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A New Bias Correction Approach for Better
Assimilation of Microwave Sounding Data Over
Winter Sea Ice in the Korean Integrated Model
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Abstract— Microwave sounder observations are essential for
numerical weather prediction (NWP) systems, but utilizing
channels sensitive to surface over sea ice has been challenging
due to difficulties in estimating the sea ice surface radiance.
This study presents a preprocessing method to assimilate near-
surface microwave-sounding observations over winter sea ice,
including an estimation of a real-time surface emissivity from
satellite radiance and a bias correction scheme to minimize the
radiance discrepancy between observation and model simulation.
Our results show that the radiance simulated using dynamic
emissivity exhibits a much better agreement with the measured
one, although a significant negative bias of about 0.61–1.18 K
remains over the winter sea ice. Thus, a new bias correction
procedure, based on the regression relationships between the
residual bias and potential bias sources such as the surface
temperature and surface emissivity, is added. When it is applied,
the remained bias is successfully estimated. Moreover, the sea
ice observations from all temperature-sounding channels have
been better utilized in the Korean Integrated Model (KIM). The
additional information on the polar regions has increased the
analysis increment and reduced the ensemble spread. In addition,
a neutral to slightly positive impact on temperature analysis
errors in layers sensitive to surface radiance encourages further
utilization of microwave sounder data over sea ice.

Index Terms— Bias correction, emitting layer temperature,
microwave radiance, sea ice, surface emissivity.

I. INTRODUCTION

MICROWAVE sounder observations play a significant
role in improving the forecast skills of numerical

weather prediction (NWP) systems, providing information on
atmospheric thermodynamic properties (i.e., temperature and
humidity) as well as hydrometeor properties [1], [2].

The use of microwave-sounding data is highly dependent
on surface types and observation conditions due to varying
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microwave radiance emissions associated with different sur-
face types, such as ocean, land, and snow/ice. For instance,
the ocean surface, characterized by lower emissivities, exhibits
lower surface radiance compared to land or snow/ice surfaces.
Utilization of microwave radiances over land and snow/ice has
been more challenging than over the ocean, primarily due to
the difficulty in the simulation of surface radiances, which is
caused by lack of a reliable auxiliary surface information, such
as emissivity or temperature [3], [4], [5].

The main problem in the estimation of surface emissiv-
ity is the changes in complex dielectric properties which
depend on ice age, volume scattering, salinity, and wetness
of which basin-scale data are unavailable [6], [7], [8], [9].
Previous studies [10], [11] have focused on enhancing the
utilization of microwave observations on all surfaces, primarily
by improving the accuracy of microwave surface emissivity
[12]. An emissivity model [11], [13] and a method to retrieve
the microwave surface emissivity over land and sea ice from
passive microwave observations [10], [14], [15], [16], [17],
[18], [19], [20] was developed. The observation-based retrieval
method has been subsequently incorporated into operational
NWP models for assimilating microwave observations over
land and sea ice [21], [22], [23], [24], [25], [26]. However,
the use of microwave observations over winter sea ice has
been challenging due to significant discrepancies in radiances
between observation and simulations [27].

Another critical factor in estimating the surface radiances is
the accuracy of surface temperature. Sea ice is often covered
with snow, and the microwave emitting layer can lie inside the
snow layer at microwave frequencies, such as 23.8, 31.4, and
50.3 GHz [28]. Thus, to simulate surface radiance accurately,
it is important to consider the temperature of the emitting
layer rather than skin temperature. However, it is difficult to
estimate the emitting layer temperature due to its dependencies
on physical variables such as snow depth on sea ice, and
dielectric properties of snow and ice at a certain frequency
are difficult to obtain [11].

Studies have been made to estimate the temperature of the
emitting layer [23], [29], [30], although these methods are
not incorporated in global operational NWP systems because
they are confined to specific locations or require additional
physical information such as refractivity index or penetration
depth or ice types. Instead of emitting layer temperature,
the skin temperature from the NWP model is alternatively
used as input to simulate background radiances, which can
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lead to a biased simulation result specifically at microwave
frequencies. The biased data are excluded from assimilation
since data assimilation systems are designed to derive solutions
using unbiased data [31]. Therefore, an additional correction
is necessary to mitigate this bias and to enhance the accuracy
of the assimilation results.

The objective of this study is to assimilate microwave
radiances at near-surface channels by solving the problem
inherent in sea ice emissivity and surface temperature. For
better utilization of winter sea ice data, this study investigated
the preprocessing methods of a microwave sounder by using
emissivity retrieved from the microwave observations and
introducing a bias correction scheme to address the uncer-
tainty of surface temperature. For bias correction, this study
identified the source of the bias and determined the predictors
that can represent the bias.

The remainder of this article is structured as follows. The
used observation and model data in this study are described
in Section II. The preprocessing methods including character-
istics of the dynamically calculated sea ice emissivity and a
method to minimize the surface radiance discrepancy between
observation and simulation are described in Section III. Fur-
ther, the microwave-sounding observations over winter sea ice
are assimilated in the Korean Integrated Model (KIM) system
using the preprocessing methods, and their impacts on the
KIM model are analyzed in Section IV. Finally, Section V
provides a summary and conclusion of the research.

