETER SETTINGS

of the system point spread function (PSF). More specifically,
if N rebars are located at positions rn , n = 1, . . . , N , the
ghost-free image I gt can be formulated as the superposition
of the TSVD-based PSFs located at the targets’ positions, i.e.,

I gt(r) =

∣∣∣∣∣∣
N∑

n=1

Pt∑
p=1

vp(r)v∗

p(rn)

∣∣∣∣∣∣ (8)

where ∗ denotes the conjugation operation. Note that assuming
as ground truth, the image defined in (8), as normalized to its
maximum value, allows us to facilitate the U-NET training.
The PSFs, indeed, look more similar to the input tomographic
reconstructions than the images showing a collection of point
scatterers located at the targets’ positions.

The loss function minimized during the training is half the
squared error averaged over the mini-batch

loss =
1
P

P∑
p=1

1
2

Q∑
q=1

∣∣ Î pq − I gt
pq

∣∣2
(9)

where Q = 128 × 128 denotes the number of pixels in the
images Ip and I gt

p , and p linearly indexes the mini-batch with
size P.

The training options and hyperparameters’ settings are
summarized in Table I. Specifically, the ADAptive Moment
estimation (ADAM) optimizer is chosen to operate with data
mini-batches of size 4. An adaptive learning rate halving every
ten epochs is set and the clipping value for the gradient is
equal to 0.02. L2 regularization with parameter 1e-4 is set to
limit network overfitting and data shuffling is carried out every
epoch up to a maximum number of 80 epochs.

C. Dataset Generation

A synthetic dataset used for training, validation, and testing
of U-NET is built by running 2-D simulations with the
full-wave electromagnetic solver GPRMax based on the finite-
difference time-domain (FDTD) method [67]. The goal of the
simulations is to reproduce possible scenarios arising when
performing GPR prospections on media containing metallic
rebars. Fig. 3 shows the reference geometry used for the
generation of the dataset. It is assumed that metallic rebars
have the same radius r̃ and are all located at the same depth d
from the air–medium interface. Moreover, x0 is the horizontal

Fig. 3. Reference geometry considered for generating the synthetic dataset.

offset between the first measurement point and the first rebar,
while 1reb is the spacing between the rebars’ centers. The
measurement line at the air–medium interface (z = 0 cm) is
50 cm long and sampled with a uniform step 1 = 2 cm.
At each point, a Ricker wavelet with a center frequency
of 2 GHz is radiated into the medium and the received
radar echo is recorded over the time window [0, 20] ns. The
investigation domain D = [0, 50] × [0, 30] cm2 is discretized
into square cells with a size of 0.5 cm.

To ensure a sufficiently large diversity of the investigated
scenarios, the electromagnetic and geometrical parameters
involved in the simulations are varied as follows:

1) five random values for εrs uniformly chosen in the range
[3, 10];

2) three different values of the electric conductivity of the
medium, i.e., σs = 0.001, 0.005, 0.01 S/m;

3) five random values of rebars’ depth d uniformly chosen
in the range [5.0, 15.0] cm;

4) six values for the rebars’ spacing 1reb uniformly spaced
in the range [6.0, 16.0] cm;

5) three random values for the offset x0 uniformly chosen
in the interval [5.0, 10.0] cm.

The rebars are modeled as cylindrical PEC targets with a
radius r̃ = 0.4 cm. The combination of parameters x0 and
1reb results in a number of rebars N variable in the range
[3, 6]. Moreover, the combination of all the aforementioned
geometrical and electromagnetic parameters produces a dataset
of 1350 samples. This dataset is partitioned as follows:
1080 samples are used for network training, 135 samples are
used for validation, and the remaining 135 samples are for
testing. It is stressed that the dataset generation considers
a realistic range of parameters arising in real GPR surveys.
For instance, the electromagnetic properties (permittivity and
conductivity) of the hosting medium can model different
types of materials such as soil and concrete (see [3]). The
geometrical properties of the rebars are also chosen by
accounting for parameter values found in real-life applications.

