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AdaptMatch: Adaptive Matching for Semisupervised
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Abstract— There are various binary semantic segmentation
tasks in remote sensing (RS) that aim to extract the foreground
areas of interest, such as buildings and roads, from the back-
ground in satellite images. In particular, semisupervised learning
(SSL), which can use limited labeled data to guide a large amount
of unlabeled data for model training, can significantly promote
the fast applications of these tasks in practice. However, due to the
predominance of the background in RS images, the foreground
only accounts for a small proportion of the pixels. It poses a
challenge: models are biased toward the majority class of the
background, leading to poor performance on the minority class of
the foreground. To address this issue, this article proposes a novel
and effective SSL framework, adaptive matching (AdaptMatch),
for RS binary segmentation. AdaptMatch calculates individual
and adaptive thresholds of the foreground and background based
on their convergence difficulty in an online manner at the training
stage; the adaptive thresholds are then used to select the high-
confidence pseudo-labeled data of the two classes for model
self-training in turn. Extensive experiments are conducted on two
widely studied RS binary segmentation tasks, building footprint
extraction and road extraction, to demonstrate the effectiveness
and generalizability of the proposed method. The results show
that the proposed AdaptMatch achieves superior performance
compared with some state-of-the-art semisupervised methods
in RS binary segmentation tasks. The codes will be publicly
available at https://github.com/zhu-xlab/AdaptMatch.

Index Terms— Adaptive threshold, binary segmentation, build-
ing footprint extraction, remote sensing (RS), road extraction,
semisupervised learning (SSL).

I. INTRODUCTION

IN THE remote sensing (RS) fields, there are various
binary semantic segmentation tasks that aim to extract the

foreground regions of interest, such as building footprints
[1], [2], roads [3], [4], changes [5], [6], [7], [8], [9], and
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landslides [10], [11], from the background in satellite or
aerial images. These tasks have a broad range of practical
applications in urban planning [12], [13], hazard assessment
[14], [15], and environmental monitoring [16], [17], [18].
However, they demand a substantial volume of numerous
manually-labeled data at the pixel level, which is laborious
and hard to obtain in practice. From this perspective, semisu-
pervised learning (SSL), especially semisupervised semantic
segmentation (SSS), can significantly promote the speed of
these tasks because it can use only a few labeled data to guide
a large number of unlabeled data for model training, thereby
reducing the heavy dependence on annotations.

The core of SSS is its approach to utilizing unlabeled
data for model training. The different methods for doing so
can be broadly categorized into two technical routes. One
is the consistency-based method [19], [20], [21], [22], [23],
[24]. This approach aims to enforce the prediction agreement
between the original images/features/model and the perturbed
counterparts, which can promote models to learn robust feature
representation and predictions that are free of noise and pertur-
bation. The other is the self-training-based method [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38]. This type of method tries to assign the unlabeled data
pseudo-labels and use them for pseudo-supervised training
on models, where typically thresholds are set to only allow
high-confidence unlabeled data for training to reduce the
impact of wrong pseudo-labels.

Although the above SSS methods can provide some promis-
ing paradigms for semisupervised binary segmentation of
RS images, they ignore the imbalanced distribution of
the foreground and background. Typically, the foreground of
interest only occupies a small proportion of the entire image,
while all the remaining areas are considered background.
The imbalanced distribution limits the direct application of
these SSS methods, especially the self-training-based meth-
ods, in RS binary segmentation tasks. Moreover, there is
a phenomenon of confirmation bias [24] in SSL, in which
incorrect pseudo-labels of unlabeled data can be confirmed
and memorized by models and the model segmentation per-
formance then decreases after being trained by these wrong
pseudo-labels. Unfortunately, imbalanced distribution further
exacerbates the confirmation bias problem and thus degrades
model performance significantly.

To alleviate the problem, in this article, we propose an adap-
tive matching (AdaptMatch) framework for semisupervised
RS binary segmentation tasks, which aims to create relatively
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balanced self-training on models between the foreground and
background based on their convergence difficulty during the
training stage. There are three parts to AdaptMatch: 1) super-
vised learning, which only uses labeled data for supervised
model training; 2) pseudo-supervised learning, which further
selects the high-confidence unlabeled data by thresholds for
model self-training; and 3) an adaptive threshold mechanism,
which calculates the adaptive and individual thresholds of the
foreground and background in an online manner for more
accurate and fine-grained self-training of the unlabeled data.