II. DATA

A. Advanced Technology Microwave Sounder (ATMS)

This study utilizes ATMS observations onboard the Suomi
National Polar-orbiting Partnership (SNPP) launched in
October 2011 and the National Oceanic and Atmospheric
Administration (NOAA)-20 satellite launched in October
2017 as part of the Joint Polar Satellite System (JPSS)
series [32]. ATMS is a cross-track scanner with 96 fields
of views (FOVs), resulting in varying scan (± 53.28◦)
and polarization angles [33], [34]. It has 22 channels,
frequencies from 23 to 183 GHz, including five window
channels (i.e., 23.8, 31.4, 50.3, 88.2, and 165.6 GHz),
12 temperature-sounding channels having center frequencies
near ∼51.76–57.29 GHz, and five humidity sounding channels
having center frequencies near ∼183 GHz. The radiances at
sounding channels are directly assimilated in the NWP models,
while the window channels are used for surface emissivity
calculation [10], [15] and cloud screening processes [35], [36].

B. KIM Data

For the simulation of the microwave observation radiances,
the 6-h forecasting atmospheric and surface state vectors
from the KIM system were used. The KIM system has
been used as an operational weather forecasting model by
the Korean Meteorological Administration (KMA) since 2020
[37]. It produces global-scale analysis and forecasting fields
of the atmosphere and the surface variables every 6-h. The
model variables are represented in a cubed-sphere grid, having
a horizontal resolution of about 12 km and a vertical resolution
of 91 levels up to approximately 80 km (i.e., 0.01 hPa) from

the surface. In the KIM system, the initial condition of the
model is updated by the Hybrid 4-D Ensemble Variational
(H4DEV) method, implementing the local ensemble transform
Kalman filter (LETKF) with 50 ensemble members [38], [39],
[40]. Various types of observation data, including conventional
data and satellite radiances, are assimilated into KIM. The
quality of these observations is controlled through a Korean
Institute of Atmospheric Prediction Systems (KIAPS) Package
of Observation Processing (KPOP) [41]. For the satellite
radiance, the quality of bias-corrected observations in clear-
sky conditions is evaluated against its model counterpart
(i.e., background) simulated from a radiative transfer model
for television infrared orbiting satellite (TIROS) operational
vertical sounder (TOVS) (RTTOV)-12.3 [42]. For instance,
if the difference between observed and background brightness
temperatures (TBs) (hereafter, referred to as O−B) is greater
than an empirically decided threshold, the observations are not
used for data assimilation.

For the microwave sounders, the channels to be assimilated
are selected based on the surface types (e.g., ocean, land, sea
ice, and snow-covered land). If the land fraction within the
model grid is less than 30%, it is classified as ocean. The ocean
surface is classified as sea ice when the sea ice concentration,
from Operational Sea Surface Temperature and Ice Analysis
(OSTIA) [43], is greater than or equal to 20%. Finally,
if the surface snow amount (e.g., snow water equivalent) is
greater than or equal to 1.0 kg/m2, it is classified as snow-
covered land. Over the ocean surface, both the temperature
and humidity-sounding channels are assimilated. While over
the sea ice, the lower tropospheric temperature channels (i.e.,
ATMS channels 6 and 7 having the peaks of weighting func-
tion at 700 and 400 hPa, respectively) and humidity channels
are not used because of the large uncertainty in the simulated
radiances.

C. Evaluation Data

For the evaluation of analysis fields, the Integrated Fore-
cast System (IFS), which is the operational NWP system of
the European Centre for Medium-Range Weather Forecasts
(ECMWF), is used. It has the leading forecasting skills among
the World Meteorological Organization (WMO) designated
meteorological centers [44] and it is widely used as refer-
ence data. The resolution of the operational global system is
from 18 to 9 km horizontally and 137 model levels.

In addition, the analysis fields were evaluated against
the satellite observation, Advanced Microwave Sounder Unit
(AMSU)-A observations onboard the NOAA and MetOp Euro-
pean Meteorological Satellite series [45]. It is a cross-track
scanner with scan angles within ±49.44◦ and has 15 channels
with frequencies that correspond to those of ATMS channels
1–3 and 5–16.

III. PREPROCESSING METHOD

This section presents a preprocessing method for ATMS
temperature channels over winter sea ice. This study focuses
on ATMS channels 6 and 7, which are not utilized in the oper-
ational KIM system over sea ice. In addition, ATMS channel
5 is analyzed as they can be used for quality control (QC) of
ATMS channels 6 and 7 observations over sea ice [27].
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A. Dynamic Emissivity of Sea Ice

Here, sea ice emissivity is dynamically derived for each
ATMS FOV using the ATMS measurements and KIM data
along with the radiative transfer model (RTM). The equation
to calculate the surface emissivity is derived from the radiative
transfer equation under nonscattering atmosphere conditions.

For microwave frequencies, where the Rayleigh–Jeans
approximation is applicable, the radiance is linear with the TB.
Thus, the upwelling TB at the top of the atmosphere (TOA)
(e.g., TBTOA) is represented by the sum of surface emitted
TB, atmospheric upwelling TB (e.g., TB↑), and atmospheric
downwelling TB (TB↓) reflected by the surface [15], [17]. The
observed p-polarized TB at the frequency ν is expressed as

TBTOA
ν,p = εν,pTsurfτ̃ ν + TB↑

ν + TB↓

ν

(
1 − εν,p

)
T̃ ν (1)

where, T̃ is atmospheric total transmittance and Tsurf represents
the surface temperature, which indicates the surface skin
temperature rather than the emitting layer temperature. The
implications of using the skin temperature will be discussed
in Section III-C. Hereafter, the use of the subscript p will be
omitted for simplicity. The ε is the surface emissivity which
can be obtained by rearranging (1), as the following:

εv =
TBTOA

ν − TB↑

ν − TB↓

ν T̃ ν(
Tsurf − TB↓

ν

)
T̃ ν

. (2)