To generate the tomographic image I , the raw radargrams
are first processed in the time domain to remove the direct
coupling between the antennas and the reflection from the
air–medium interface. More specifically, after a zero-time
setting at 0.7 ns, a time gating is performed by setting to zero
the early time response of the radargram up to 1.4 ns. After, the
filtered data are transformed in the frequency domain over the
interval [1000, 3000] MHz with a step of 50 MHz and inverted
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via TSVD. The TSVD regularization parameter Pt in (6) is set
in such a way as to filter out the singular values lower than
20 dB with respect to the maximum one. As regards the ground
truth image I gt, (8) is evaluated by considering the rebar
centers as the positions of the corresponding point targets.
It must be pointed out that, based on the adopted discretization
step of the investigation domain D, the dimension of the
images I and I gt is equal to 101 × 61. Therefore, a resampling
based on a bicubic interpolation is carried out to convert the
images into the 128 × 128 format required by U-NET (see
Fig. 2). Both images I and I gt are normalized with respect to
their maximum.

D. Testing

Different metrics are adopted to evaluate quantitatively the
performance of the trained network. In particular, the error
between a predicted image Î in the test dataset and the
corresponding ground truth I gt is expressed in terms of the
root-mean-square error (RMSE)

RMSE =

√√√√ 1
Q

Q∑
q=1

∣∣ Î q − I gt
q

∣∣2
(10)

and mean percentage error (MPE)

MPE = 100

∑Q
q=1

∣∣ Î q − I gt
q

∣∣2∑Q
q=1

∣∣I gt
q

∣∣2 . (11)

A further figure of merit quantifying the overall enhance-
ment in terms of signal-to-clutter ratio (SCR) is the
improvement factor (IF)

IF = 10 log10

(
Ptarget,output/Pclutter,output

Ptarget,input/Pclutter,input

)
(12)

where Ptarget is the power in the regions of the rebars (target
power) and Pclutter is that outside (clutter). The notations input
and output refer to the image at the input and the output of
the network, respectively. The complete definition of the IF
parameter is available in [30] and is skipped here for brevity.
The regions of interest for the computation of target and clutter
powers are squares centered on the rebars and having sides
equal to 4r̃ .

E. Computation Details

The tomographic inversion algorithm is implemented under
MATLAB 2020b on a Desktop PC equipped with an Intel
Xeon Gold 6136 CPU (3.0-GHz clock frequency) and 256-GB
RAM. The computation time required by tomographic imaging
is due to the scattering operator L in (4) and its SVD, which
take about 1 and 2.4 s, respectively. These quantities need to
be calculated only once for every sample in the dataset. The
formation of a tomographic reconstruction via TSVD is also
very fast and takes about 0.02 s.

The network is trained and evaluated by using the MATLAB
Deep Learning Toolbox on an NVIDIA Quadro GPU graphic
processor equipped with 2304 CUDA1 cores and 8-GB

1Registered Trademark.

Fig. 4. Trend of training and validation loss versus number of iterations.

GDDR6 memory. The computation time involved in the
training stage strongly varies with the size of the dataset (see
Section IV). On the other hand, the time required for testing
varies linearly with the size of the test dataset. In particular,
the time needed by the network to produce the output from
a single tomographic image at the input is very small and
approximately equal to 0.2 s.

IV. NUMERICAL TESTS

A. Network Trained With Noiseless Data

The network is trained using the 1080 images dataset
achieved from noiseless data. Fig. 4 shows the training
progress in terms of training and validation loss versus the
number of iterations. As can be observed, the curves are
consistent and the loss values almost converge after 21 600
iterations for a total computation time of about 1.2 h.