Of these three parts, pseudo-supervised learning and adap-
tive threshold mechanism are semisupervised. Specifically,
the high-confidence pseudo-labels of weakly augmented RS
images are used to supervise the segmentation of strongly aug-
mented counterparts, i.e., pseudo-supervised training, based on
FixMatch [34]. This approach integrates the benefits of both
the self-training of high-confidence pseudo-labeled data and
the consistency learning between weakly and strongly aug-
mented images. However, the thresholds of different classes
are fixed as the same value, typically 0.95, which is not
suitable for imbalanced RS semisupervised binary segmenta-
tion. To address this issue, the adaptive threshold mechanism
tries to calculate adaptive thresholds for more balanced
pseudo-supervised learning by designing a novel strategy of
class-wise prediction accumulation and convergence-difficulty
calculation from both the labeled and the unlabeled training
data. The calculated thresholds have three advantages over the
fixed ones. First, the thresholds of the foreground and back-
ground are individual, which allows a class-wise selection of
pseudo-labels of the unlabeled data. Second, the thresholds are
dynamic at different training stages based on the convergence
difficulty of the two classes, so they can adjust more precisely
for different datasets in different training states. Third, Adapt-
Match does not depend on any particular model and can be
easily combined with various advanced segmentation models
including both convolutional neural network (CNN) and vision
transformer (ViT).

To evaluate the effectiveness and generalizability of the
proposed AdaptMatch, extensive experiments are conducted
on two widely studied RS binary segmentation tasks, build-
ing footprint extraction and road extraction. In comparison
with other state-of-the-art SSS methods, AdaptMatch shows
superior and more robust performance on several widely used
datasets, including two building footprint datasets, Inria [39]
and Massachusetts, and two road datasets, WHU_Roads and
DeepGlobe_Roads. The comparison experiment results verify
the superiority and robustness of the proposed method in
semisupervised RS binary segmentation.

The contributions of this article can be summarized in two
main areas, as follows.

1) We develop a novel SSL framework for RS binary
segmentation, AdaptMatch, to alleviate the imbalanced
distribution between foreground and background of RS
images, which limits the effective self-training of unla-
beled data. AdaptMatch calculates individual thresholds
of the foreground and background based on their con-
vergence difficulties during training. This allows it to
adaptively select relatively balanced class-wise pseudo-

labels and achieve more reasonable self-training of
unlabeled data.

2) The proposed AdaptMatch is a model-agnostic opti-
mization mechanism that can be easily combined with
various models. Besides, it achieves superior results in
two widely used RS binary segmentation tasks in the
semisupervised setting when compared with some state-
of-the-art SSS methods.

II. RELATED WORKS

In this section, we briefly review some related works from
two perspectives: SSL and RS semisupervised semantic/binary
segmentation.

A. Semisupervised Learning

SSL is a hot topic in image processing because it can
largely reduce the dependence on pixel-level labeled data,
which is labor-intensive and time-consuming. As mentioned in
Section I, there are two main types of semisupervised methods,
as discussed below.

1) Self-training-based methods [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [38]. Lee
et al. [26] applied the pseudo-labels of unlabeled data to
deep neural networks for model pseudo-supervised training,
in a departure from the supervised training of labeled data in
earlier eras. MixMatch [27] generates low-entropy labels from
multiple data-augmented unlabeled examples and then mixes
the labeled and unlabeled data for co-training. To get better
pseudo labels, meta pseudo label, which utilizes a teacher
network to generate pseudo-labels of unlabeled data to teach
a student network, is proposed [28]. From the perspective of
the long-tailed class distribution, He et al. [32] designed an
effective distribution alignment and random sampling (DARS)
strategy to produce unbiased pseudo-labels matching the true
class distribution, Guan et al. [33] proposed an unbiased
subclass regularization network (USRN) to alleviate the class
imbalance problem by learning class-unbiased segmentation
from balanced subclass distributions. In addition, FixMatch
[34] predicts the pseudo-label from a weakly augmented image
and uses it to supervise the classification of a strongly aug-
mented version of the same image; here, it is worth noting that
a fixed threshold is used to select high-confidence unlabeled
samples for training. To get more accurate pseudo-labels, some
works aim to generate dynamic thresholds of different classes
for semisupervised image classification, notably FlexMatch
[36] and SoftMatch [35]. Recently, UniMatch [37] highlighted
the FixMatch in SSS with new state-of-the-art results.