Thus, εv can be estimated by using the measured TBTOA
ν

with the auxiliary data, such as TB↑

ν , TB↓

ν , and T̃ ν . Here,
TBTOA

ν can be represented by the polarized ATMS observation,
allowing the estimated emissivity to account for the variations
in the polarization angle. Tsurf is from the skin temperature
from the KIM model. Diurnal variations in skin temperature
can have an impact on emissivity estimation results and
may also influence bias characteristics. However, during the
research period, the diurnal variation in skin temperature was
not observed, likely due to the absence of direct solar radiation.
Therefore, this study did not consider the diurnal variations in
skin temperature. TB↑

ν , TB↓

ν , and T̃ ν are simulated from the
RTTOV-11.2 with forecast fields of the KIM model assuming
the specular reflection. While this study did not cover the
application of Lambertian reflection, utilizing Lambertian or
semi-Lambertian assumptions would enhance the accuracy of
microwave radiance simulation, particularly over snow and sea
ice surfaces [46], [47]. Thus, the emissivity calculated given by
(2) (hereafter, referred to as dynamic emissivity) is an apparent
emissivity rather than physical emissivity.

The dynamic emissivities can be calculated from the
window channel measurements to minimize the influence
of atmospheric radiance. Surface emissivity calculated at
50.3 GHz (i.e., the closest frequency to the temperature sound-
ing channels) can be used to simulate the background TBs
of adjacent temperature channels (52.8–57.29 GHz). This is
based on the assumption that surface emissivity is constant at
frequencies from 50 to 60 GHz [22], which is supported by the
stable dielectric constant at this frequency range [48]. Cloud
screening was not performed, since the presence of clouds or
rain/snow affecting microwave signals at 50–60 GHz consti-
tutes a minority of data during the Arctic winter, although

Fig. 1. (a) Frequency and (b) angle dependencies of the dynamic emissivity
in the specific areas of winter sea ice: Arctic FYI (blue) and MYI (green). The
vertical line represents the standard deviation. For the frequency dependency,
the data with satellite zenith angle ranges 10◦–20◦ was used.

these signals are not negligible [49], [50]. To avoid signal
contamination from the ocean, the data were used only if the
collocated OSTIA sea ice concentration exceeded 95%.

The frequency and angle dependences of dynamic emissiv-
ity derived for a 15-day period in January 2022 are shown
in Fig. 1 over selected areas in the Arctic, first-year ice
(FYI) region (75◦N–80◦N and 75◦E–80◦E, the Kara Sea), and
multiyear ice (MYI) region (83◦N–86◦N and 30◦W–36◦W,
north of Greenland). Fig. 1 shows that the dynamic emissivity
of MYI is lower than that of FYI due to the larger volume
scattering of MYI [51]. In Fig. 1(a), they decrease with
increasing frequency since volume scattering is stronger at
higher frequencies (i.e., shorter wavelength). Fig. 1(b) shows
that the emissivity variation is stable for low satellite zenith
angles but decreases at large angles (i.e., 30◦ and above),
especially for MYI, and the decreasing slope is steeper at
angles above 50◦. Thus, the data with satellite zenith angles
above 50◦ were not used in this study. The frequency and
angular behavior of dynamic emissivities agree well with
in situ observations as well as theoretically calculated sea ice
emissivities [10], [30].

B. TB Simulation Using Dynamic Emissivity

The background TBs at ATMS temperature channels 5–7
were simulated with dynamic emissivity derived at 50.3 GHz.
Fig. 2 presents a comparison between the background TB with
the observed TB over the winter Arctic Sea ice region. Here,
the scan-dependent bias was corrected using static coefficients.
Both correlation coefficients and regression slopes are close
to 1 for all three channels. However, the biases (mean of
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Fig. 2. Density scatter plot between observation and background TB at ATMS channels (a) 5, (b) 6, and (c) 7. The background TB was simulated using the
dynamic emissivity at 50.3 GHz. The one-to-one line and regression lines are shown in black and red, respectively.

O–B) at channels 5–6 (1.18 and 0.61 K, respectively) were
significant compared to those calculated over the ocean using
the FASTEM version 6 emissivities, which yielded values of
0.03 and 0.38 K, respectively. In contrast, the bias at channel
7 was minimal in both sea ice (−0.11 K) and ocean (0.05 K).
The significant biases at channels 5 and 6 suggest the need for
an additional correction method to remove the bias for better
utilization of these data.

Sections III-C and III-D provides the causes of bias that
are found exclusively in the winter sea ice regions for ATMS
channels 5 and 6, and further describe a method to minimize
this bias.

C. TB Sensitivity to Uncertainties in Contributing Variables

In (1), the TBTOA
ν is determined by the variables includ-

ing surface temperature, emissivity, atmospheric TBs, and
transmittance. To better understand potential error sources
responsible for the O–B bias, sensitivities of the simulated
TBs to uncertainties of the contributing variables (i.e., εv , Tsurf,
TB↑

ν , TB↓

ν , and T̃ ν) are evaluated. Based on a Gaussian error
propagation approach, the total variation of TB (1TBTOA

ν )

due to uncertainties in all contributing variables (V ) can be
calculated by summing the TB variation for each uncertain
variable (i.e.,

∣∣(∂TBTOA
ν /∂V )

∣∣1V ), which are estimated by
the increment or uncertainty of the variable (1V ) and the
partial derivative of TB (i.e., (∂TBTOA

ν /∂V )). It is important
to note that this method assumes that variables are independent
of each other and that the changes in the variables are
small enough to be approximated by their first-order partial
derivatives

1TBTOA
ν

=

∣∣∣∣∂TBTOA
ν

∂εv

∣∣∣∣1εv +

∣∣∣∣∂TBTOA
ν

∂Tsurf

∣∣∣∣1Tsurf +

∣∣∣∣∂TBTOA
ν

∂TB↑

ν

∣∣∣∣1TB↑

ν

+

∣∣∣∣∂TBTOA
ν

∂TB↓

ν

∣∣∣∣1TB↓

ν +

∣∣∣∣∂TBTOA
ν

∂ T̃ ν

∣∣∣∣1T̃ ν . (3)