The images shown in Fig. 5 allow visualization of the
network operation through five samples randomly chosen from
the test dataset. The first, second, third, and fourth rows
represent the inputs, the learned feature maps, the outputs, and
the ground truth images, respectively. As expected, the input
tomographic images are corrupted in a more or less severe
way by the presence of multipath ghosts. In some cases (e.g.,
test 1), the ghost targets are intense and very close to the
true targets (black circles), thus becoming indistinguishable.
It is worth noting that the learned feature maps shown in the
panels on the second row are characterized by the presence
of minima in correspondence with the true rebars’ positions
and this means that the network learns how to reconstruct
the ghosts. As a result, the learned feature maps can be
effectively subtracted from the cluttered input tomographic
images producing ghost-free reconstructions. The effectiveness
of the ghosts’ filtering is also confirmed by the good agreement
with the corresponding ground truth images.

The graphs plotted in Fig. 6 show the trends of the RMSE
(left panel), MPE (middle panel), and IF (right panel) for each
sample in the test dataset together with their mean value and
standard deviation. In particular, the low mean error values
(e.g., MPE = 0.5%) confirm that the network predictions
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Fig. 5. Representative examples randomly selected from the noiseless test dataset. Input images (first row). Learned feature maps (second row). Output
images (third row). Ground truth images (fourth row). The rebars are denoted by black circles. The color scale is [0, 1].

Fig. 6. Curves of RMSE (left panel), MPE (middle panel), and IF (right panel) for each sample in the test dataset. The mean and standard deviations of
each parameter over the test dataset are included in each figure.

reproduce quite well the ground truths; at the same time,
the average IF around 13.5 dB confirms the image quality
enhancement in terms of SCR.

Starting from the network trained on noiseless data,
a robustness analysis versus noise level is carried out.
In detail, the original frequency domain scattered field data
are corrupted by additive white Gaussian noise (AWGN) for
signal-to-noise ratio (SNR) values equal to 20, 10, and 0 dB.
Therefore, after TSVD inversion [see (6)], test datasets each
composed of 135 image pairs are built for each SNR level.

The images plotted in Fig. 7 refer to five samples when
SNR = 0 dB. As can be noticed, the input images are now
more cluttered due to the combined effect of the multipath

ghosts and the noise. On the other hand, apart from some
residual clutter (see test 1), the images at the output of the
network are improved considerably and quite similar to the
ground truth.

A quantitative analysis of the network performance is
carried out with the aid of Table II, which summarizes the
mean values and the standard deviations of the considered
metrics for each SNR level. According to the achieved data,
it turns out that both mean RMSE and MPE increase with
the noise level together with their corresponding standard
deviations. Notably, the mean MPE increases from 0.49% to
7.71%, which means that the output images reproduce the
ground truth ones less reliably. On the other hand, the mean IF
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Fig. 7. Representative examples randomly selected from the noisy test dataset with SNR = 0 dB. Input images (first row). Output images (second row).
Ground truth images (third row). The rebars are denoted by black circles. The color scale is [0, 1].

TABLE II
STATISTICS OF PERFORMANCE METRICS FOR THE NETWORK

TRAINED WITH THE NOISELESS DATASET

increases by about 2 dB when considering noisy data with an
SNR = 0 dB. This suggests that the network performs a more
effective clutter/noise filtering even though it was trained on
noiseless data. This outcome can be explained by considering
that IF is a relative metric and the noise power in the input
image [i.e., Pclutter,input in (12)] is larger when SNR = 0 dB.

B. Network Trained With Noisy Data

This section aims to provide an assessment of the network
performance when the presence of noise in the tomographic
images is considered during the learning stage. To this aim,
the original dataset of 1350 samples is augmented by adding
AWGN to the scattered field data in the frequency domain
with different SNR levels. In detail, an extended dataset is
obtained via TSVD and organized as follows:

1) 1350 noiseless images;
2) 1350 images with SNR = 20 dB;
3) 1350 images with SNR = 10 dB;
4) 1350 images with SNR = 0 dB.
Therefore, the overall dataset is composed of 5400 image

pairs and is partitioned in the following way: 4320 samples
are used for training, 540 samples are used for validation,
and 540 samples are used for testing. The training options
and hyperparameters’ settings are those previously introduced

Fig. 8. Training and validation loss versus number of iterations for network
trained with the extended data.

in Table I. The training and validation loss shown in
Fig. 8 confirms that the solver has essentially converged
in 86 400 iterations for a total computation time of
around 7.12 h.