2) Consistency-based methods [19], [20], [21], [22], [23],
[24]. These methods aim to guide the models to learn feature
representation and probability prediction free of perturbations.
Here the perturbation varies and these methods can be applied
at different levels, including images [19], features [20], and
even models [21], [22]. Cross-consistency training (CCT) is
proposed in [20] for SSS, which enforces the consistency
of the predictions among the clear features and different
types of perturbed features. A novel consistency regularization
approach, cross pseudo supervision (CPS) [21] is designed to
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impose consistency on two segmentation networks perturbed
with different initialization but with the same architecture
for the same input image; subsequently, a new conflict-
based cross-view consistency (CCVC) method [22] aimed at
enforcing the two heterogeneous subnets to learn consistency
features from irrelevant views by introducing a feature dis-
crepancy loss. To address the prediction accuracy problem of
consistency learning methods, Liu et al. [23] extend the mean-
teacher (MT) model with a new auxiliary teacher, and replace
MT’s mean square error (mse) with a stricter confidence-
weighted cross-entropy (Conf-CE) loss. Finally, a redesign of
pseudo-labeling is proposed in [19] to generate well-calibrated
structured pseudo-labels with unlabeled or weakly labeled data
for consistency training.

Besides, some works focus on cross-domain information
transfer to reduce the demand for target domain labels.
For example, the integration of graph information extrac-
tion in few-shot learning shows excellent domain adaptive
performance in [40]. A domain generalization framework
for hyperspectral images is designed to break through the
limitations of traditional domain adaptive techniques in [41].

B. RS Semisupervised Binary Segmentation

Many researchers have also explored SSL in RS seman-
tic/binary segmentation tasks in the past few years. Sun
et al. [42] devised a boundary-aware SSS network, which
integrates the channel-weighted multiscale feature module that
balances semantic and spatial information and the bound-
ary attention module, which weights the features with rich
semantic boundary. Wang et al. [43] introduced a consis-
tency regularization training method for RS SSS and employ
the newly learned model for an average update of pseudo-
label (AUP); Wang et al. [44] subsequently introduced cross
pseudo-supervision into RS semantic segmentation and opti-
mize it in an alternative manner. Zhang et al. [45] designed a
transformation consistency regularization method to encourage
consistent predictions under different random spatial trans-
formations or perturbations, including rotation, patch shuffle,
and CutMix [46], [47]. Zhang et al. proposed a feature and
prediction alignment method in [48] and joint self-training
[49] and rebalanced consistency learning for semisupervised
change detection. Desai and Ghose [50] proposed an active
learning-based sampling strategy to select high-representation
data for land cover classification. Consistency learning has also
been widely attempted as a regularization in change detec-
tion [51], semantic segmentation [52], and building footprint
extraction.

The mainstream RS semisupervised semantic/binary seg-
mentation methods are based on consistency learning. Unlike
these methods, the proposed AdaptMatch is based on
self-training and aims to alleviate the imbalance problem
during training. Compared with consistency-based methods,
self-training-based methods have their advantage and dis-
advantages. The advantage is that self-training can learn
more discriminative predictions via the pseudo-supervision
of two opposite pseudo-labels (foreground and background);
in contrast, consistency-based methods mainly focus on con-

sistent possibility predictions, which does not contribute to
prediction discrimination as much as self-training. How-
ever, self-training-based methods usually suffer from some
inevitable wrong pseudo-labels during training. Particularly,
in RS binary segmentation, the imbalanced distribution of
foreground and background exacerbates the pseudo-label mis-
assignment from the minor foreground to the dominant
background. The proposed AadptMatch can achieve relatively
balanced self-training of unlabeled data via class-aware thresh-
olds. As a result, AdaptMatch can decrease the negative
impact of wrong pseudo-labels while increasing the prediction
discrimination.

III. ADAPTMATCH-BASED SEMISUPERVISED BINARY
SEGMENTATION

In this section, some notations of semisupervised binary
segmentation are given. Then, the shared segmentation model
is introduced in brief. Finally, AdaptMatch is introduced in
detail, with the whole workflow shown in Fig. 1.