The sensitivity of TB to the contributing variables
((∂TBTOA

ν /∂V )) can be mathematically formulated as the
following and they were estimated using the 15 days of ATMS

and KIM forecasting data over winter sea ice in January 2022

∂TBTOA
ν

∂εv

=
(
Tsurf − TB↓

ν

)
T̃ ν (4a)

∂TBTOA
ν

∂Tsurf
= εv T̃ ν (4b)

∂TBTOA
ν

∂TB↑

ν

= 1 (4c)

∂TBTOA
ν

∂TB↓

ν

= (1 − εv)T̃ ν (4d)

∂TBTOA
ν

∂ T̃ ν

= εvTsurf + TB↓

ν (1 − εv). (4e)

The uncertainties of the atmospheric variables (i.e., TB↑

ν ,
TB↓

ν , and T̃ ν) are determined by the accuracy of the RTTOV
model and the input data (i.e., atmospheric temperature and
humidity profiles). Here, it is assumed that the RTTOV model
is sufficiently accurate [52] so that the uncertainty propa-
gated from the input parameters was only examined. Thus,
1TB↑

ν , 1TB↓

ν , and 1T̃ were estimated by the changes in
these variables with and without errors in temperature and
humidity profiles, that were represented by the background
error covariance matrix of KIM.

The uncertainty in the surface temperature is mainly caused
by the use of skin temperature from KIM rather than the actual
emitting layer temperature. The difference between skin tem-
perature and emitting layer temperature is relatively small in
the ocean and summer sea ice [23]. In winter sea ice, however,
the difference becomes larger because microwave penetration
depth becomes deeper and the temperature gradient becomes
steeper and it can be as much as 20 K [18], [23], [30]. Thus,
for the sensitivity test, the uncertainty of Tsurf was empirically
selected as 20 K.

Here, the dynamic emissivity is considered as independent
retrieval and 1ε indicates the uncertainties in the calculation
process, which is propagated from the errors in observed TB
at window frequencies, TB↑

window, TB↓

window, T̃ window, and Tsurf.
The uncertainty of the observed TB was determined from the
reported NEdT values [34] and the chosen error in surface
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Fig. 3. Percent contribution of uncertainty in variables to the total TB
variation at ATMS temperature sounding channels: emissivity (blue), skin
temperature (red), upwelling TB (orange), downwelling TB (purple), and
atmospheric transmittance (green). The total TB variation and the average
TB range are indicated as text within the graph.

temperature (i.e., 20 K) was used. For TB↑

window, TB↓

window,
and T̃ window, perturbations were given to the atmospheric
profiles, as mentioned earlier. As a result, the uncertainty
in 50.3 GHz dynamic emissivity, which is applied to the
temperature channels, was estimated to be 0.13.

Next, the variations of TB at the ATMS window and
temperature channels due to uncertainty in the variables (i.e.,∣∣(∂TBTOA

ν /∂V )
∣∣1V ), while other variables unchanged, were

estimated. The contributions of variable uncertainties to the
total variability of TB are shown in Fig. 3, illustrating the
impact of these variables on TB variation. The TB variations
at channels 1–6 are mainly affected by uncertainty in surface
temperature. The second largest contributor to channels 1–4
is the uncertainty in dynamic emissivity of which impact on
TBs decreases as transmittance decreases. At channels 5 and 6,
the contribution of atmospheric upwelling TB exceeds that
of surface emissivity, and the impact of emissivity on TB
becomes negligible at channels 7–15. Further, at channels
8–15, the TB variations due to the uncertainty in surface
temperature become negligible and the corresponding uncer-
tainties in upwelling radiances become the major contributor.

The significant contribution of atmospheric upwelling TB
to the TB variation at ATMS channels 8–15 is addressed by
implementing scan and air-mass bias correction methods in the
operational KPOP system [41]. However, the impact of surface
components, such as surface temperature and emissivity, is not
considered in the operational system. Thus, this study has
developed a new bias correction scheme that can account for
the contribution of surface variables and it is described in
Section III-D.

D. Bias Correction Method

According to the sensitivity test in Section III-C, it was
found that discrepancies in surface emissivity and/or surface
temperature and/or upwelling TB between the observation and
model spaces could introduce bias in the TB at ATMS channels
5 and 6. Therefore, in this study, the differences in these
variables are considered for bias prediction at these channels
while disregarding the discrepancies in downwelling TB and
transmittance. Then, the microwave radiative transfer equation
for observed TB (TBobs

ν ) and simulated TB (TBbgr
ν ) are

as the following:

TBobs
ν = ενTemitT̃ ν + TB↑

o,ν + TB↓

ν (1 − εν)T̃ ν (5)

TBbgr
ν = εd,50.3TskinT̃ ν + TB↑

b,ν + TB↓

ν

(
1 − εd,50.3

)
T̃ ν (6)

where, Temit and Tskin are the emitting layer and skin temper-
atures, and εv and εd,50.3 are the real emissivity and dynamic
emissivity calculated from the (2), respectively. TB↑

o,ν repre-
sents atmospheric upwelling TB contributing to TBobs, while
TB↑

b,ν represents simulated atmospheric upwelling TBs. Then,
the difference in TB between observation and background is

TBobs
ν − TBbgr

ν

=
(
ενTemit − εd,50.3Tskin

)
− TB↓

ν

(
εν − εd,50.3

)
T̃ ν +

(
TB↑

o,ν − TB↑

b,ν

)
. (7)