Similar to the validation carried out in Section IV-A,
the network trained with the extended dataset is tested by
considering 135 test image pairs each one characterized by
a specific SNR level. For the sake of brevity, here we show
only representative examples referred to the case SNR =

0 dB (see Fig. 9). By comparing the results in Fig. 9 with
those achieved with the network trained on noiseless data
(see Fig. 7), it emerges that the network is now able to
filter also the minor residual clutter (e.g., see test #1). This
claim is further corroborated by the values of the metrics
summarized in Table III. As in the case of a network trained on
noiseless data, the error and IF performance generally degrade
as the SNR grows. However, unlike the network trained with
noiseless data (see Table II), lower error values are attained
when the SNR = 0 dB (e.g., MPE = 0.34%). As regards the
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Fig. 9. Representative examples randomly selected from the noisy test dataset with SNR = 0 dB for the network trained with the extended dataset. Input
images (first row). Output images (second row). Ground truth images (third row). The rebars are denoted by black circles. The color scale is [0, 1].

Fig. 10. Test examples corresponding to different rebar radii for the network trained with the extended dataset. Input images (first row). Output images
(second row). Ground truth images (third row). The rebars are denoted by black circles. The color scale is [0, 1].

TABLE III
STATISTICS OF PERFORMANCE METRICS FOR THE NETWORK

TRAINED WITH THE EXTENDED DATASET

IF parameter, the attained values appear to be similar to their
corresponding ones reported in Table II.

Given the above results, it is found that training the
network with the extended dataset accounting also for noisy
measurements allows for achieving a more robust noise

filtering. For this reason, the latter network will be considered
from this point on.

C. Tests in Novel Scenarios

In this section, we perform a robustness analysis aiming
at investigating the generalization capabilities of the network
in scenarios different from those it was trained on. Such an
analysis allows conjecturing about the applicability of the
proposed filtering strategy in real scenarios characterized by
geometrical and/or electromagnetic parameters that may have
not been considered during the training phase. More in detail,
we consider novel test cases characterized by the following
parameters:

1) εrs = 5.5.
2) σs = 0.004 S/m.
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Fig. 11. Test examples with misaligned rebars (Cases A–C) and irregularly spaced rebars (Case D) for the network trained with the extended dataset. Input
images (first row). Output images (second row). Ground truth images (third row). The rebars are denoted by black circles. The color scale is [0, 1].

3) 1reb = 12 cm.
4) x0 = 7 cm.
5) d = 10 cm;
6) r̃ = 0.3, 0.6, 0.8, and 1.0 cm.
7) SNR = 10 dB.

Based on the above data, all the geometrical and
electromagnetic parameters are different from those introduced
in Section III-C. In particular, rebars’ radii lower and greater
than 0.4 cm are considered, while all remaining parameters
are fixed in a deterministic way within the ranges considered
in Section III-C.

The images depicted in Fig. 10 show the input, output,
and ground truth images for the different values of the
rebars’ radius. Interestingly, it turns out that the network is
still effective in suppressing the multipath ghosts for any r̃
value. This outcome is partly confirmed also by the values
of the metrics summarized in Table IV. Indeed, despite the
larger errors (MPE ≈ 44%) meaning that the network output
does not reproduce well the ground truth from a quantitative
perspective, the achieved IF values indicate that the clutter
is filtered quite satisfactorily. The latter result is useful in
applications where the main goals are target detection and
localization.

In the following, we assess the robustness of the network
trained with the extended dataset when the rebars are not
all aligned along the depth. Specifically, we consider three
representative cases where two out of five rebars are shifted
upward by 4 cm (case A), downward by 4 cm (case B), and
downward by 15 cm (case C) compared to the remaining
rebars, which are located at a nominal depth of 10 cm. The
same simulation parameters of the previous examples are
considered save for the radius of the rebars which is set at

TABLE IV
PERFORMANCE METRICS WITH THE EXTENDED DATASET

VERSUS REBARS’ RADII AND ARRANGEMENT

Fig. 12. Photograph of the experimental setup showing the GPR antenna
(left panel) and the rebars’ arrangement (right panel).