A. Notations

In the SSL setting, there are two subsets of the training
data: a limited-labeled training set Dl and an unlabeled set
Du . Their sample sets are denoted as Dl

= {(xl , yl)}
Nl
i=1,

and Du
= {(xu)}

Nu
i=1, respectively, where x, y, and N are an

image, its pixel-wise labels, and the sample number of its set,
respectively. Here Nl is much smaller than Nu , that is, there
are significantly fewer limited-labeled data than unlabeled
data. The available labels yl and unavailable labels yu share
the same class space {0, 1}, where 0 is the background and
1 is the foreground. In AdaptMatch, there are two individual
thresholds of the foreground and background, denoted as
{τ F , τ B}, for the adaptive pseudo-labeling of unlabeled data.
The calculation of {τ F , τ B} is based on the historical pre-
dictions of both the labeled and unlabeled data, and therefore
two corresponding memory banks, denoted as {MF ,MB},
are used to store these historical predictions. The core of this
article focuses on utilizing the unlabeled data Du effectively
for model self-training at a balanced ratio of the foreground
and background via the adaptive thresholds {τ F , τ B}.

B. Shared Segmentation Model

The core of semisupervised segmentation (SSS) is to design
an efficient strategy to utilize unlabeled data for model train-
ing, which is free of particular model architectures. Starting
from this principle, the proposed method can be combined
with various neural networks and significantly boost their
performance, as verified in Section IV-C. To make a fair
evaluation, the comparison experiments among the proposed
method and other SSS methods are carried out on the same
encoder–decoder architecture, i.e., SegFormer_B2. In detail,
a semantic segmentation model consists of an encoder E and
a decoder G. E is used to extract a high-level semantic feature
map f ∈ RH/s×W/s×C from a given image x ∈ RH×W×3,
where [H, W ] is the spatial size and s is the spatial scale
ratio determined by certain segmentation models; G is used to
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Fig. 1. Workflow of the proposed AdaptMatch for RS semisupervised binary segmentation. There are three branches for joint supervised and pseudo-supervised
training on the segmentation model: 1) a labeled branch that uses labeled data for supervised training; 2) a weakly augmented unlabeled branch that
generates trustworthy pseudo-labels from weakly augmented unlabeled data, selected by adaptive thresholds; and 3) a strongly augmented unlabeled branch
for pseudo-supervised training that enforces predictions of the strongly augmented unlabeled data agreeing with the pseudo-labels generated from (2).

make a binary prediction map p ∈ RH×W according to f. The
two sequential steps are denoted as

f = E(x) (1)
p = G(f) (2)

where the encoder E and the decoder G are shared between the
labeled data sampled from L and the unlabeled data sampled
from U . In this article, both the CNN and ViT architectures
have been used as the segmentation model.

To scale the prediction of each pixel of p into the range of
[0,1], the sigmoid operation is applied to each pixel along the
class dimension as

p(i, j) = sigmoid(p(i, j)) =
1

1+ e−p(i, j)
(3)

where [i, j] is the spatial location of p and e is the Euler’s
number.

C. AdaptMatch

As shown in Fig. 1, at each training iteration there are three
branches trained at the same time in the AdaptMatch-based
semisupervised binary segmentation framework: 1) the labeled
branch, which uses labeled data for supervision training;
2) the weakly augmented unlabeled branch, which produces
relatively stable predictions and high-confidence pseudo-labels
of unlabeled data, which are selected by adaptive thresholds
{τ F , τ B}; and 3) the strongly augmented unlabeled branch,
which generates the strongly augmented predictions of unla-
beled data for pseudo-supervision training with the selected
pseudo-labels of the weakly augmented unlabeled branch.

The adaptive thresholds {τ F , τ B} are calculated from the
historical predicted possibilities of both the labeled branch
and the weakly augmented unlabeled branch, which are stored
in two corresponding memory banks {MF ,MB}. For clear
description, each of {MF ,MB} is split into two parts, the
labeled part Ml and the unlabeled part Mu . In other words,
{MF ,MB} = {Ml F

∪MuF ,Ml B
∪Mu B}.