Let the systematic biases of surface emissivity, surface
temperature, and atmospheric upwelling TB be 1εv=εv −

εd,50.3, 1Tsurf = Temit − Tskin, and 1TB↑

ν = TB↑

o,ν − T B↑

b,ν ,
respectively. In this study, these terms are considered as
constant representing the general state of sea ice based on
substantial data. Then, (7) becomes

TBobs
ν − TBbgr

ν =
(
Tskin − TB↓

ν

)
T̃ ν1εν + εd,50.3T̃ ν1Tsurf

+ T̃ ν1εν1Tsurf + 1TB↑

ν . (8)

Fig. 4 shows the relationship between the terms of(
Tskin − TB↓

ν

)
T̃ ν , εa,50.3T̃ ν , and T̃ ν in (8) and TBobs

ν − TBbgr
ν

(O−Bn). It illustrates a linear trend where O–B biases increase
as predictor values increase. Data points with high density
are closely adhering to the linear regression lines, while those
deviating from the regression lines constitute a minority within
the dataset. Then, the O−B can be expressed as the multilinear
regression equation as the following:

TBobs
ν − TBbgr

ν =

3∑
i=1

Pi,vCi,v + C4,v (9)

where Pi,v and Ci,v represent the predictors and regression
coefficients at frequency v. It is noted that P1,v , P2,v , and
P3,v correspond to

(
Tskin − TB↓

ν

)
T̃ ν , εd,50.3T̃ ν , and T̃ ν , respec-

tively, and C1,v , C2,v , and C3,v correspond to 1εv , 1Tsurf, and
1εv1Tsurf, respectively. The coefficient C4,v corresponds to
1TB↑

ν and the residual bias. Then, the regression coefficients
were computed by solving the (9) with the predictors using
the winter sea ice data of 15 days in January 2022.

Table I shows the calculated regression coefficients from (9).
The positive signs of C2,v and C3,v correspond to the relation-
ship between O–B and P2,v , and P3,v shown in Fig. 4(c)–(f),
indicating that the O–B values increase with increasing pre-
dictor values. However, the negative sign of C1,v contrasts
with the O–B dependence on P1,v shown in Fig. 4(a) and (b).
This is due to an intercorrelation among the predictors because
predictors considered in this study share the T̃ ν . Although
the intercorrelation between predictors is generally avoided
in regression analysis because of the difficulty in interpreting
regression coefficients, it can be acceptable, specifically when
the predictors hold theoretical significance [53], [54]. In this
study, the predictors were selected based on the sensitivity
test (see Section III-C) and derived from the microwave
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Fig. 4. Density scatter plot between O–B and (a) and (b) P1,
(
(

Tskin − TB↓
ν

)
T̃ ν), (c) and (d) P2 (εd,50.3 T̃ ν), and (e) and (f) P3(T̃ ν) at

(left) ATMS channel 5 and (right) ATMS channel 6. The regression lines are
represented in red.

TABLE I
BIAS CORRECTION COEFFICIENTS CALCULATED USING THE 15-DAY

DATA FROM 1. JANUARY 2022

radiative transfer equation, providing meaningful insights into
the relationship. Thus, the predictors, representing sensitivity
in TB to the emissivity, surface temperature, and upwelling
TB were employed to represent the O–B bias.

Fig. 5 illustrates the effectiveness of these predictors in bias
estimation by comparing the estimated bias with the actual
O–B bias at channels 5 and 6, using the same data employed
for the multilinear regression analysis. The majority of the data
align closely with the one-to-one line, indicating accurate bias
estimation. However, the lower slopes (0.42 at channel 5 and
0.34 at channel 6) reflect some data points deviating from the
one-to-one line and the presence of inherent uncertainties in
the estimation. Notably, these deviating data points constitute a
minority of the overall dataset. The potential sources of uncer-
tainties in the bias estimation include neglecting uncertainties
in downwelling atmospheric TB and transmittance. In addition,
uncertainties may arise in the sea ice conditions that cannot be

Fig. 5. Density scatter plot between actual O–B and estimated bias using
the coefficients shown in Table I for ATMS channels (a) 5 and (b) 6.
The regression lines are represented in red.

Fig. 6. Histogram of the difference in TB between observation and
background at ATMS channels (a) 5 and (b) 6. The differences before bias
correction (O–B) are represented in black, while the differences after bias
correction (C–B) are represented in blue.

Fig. 7. Angle dependency of the O–B (blue) and C–B (red) bias at (a) ATMS
channel 5 and (b) ATMS channel 6. The vertical line represents the standard
deviation.

fully accounted for by the regression coefficients, which are
susceptible to changes in ice thickness, surface temperature,
and emissivities. Any estimation errors would be represented
as residual bias after the bias correction.

The bias was corrected by simply subtracting the estimated
bias from the O–B values. The mean differences in TBs
between bias-corrected observation and background (hereafter,
referred to as C–B) were reduced to 0.00 K at both ATMS
channels 5 and 6 (original biases were 1.18 and 0.61 K, respec-
tively) (see Fig. 6). Also, the standard deviation was reduced to
0.49 K at channel 5 and 0.37 K at channel 6 (original standard
deviations were 0.64 and 0.45 K, respectively).

Furthermore, the angle dependence of O–B and C–B biases
was analyzed in Fig. 7. The O–B bias exhibited slightly
higher values near the nadir, where the atmosphere is more
transparent and thus more sensitive to the surface radiance,
compared to the scan edge. However, the C–B biases did
not show any significant dependency on scan angles. These
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findings suggest that the bias correction was effective across
all satellite zenith angles and underscore that the primary
contributor to the O–B bias is related to surface radiance.