0.4 cm. As can be observed from Fig. 11, the network is
quite robust and capable of discerning the rebars from the
ghosts in the case of a small displacement (cases A and
B) from the nominal depth even if it has been trained with
aligned rebars. On the other hand, in the case of a large
displacement (case C), the network suppresses the ghosts but
also the deeper rebars. As a result, scenarios with large rebars’
displacement should be addressed during the training stage to
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Fig. 13. Raw radargram recorded during Tests 1–3.

Fig. 14. Tomographic reconstructions related to Tests 1–3 for the network trained with the extended dataset. Input images (first row). Output images (second
row). The color scale is [0, 1].

achieve proper ghosts’ suppression. The IF values related to
the above-described tests are listed in Table IV.

Finally, we examine the network operation when the rebars
do not have a periodic arrangement (case D). To this aim,
we consider a test featuring four rebars with a 4 cm radius
buried at a depth of 0.1 m in a medium with the same
electromagnetic features considered so far. As shown in
Fig. 11, rebars 1 and 2 and 3 and 4 have a spacing of
1reb = 8 cm, while rebars 2 and 3 have a spacing
1reb = 16 cm. It can be observed in Fig. 11 that the
multipath ghost between rebars 2 and 3 is located deeper
than the other ones because of the larger spacing. However,
by comparing the network output with the ground truth image,
it can be concluded that the network still allows for achieving
satisfactory ghosts’ suppression.

V. EXPERIMENTAL VALIDATION

This section aims to provide an experimental assessment of
the proposed DL ghost removal strategy. Controlled tests have
been performed at the Electromagnetic Diagnostics Laboratory
of IREA-CNR. The tests involve the imaging of metallic rebars
buried into a wood box of size 100 cm × 70 cm × 45 cm
filled with dry soil up to a height of 17 cm from its bottom
(see Fig. 12). As in the numerical experiments, we consider a
variable number of rebars (r̃ = 0.4 and 0.6 cm), which are all
located at a depth of d = 7.0 cm below the air–soil interface.

The tests have been performed with the aid of the pulsed
GPR system (IDS RIS Hi-Mode) equipped with the TR-HF
antenna operating at the center frequency of 2 GHz. The
antenna has been put in contact with the air–soil interface
and manually moved along a 50-cm-long line to record scans
every 1 cm in the fast time window [0, 16] ns.

The experimental conditions are detailed as follows:

1) Test 1: three rebars with r̃ =0.4 cm and 1reb = 14 cm;
2) Test 2: four rebars with r̃ = 0.4 cm and 1reb = 10 cm;
3) Test 3: six rebars with r̃ = 0.4 cm and 1reb = 7 cm;
4) Test 4: three rebars with r̃ = 0.7 cm and 1reb = 12 cm;
5) Test 5: four rebars with r̃ = 0.7 cm and 1reb = 10 cm.

It must be noticed that Tests 1–3 refer to experimental
conditions considered in the training phase; on the other
hand, Tests 4 and 5 constitute a benchmark to appraise the
generalization capability of the network for thicker rebars not
considered during training.

The raw radargrams are processed in the time domain by
setting the time zero at 2.1 ns and applying a time gating up
to 2.8 ns. The filtered data are subsequently transformed in the
frequency domain over the band [400, 2400] MHz with a step
of 100 MHz. As regards the tomographic data processing, the
soil permittivity is set at εrs = 4 in agreement with [68], the
investigation domain D = [0, 50] × [0, 30] cm2 is discretized
with a spatial step of 0.5 cm, and the TSVD threshold is equal
to −15 dB.
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Fig. 15. Tomographic reconstructions related to Tests 4 and 5 for the network trained with the extended dataset. Input images (first row). Output images
(second row). The color scale is [0, 1].

Fig. 16. Photograph of the archeological site and investigated structure in King’s room.