1) Labeled Branch: For an image-label pair {xl , yl} sam-
pled from the labeled set Dl , following the fully-supervised
setting, the image xl

∈ RH×W×3 is weakly augmented and fed
into the shared segmentation model, and then the pixel-wise
prediction map pl

∈ RH×W is obtained by (1)–(3) as

pl
= G(E(xl)) (4)

pl(i, j) = sigmoid(pl(i, j)) =
1

1+ e−pl (i, j)
. (5)

For RS binary segmentation tasks, the labeled data are
used for training the model through the use of two kinds of
supervised losses, binary cross-entropy (BCE) loss and the
intersection of union (IoU, also called Jaccard) loss [4], [53],
as

Ll
BCE =

1
HW

H∑
i=1

W∑
j=1

BCE(yl(i, j), pl(i, j))

=
1

HW

H∑
i=1

W∑
j=1

(−yl(i, j)logpl(i, j)

+ (1− yl(i, j))log(1− pl(i, j))) (6)
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Ll
IoU = 1−

|pl
∩ yl
| + ϵ

|pl | + |yl | − |pl ∩ yl | + ϵ

|pl
∩ yl
| =

H∑
i=1

W∑
j=1

pl(i, j)yl(i, j)

|pl
| =

H∑
i=1

W∑
j=1

pl(i, j)

|yl
| =

H∑
i=1

W∑
j=1

yl(i, j)

(7)

where ϵ is a “smooth” parameter to avoid the illegal division
operation when |pl

| = |yl
| = 0, with its value set to 1.

The whole supervised loss is the combination of the BCE
loss and the IoU loss, as

Lsup = Ll
BCE + Ll

IoU. (8)

Apart from supervising model training, the labeled data
plays another role: updating the labeled part of memory banks,
{MlF,MlB

}. At iteration b, to reduce the storage burden of
the memory banks, the probability prediction map pl

b and
the label map yl

b are resized to 64 × 64 along the dims of
spatial height and width. For each pixel at location [i, j], its
probability prediction, pl

b(i, j), is updated into either MlF or
MlB according to its label yl

b(i, j), asMlF
=MlF

∪ {pl
b(i, j)}, if yl

b(i, j) = 1

MlB
=MlB

∪ {pl
b(i, j)}, otherwise .

(9)

Here, 1 in the first equation is the class index of the fore-
ground. There are two levels of storage units in the memory
banks: pixel and set. Each set stores all the pixels of the
corresponding class at each iteration during training; MlF and
MlB have a maximum number of sets, N l

iter = 100, to control
the frequency at which they are updated. At the beginning of
training when the set length is smaller than N l

iter, the new
set is directly stored in the associated memory bank; then
when the set number reaches N l

iter, the oldest set is deleted
from the memory bank and the newest one is added, that
is, first-in-first-out (FIFO). This updated process ensures that
the stored possibility predictions always come from the latest
500 iterations, which contain class-wise global information at
the dataset level. Unlike the fixed length of sets, the pixel
number of each set varies with the labels of the labeled data.

2) Weakly Augmented Unlabeled Branch: In this branch,
the unlabeled image xu is sampled from the unlabeled set Du ,
and is weakly augmented to xwu. After being fed into the
segmentation model by (1)–(3), its prediction map pwu can be
obtained as

pwu
= sigmoid(G(E(xwu))). (10)

Since that there are no labels of xwu, we use its pseudo-label
map ỹwu

∈ RH×W for the follow-up pseudo-supervision seg-
mentation of the strongly augmented unlabeled image. Here,
ỹwu is generated from pwu as

ỹu(i, j) =

{
1, if pwu(i, j) > 0.5
0, else .

(11)

Similar to labeled data in (9), the prediction map of xwu,
i.e., pwu, is also used to update the unlabeled part of memory
banks, {MuF,MuB

}. Each pixel of pwu is updated into either
MuF or MuF according to its pseudo-label as{

MuF
=MuF

∪ {pwu
b (i, j)}, if ỹu

b(i, j) = 1
MuB

=MuB
∪ {pwu

b (i, j)}, otherwise .
(12)

Here, there is also a maximum iteration number, N u
iter =

3 × N l
iter = 300, to control the frequency with which the

unlabeled memory banks MuF and MuB are cleared and
reupdated.