As a result, the calculated regression coefficients in this
study effectively eliminated the biases in winter sea ice,
enabling the better utilization of the near-surface ATMS chan-
nels in the KIM system.

IV. DATA ASSIMILATION EXPERIMENT

A. Experimental Design

The preprocessing methods described in Section III were
applied to the KIM system to assimilate ATMS channels
6 and 7 over Arctic winter sea ice. To evaluate the impact
of additionally assimilated observations on the data assimi-
lation process, two experiments were conducted for 45 days
from 15 December 2021 to 31 January 2022. Assimilation
experiments include a control system (CTRL) that has the
same configuration as the operational KIM 3.7a system and
an experiment (SeaIceEXP) that assimilates ATMS channels
6 and 7 radiances over sea ice. In both experiments, the spatial
resolution of the used model was reduced to 25 km to save the
computational cost. In the SeaIceEXP, a cycling experiment
was not carried out and the same first guess (FG) as the
CTRL system was employed while the analysis and forecasts
were regularly updated. This approach was adopted because
the skill of NWP models strongly relies on the accuracy of the
initial conditions which is provided by the data assimilation
system [38]. The key differences between SeaIceEXP and
CTRL are in the use of dynamic emissivity and the additional
use of ATMS channels 6 and 7 over winter sea ice (the
observations over the summer sea ice were not assimilated
due to the greater complexity of physical characteristics).
In this study, TB at channel 5 was not assimilated, but
rather used for QC of ATMS observations over sea ice to
mitigate the uncertainties in estimation. In the QC process,
the ATMS channels 6 and 7 observations were rejected from
the assimilation when 1), the absolute value of bias-corrected
O−B at channel 5 was greater than 0.7 K [27] and/or 2), the
OSTIA sea ice concentration was lower than 95% and/or 3),
and the satellite zenith angle is greater than 50◦.

As the bias at ATMS channel 7 is negligible [see Fig. 2(c)]
and depends more on the upwelling TB than on the skin
temperature (see Fig. 3), an operational scan and air mass pre-
dictors for bias correction were utilized [41], [55]. On the other
hand, the biases at ATMS channels 5 and 6 were corrected
using the bias correction method discussed in Section III-D.
Here, the static regression coefficients, which are presented
in Table I, were used, while operational scan and air mass
predictors were calculated every 6 h. Fig. 8 shows the scatter
plot that illustrates the relationship during the experimental
period between the O−B and the biases estimated using
the precalculated static coefficients. It demonstrates that the
estimated biases closely align with the one-to-one line, exhibit-
ing a slope of 0.56 and a correlation coefficient of 0.72.
This supports the effectiveness of the static coefficients in
estimating the O–B bias during the experimental period within
the KIM system.

Fig. 8. Density scatter plot of O−B at channel 6 and bias estimated with the
static coefficients during the 45 days from December 15, 2021. The one-to-one
line and regression lines are shown in black and red solid lines, respectively.

Fig. 9. The 45-day mean distribution of the O–B at ATMS channel 6 before
and after bias correction in (a) and (b) over sea ice, respectively.

B. Impact on the QC

Incorporating additional satellite radiance data or modifying
the QC process would have a significant impact on the solution
of data assimilation (i.e., analysis). Hence, it is necessary to
evaluate the impact of SeaIceEXP on the QC and analysis
fields by comparing it with the CTRL.

As a result of SeaIceEXP, the number of assimilated ATMS
observations at channels 6 and 7 increased by 6% globally
compared to the CTRL. In addition, the utilization of ATMS
observations at channels 8–15 has increased by 7% globally
and 14% specifically over sea ice, as a consequence of the
data thinning process. The 45-day averaged spatial distribution
of the assimilated observations at ATMS channel 6 over sea
ice is shown in Fig. 9. The spatial distribution was obtained
by remapping the O–B values into 0.25◦ by 0.25◦ grids
because the measurement granules of ATMS observation are
not regularly distributed. In general, it exhibits positive O−B,
with a mean of 0.43 K and a standard deviation of 0.34 K
[see Fig. 9(a)]. To remove this bias, the bias in each pixel was
estimated using the precalculated static coefficients along with
the real-time predictors. After the bias correction, the C–B
reduced with a mean of −0.01 K and a standard deviation
of 0.21 K [see Fig. 9(b)]. Here, the C–B are positive in the
Atlantic Sector and negative in the Pacific/Canadian Sector.
Consequently, the bias-corrected observations that passed the
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Fig. 10. Normalized (a) analysis RMSD index and (b) ensemble SPRD
index differences (SeaIceEXP minus CTRL) at 25 levels. The levels where
the significance level is above 95% is represented by diamond symbols and
the horizontal lines represent standard deviations.

QC procedures including thinning were incorporated into the
data assimilation system.

C. Impacts on Analysis Fields

The updated model temperature fields as a result of the
assimilation of temperature channels were examined against
those from the ECMWF IFS system. For the comparison, the
atmospheric temperatures were remapped onto 0.25◦ horizon-
tal grids and 25 vertical levels ranging from 1000 to 1 hPa
(vertical levels were selected to align with the isobaric level
(ISBL) data formats [56]).

In this study, an index was defined to evaluate the root
mean square difference (RMSD) of model analysis in the high-
latitude regions. The RMSD index was calculated as below

RMSD index =

∑θ=90◦N
θ=60◦N ZM__RMSDθcosθ∑θ=90◦N

θ=60◦N cosθ
. (10)

The index represents the averaged zonal mean of analysis
RMSD (ZM_RMSD) in the high latitude regions (above
60◦N), where the latitude band (θ) is defined at 0.25◦ intervals.
To account for the decreasing grid area with increasing lati-
tude, ZM_RMSD at each latitude band is normalized by the
cosine function. Fig. 10(a) shows the normalized difference
in the RMSD index for temperature between CTRL and
SeaIceEXP and a statistically significance level above 95%
is marked as red. Here, a negative value indicates that the
RMSD of SeaIceEXP is smaller than that of CTRL.