Fig. 13 shows the radargrams referred to Tests 1–3.
As expected, strong diffraction hyperbolas corresponding to
the direct scattering echoes from the rebars are observed
around t = 3 ns. Moreover, the weaker echoes arriving
at later times originating from the interactions between
the targets are responsible for the generation of multipath
ghosts.

The reconstructions reported in the top panels of Fig. 14 are
the tomographic images at the input of the network. As can
be seen, more or less evident multipath ghosts appear in the
neighborhood of the true targets (red spots). In this regard, the
multipath ghosts in the image related to Test 3 are not visible
because they cannot be resolved due to the limited horizontal
resolution (around 3 cm) and the smaller target spacing
(1reb = 7 cm). On the other hand, the tomographic images
at the output of the network (bottom panels in Fig. 14)

highlight that the multipath ghosts are effectively suppressed,
thus allowing an unambiguous interpretation of the scene.

In Fig. 15, we report the results achieved while processing
the GPR data referred to Tests 4 and 5 concerning the
thicker rebars. Despite the network being trained with rebars
having smaller radii, it turns out that it is equally effective
in suppressing the multipath ghosts and increasing the image
SCR. This claim is also corroborated by the values of the IF
parameter summarized in Table V.

We conclude this section by providing an assessment of
the proposed DL-based ghost removal strategy in the case of
GPR data collected on the field. A measurement campaign
was carried out at the Knossos Palace in Crete, Greece, in July
2018. Several pillars, columns, and concrete roof slabs of the
East Wing (“Hall of Double Axes” and “Queen’s Megaron”)
and of the “South House” were investigated, to identify the
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TABLE V
IF VALUES FOR THE LABORATORY TESTS

Fig. 17. Tomographic reconstruction of the investigated concrete roof slabs.
Input image (top panel). Output image (bottom panel).

materials and restoration methods with a specific focus on
rebars in reinforced concrete.

As a representative test case, Fig. 16 shows a 30-cm-thick
concrete roof slab inspected with the previously described
GPR system. The antenna was manually moved to gather data
along a 50-cm-long line with a step of 1 cm. The raw data are
processed by following the same steps used for the laboratory
data with only a slight modification to some parameters, i.e.,
time zero at 4.25 ns and time gating up to 4.8 ns. The concrete
permittivity is estimated as 6.5 based on the measured slab
thickness and travel time analysis.

The image depicted in the top panel of Fig. 17 shows the
tomographic reconstruction of the structure, which reveals the
presence of three metallic rebars arranged with a spacing
of 15 cm and approximately located at a depth of 6 cm.
Furthermore, some multipath ghosts appear at a depth of
around 13 cm. As no a priori information is available on
the rebars’ radius, it is not possible to establish if the
experimental conditions are accounted for by training. Despite
that, the output image highlights that the multipath ghosts are
suppressed in a quite satisfactory way (IF = 10.5 dB).

VI. CONCLUSION

A supervised deep learning strategy has been developed
for multipath ghost removal in linear microwave tomographic
images. The proposed strategy is based on the CNN U-NET
and assumes that the input is a tomographic image corrupted

by ghosts, whereas the output is a ghost-free reconstruction
based on the system PSF. An extensive set of numerical
simulations based on synthetic full-wave data has been
presented about the localization of metallic rebars via GPR.
It has been demonstrated that the DL-based ghost filtering
strategy is effective and robust to noise and changes in
the parameters of the scenario. Furthermore, despite the
training exclusively based on simulated data, experimental
tests carried out in the laboratory and on the field have
assessed the effectiveness of the proposed strategy. A further
research activity will regard the combined use of U-NET
and microwave tomography concepts in other radar imaging
contexts. The proposed approach may be extended to multipath
ghosts’ suppression in through-wall scenarios offering the
possibility to enhance ghosts’ filtering in combination with
other higher level signal processing algorithms (e.g., trackers).
However, such an extension is not trivial and requires a
modification of the training step to account for the additional
challenges related to the size and the dynamic behavior of the
targets. Future research will also focus on the determination
of the optimal training strategy in the presence of a priori
information on the noise level of the data.
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