3) Strongly Augmented Unlabeled Branch: The weakly
augmented unlabeled image xwu is further augmented by some
strong augmentations to xsu as

xsu
= A(xwu) (13)

where A denotes two connected strong augmentations sampled
from an intensity augmentation list whose details are provided
in Section IV-A. Its prediction map psu can also be obtained
via (1)–(3) as

psu
= sigmoid(G(E(xsu))). (14)

Up to now the pseudo-label map ỹwu and the prediction
map psu of the unlabeled image xu are available; there is only
the mask map mwu

∈ RH×W left to select the high-confidence
pixels for self-training. The mask map mwu is determined by
the thresholds {τ F , τ B} that are calculated every iteration as

τ F
=

∑
p∈MF p∑

p∈MF

=

∑
p∈MlF∪MuF p∑

p∈MlF∪MuF

τ B
=

∑
p∈MB p∑

p∈MB

=

∑
p∈MlB∪MuB p∑

p∈MlB∪MuB

(15)

which means the threshold of each class is the average value of
all the predictions of this class within previous N l

iter iterations
for the labeled set and previous N u

iter iterations for the unla-
beled set. The average prediction of each class, i.e., its mean
confidence, can reveal its convergence difficulty in real-time,
and therefore it has the ability to serve as the corresponding
threshold.

Then, the mask map mwu can be calculated as

mwu(i, j) =

{
1, if pwu(i, j)> τ F or pwu(i, j) < τ B

0, otherwise .

(16)

Finally, the unsupervised loss of unlabeled data can be
calculated from the pseudo-label map ỹwu, the prediction map
psu, and the mask map mwu as

Luns =
1

HW

H∑
i=1

W∑
j=1

BCE(psu(i, j), ỹwu(i, j)) ·mu(i, j) (17)

where the detailed operation of BCE is the same as (6).
To avoid unstable self-training of unlabeled data at the training
beginning, at the first N l

iter = 100 iterations mathcal Luns is set
to zero. This equation shows that the binarized predictions of
the weakly augmented image are used as the pseudo-labels
to supervise the training of the strongly augmented image



5625416 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

TABLE I
DETAILED CHARACTERISTICS OF FOUR USED DATASETS

because the weakly augmented image has fewer perturbations
and thereby its pseudo-labels are more trustworthy. The mask
map mwu can adaptively filter out some class-aware low-
confidence pseudo-labels for the biased model and reduce
their negative interference during training. It is worth noting
that the gradient of the weakly augmented unlabeled branch
is stopped, which is mainly used to obtain the “ground-
truth” (pseudo-labels); in contrast, the gradient of the strongly
augmented unlabeled branch is normally generated for
self-training.

4) Overall Loss and Training Procedure: The overall loss
function is the combination of the supervised loss Lsup in (8)
and the unsupervised loss Luns in (17) as

L = Lsup + Luns. (18)

During the training stage, Lsup uses all the labeled data to
train the model for binary segmentation. On top of it, Luns
can further enhance the model performance by self-training
with class-wise high-confidence pseudo-labels derived from
unlabeled data, which are selected by the proposed method
at a balanced ratio. As a result, the combination of all the
labeled data and the class-balanced high-confidence pseudo-
labeled data derived from unlabeled data can effectively train
the model.

To better describe the pipeline of the proposed AdaptMatch
for semisupervised binary segmentation of RS images, its
training procedure is summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, experimental settings, including datasets,
metrics, and implementation details, are first introduced. Then,
the ablation study of AdaptMatch is conducted to explore
the effectiveness of each component, with the corresponding
metric visualizations during training. Next, the thresholds
of the foreground and background are plotted at the train-
ing stage. Model-agnostic experiments are then conducted
on different segmentation models to verify the robustness
and generalizability of AdaptMatch. After that, extensive
comparison experiments are implemented to compare the

Algorithm 1 Training Procedure of AdaptMatch

Input: labeled training set Dl = {(xl
i , yl

i )}
Nl
i=1, unlabeled

training set Du = {(xu
i )}

Nu
i=1, segmentation model E-G,

and total iteration number Ni ter , empty memory banks
MF
=Ml F

∪MuF , MB
=Ml B

∪Mu B with labeled
memory bank length N l

i ter and unlabeled memory bank
length N u

iter
for i ter ← 1 to Ni ter do

sampling data: sample and weakly augment labeled pair
(xl , yl) from Dl and unlabeled image xwu

i from Du , and
strongly augment xwu into xsu ;

obtaining predictions and pseudo-labels: obtain labeled,
weakly-augmented, and strongly-augmented predictions,
pl , pwu , and psu , from xl , xwu , and xsu , via segmentation
model E-G; then generate pseudo-label ỹwu from pwu ;

calculating supervised loss: calculate the supervised loss
Lsup between pl and yl ;

updating memory banks: use pl to update Ml F and
Ml B , and use pwu to update MuF and Mu B ;

calculating thresholds: calculate foreground and back-
ground thresholds, τ F and τ B , from MF