At the levels from surface to 500 hPa, which corresponds
to the weighting function of ATMS channel 6, the RMSD
decreased with significance levels above 95% as a result
of SeaIceEXP. The evaluation results of temperature anal-
ysis and background fields at 700 hPa, where the peak of
the weighting function of ATMS channel 6 is located, are
shown in Fig. 11(a), (c), (e), and (g). In the 700 hPa back-
ground field, the temperature of KIM has a warm bias in
the Pacific/Canadian Sector and a cold bias in the Atlantic
Sector [see Fig. 11(a)] compared to that of IFS. Fig. 11(c)
and (e) show the analysis increment of CTRL and SeaIce-
EXP, respectively. The increment was negligible in CTRL
while SeaIceEXP exhibits a greater magnitude than CTRL.

As expected, the direction of the analysis increment corre-
sponds to the distribution of the C–B of ATMS channel 6
[see Fig. 9(b)]. The positive increment was found in the
Atlantic Sector where the cold bias of temperature background
was exhibited, while the negative increment was given to the
Pacific/Canadian Sector where the warm bias of temperature
background was exhibited. As a result, the RMSDs decreased
by 0.2 K (∼1%) in the Chukchi and East Siberian Seas [see
Fig. 11(g)]. However, an increase in the RMSD was found
in the Central Arctic Seas (near 30◦E) due to the larger
C–B values in this area compared to the surroundings [see
Fig. 9(b)], resulting in a large increment. This issue can
be addressed by adjusting error covariances or implementing
stricter QC thresholds.

At 300–400 hPa, which corresponds to the weighting func-
tion of ATMS channel 7, the RMSD index increased and
the significance level was above 95%. The evaluation results
of temperature background and analysis fields at 400 hPa
are shown in Fig. 11(b), (d), (f), and (h). The atmospheric
temperature at 400 hPa of the KIM background was colder
than that of IFS across the entire Arctic Ocean [see Fig. 11(b)]
and the analysis increment of SeaIceEXP was given to increase
the RMSD at the central Arctic Ocean [see Fig. 11(f)]. The
spatial distribution of analysis increment is consistent with the
FG-departures of ATMS channel 7 (not shown). The C–Bs of
ATMS channel 7 exhibited negative values over the sea ice,
suggesting that there may be a need to improve the quality
of channel 7 observation to enhance the accuracy of analysis
fields. Although the negative impact was observed in the upper
troposphere, it is encouraging to find a positive impact on the
atmospheric layers more sensitive to surface radiation.

Furthermore, the expanded utilization of ATMS
channels 8–15 over sea ice had an impact on the RMSD
at levels above 300 hPa. The differences were below 0.5%
and exhibited small significance, except for the levels
above 10 hPa. Specifically, at the 10 hPa levels where the
atmosphere is most sensitive to observations from ATMS
channels 13–15, a significant decrease in RMSD was observed
with significance levels exceeding 95%.

Additionally, the ensemble spreads (SPRD) of SeaIceEXP
and CTRL were compared. The difference in ensemble spread
between the experiments is shown in Fig. 10(b). The spread
index was calculated using (10), but ZM_RMSD was replaced
by the zonal mean of ensemble spread (ZM_SPRD). As a
result of SeaIceEXP, ensemble spread decreased at all levels
by up to 0.3% suggesting a reduction in the random error
and an improvement in the reliability of the ensemble analysis
results.

The RMSD index and the ensemble spreads for humidity
were examined, but the impact was found to be insignificant
except near the surface (not shown). However, the trend of
both increasing and decreasing directions was consistent with
those observed in the temperature fields. The limited impact
on humidity fields can be attributed to the fact that in both
experiments, the observations from humidity-sounding chan-
nels were not assimilated over sea ice. This study, therefore,
primarily focuses on analyzing the impact of the developed
bias correction scheme on atmospheric temperature fields.
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Fig. 11. The 45-day mean distribution of statistical analysis of temperature at (left column) 700 hPa and (right column) 400 hPa in kelvin unit. (a) and
(b) Background difference between SeaIceEXP and ECMWF IFS. (c) and (d) Analysis increment of CTRL. (e) and (f) Analysis increment of SeaIceEXP.
(g) and (h) Difference in analysis RMSD between SeaIceEXP and CTRL.

Furthermore, the analysis fields were evaluated against the
ATMS and AMSU-A radiances. AMSU-A was utilized as
evaluation data and the preprocessing method for AMSU-A
was not investigated in this study. To make a comparison, the
analysis fields from both experiments were used to simulate
ATMS and AMSU-A radiances, and then the differences in

TBs between the observation and the simulation (hereafter,
referred to as O−A) were examined. It should be noted that
the observations before bias correction were used for the
evaluation.

Fig. 12 shows the statistical analysis of O−As for AMSU-A
channels assimilated in the KIM system together with the
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Fig. 12. Statistics of the analysis departures before bias correction for
AMSU-A are shown in blue, while the statistics for AMSU-A equivalent
ATMS channels are displayed in black. (Left column) Results for the CTRL
with dashed lines and the SeaIceEXP with solid lines. (Right column)
Difference between the two experiments (SeaIceEXP minus CTRL). The
levels where the significance level is above 95% is represented by red diamond
symbols. (Upper) (a) Mean bias and (b) difference in absolute mean bias.
(Bottom) (c) Standard deviation and (d) normalized difference in standard
deviation.

statistical analysis results for equivalent ATMS channels.
In both CTRL and SeaIceEXP, AMSU-A channels 5–14 were
assimilated in the ocean while in the sea, ice and channels
5 and 6 were not assimilated due to the problem with the
simulation of surface radiance. At ATMS channel 6, the bias
and standard deviation of O–A were larger in the SeaIceEXP
than that of the CTRL due to the uncertainties in radiance
simulation. However, after the bias correction, the analysis
departure slightly decreased as a result of SeaIceEXP (not
shown). At the AMSU-A channels 5 and 6, which have the
same frequencies as ATMS channels 6 and 7, the effect
was minimal because they were not assimilated over sea
ice. Instead, the SeaIceEXP displayed a smaller mean bias
and standard deviation of O−As compared to CTRL for the
upper stratospheric AMSU-A channels (e.g., channels 12–14
which have the same frequencies as ATMS channels 13–15
and have the weighting function peaks above 10 hPa). The
average bias decreased by up to 0.07 K, and the standard
deviation decreased by approximately 5%. The effect on the
stratospheric channels aligns with the reduction in temperature
RMSD at above 10 hPa. These findings can be attributed to
the increased utilization of sea ice observations, as well as the
reduced bias and standard deviation in observation departures
at the ATMS channels 13–15. The differences were negligible
for the Microwave Humidity Sounder (MHS), suggesting a
minor impact on humidity fields (not shown).

The impact on the forecast fields was generally negligible,
with a difference of less than 0.5% (not shown) as the analysis
change had a near-neutral effect. While there were slight
increases in the 500 hPa geopotential height forecast from day

1 to day 5, and in the temperature forecast at levels below
500 hPa.

V. CONCLUSION

In this study, a preprocessing method was investigated to
enhance the utilization of ATMS measurements over sea ice
in the NWP model. Specifically, the proposed approach aimed
to address the problem inherent in estimating the radiances
emitted from the sea ice surface by utilizing the dynami-
cally calculated sea ice emissivity and by correcting the bias
between observation and background TBs.

The emissivity was dynamically derived using the ATMS
observations and KIM forecasting data with the RTTOV
model. The background TBs simulated using dynamic emis-
sivities were found to be well-correlated with the ATMS
observations. However, in winter sea ice areas, the simulated
TB is negatively biased compared to the observations at
channels 5 and 6. To minimize the bias and therefore to
assimilate ATMS observations over sea ice, the sensitivities of
microwave TBs to the contributing variables, such as surface
temperature, emissivity, atmospheric upwelling/downwelling
TBs, and atmospheric transmittance, were examined. It was
revealed that the TBs at channels 5 and 6 were prone to be
biased when the surface emissivity and/or surface temperature
and/or upwelling TBs are uncertain, which indicates that the
primary causes of the O–B are the discrepancies in these
variables.

Accordingly, a multilinear regression equation was derived
to estimate the O–B bias, by taking into account the uncertain-
ties in surface emissivity, surface temperature, and atmospheric
upwelling TB. The predictors that showed a linear relationship
with the O–B were selected and the regression coefficients
were computed using a 15-day dataset of ATMS observation
and KIM 6-h forecasting data. The biases were effectively esti-
mated using the selected predictors and regression coefficients
with correlation coefficients of approximately 0.6. After bias
correction, the biases in the TB difference between observation
and simulation were decreased to 0.00 K at both ATMS
channels 5 and 6.

Further, the assimilation experiment was conducted to ana-
lyze the impact of assimilating near-surface observations (i.e.,
ATMS channels 6 and 7) over winter sea ice, which are not
utilized in the operational KIM system due to uncertainties
in radiance simulation. The dynamic emissivity was used to
simulate sea ice surface radiance at temperature channels and
the selected bias predictors were used to correct the O–B bias
at ATMS channel 6 over winter sea ice. The assimilation of
additional sea ice observations had an impact on the temper-
ature analysis fields. Specifically, the RMSD of temperature
in layers from the surface to 500 hPa decreased against that
of IFS, as a result of the assimilation of ATMS channel
6 observations. Furthermore, the RMSD decreased at levels
above 10 hPa, indicating improvements in the quality and
quantity of ATMS observations at the stratospheric channels
that have been operationally used in the KIM. However, the
RMSD of temperature in the layer from 500 to 300 hPa
increased, influenced by the assimilation of ATMS channel
7 data. In addition, the analysis fields were evaluated against
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AMSU-A radiance. Although the changes in RMSD were
generally insignificant with a magnitude of less than 1%
and large temporal variability, a noticeable improvement in
analysis departures was observed at the uppermost AMSU-A
channel, indicating that the reduction in RMSD at levels above
10 hPa is meaningful.

It is prospective to observe positive effects at the levels
where the weighting function of ATMS channel 6 is dis-
tributed. Moreover, the preprocessing method proposed in this
study expanded the availability of temperature information at
all atmospheric levels in the Arctic Sea ice regions, without
any significant negative impact on the analysis or forecast
fields. Furthermore, our preliminary analysis suggests the
applicability of this methodology to near-surface microwave
observations over the Antarctic Sea ice. However, further
investigation is still necessary to fully evaluate and optimize
the proposed method. For instance, there is potential for
exploring the use of Lambertian reflection, rather than specular
reflection, particularly for the 50 and 183 GHz channels.
Additionally, in an operational NWP system, the calculation of
bias correction coefficients in real-time or adjustments would
be necessary to accommodate the temporal variation of sea
ice conditions. Furthermore, a cycling experiment would be
required to fully evaluate the assimilation experiment and
assess its effectiveness over multiple assimilation cycles.
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