=Ml F
∪MuF

and MB
=Ml B

∪Mu B ;
calculating mask map: calculate mask map mwu from
pwu based on τ F and τ B ;

calculating unsupervised loss: calculate the unsupervised
loss Luns based on psu , ỹwu and ml ; if i ter is less than
N l

i ter , Luns is set to 0;
optimizing model: use the combination of Lsup and Luns

to simultaneously optimize the segmentation model;
end
Output: optimized segmentation model E-G

proposed AdaptMatch and other state-of-the-art SSS methods
in RS semisupervised binary segmentation. Finally, some
segmentation samples and t-Distributed Stochastic Neighbor
Embedding (tSNEs) of high-level features are provided for
intuitive comparison.
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Fig. 2. Some examples of Inria, Massachusetts, DeepGlobe, and WHU.

A. Experimental Settings

1) Datasets and Metrics: To comprehensively evaluate the
proposed method in RS semisupervised binary segmentation,
we conduct experiments on two widely studied tasks, build-
ing footprint extraction and road extraction. Correspondingly,
two building footprint datasets, Inria [39] and Massachusetts
[54], and two road datasets, WHU_Roads [55] and Deep-
Globe_Roads [56], have been used. Inria contains the five
cities of Austin, Chicago, Kitsap, Tyrol, and Vienna, and we
conduct the comparison experiments on each of them for
individual and stable evaluation; because DeepGlobe’s test
ground-truth is publicly available, we split its training part
into training, validation, and test. As a result, there is a total of
eight subdatasets in comparison experiments: Austin, Chicago,
Kitsap, Tyrol, Vienna, Massachusetts, WHU, and DeepGlobe.
All of them are cropped into the same size of 512× 512 and
then are randomly split into training, validation, and test sets.
The details of these datasets are summarized in Table I. Some
examples of these datasets are shown in Fig. 2. Four classical
metrics of the foreground class are used to evaluate binary
segmentation performance comprehensively: Recall, Precision,
IoU, and F1-score. For each of these metrics, the higher their
values are, the better their performance is.

2) Implementation Details: Experiments are employed based
on three advanced ImageNet-pretrained [57] semantic segmen-
tation backbones, including two CNNs, EfficientUNet-B1 [58],
and Deeplab_v3+ [59], and one state-of-the-art ViT backbone,
SegFormer-B2. The weak augmentations for the labeled data
and weakly augmented unlabeled data include random vertical
flip, random horizontal flip, random rescaling between 0.5 and
2.0, and random crop. In addition to the weak augmentations,
nine kinds of strong augmentation strategies referred from
RandAugment [48], [60] are applied to the strongly aug-
mented unlabeled data: equalize, identity, contrast, sharpness,
autocontrast, brightness, color, posterize, and solarize. After
being cleared, they accumulate from scratch again. Compar-
ison methods are reproduced based on their official codes,
including CCT [20],1 CutMix [46], [47],2 CPS [21],3 CCVC

1https://github.com/yassouali/CCT
2https://github.com/Britefury/cutmix-semisup-seg
3https://github.com/charlesCXK/TorchSemiSeg

[22],4 FixMatch [34],5 UniMatch [37].6 For the actual model
training, Adam [61] is used as the optimizer to train the
models. The learning rate is initialized at 2.5e-4 and decreases
with iterations as lr = lrinit · (1− (iter/Niter))

0.9, where Niter is
the total number of training iterations. The mini-batch size
M is set to 4 for Only-sup, Fully-sup, FixMatch, and our
AdaptMatch, and to 2 for CCT, CutMix, CPS, CCVC, ICNet,
and UniMatch because of their high GPU memory occupation.
In our AdaptMatch, the labeled, weakly augmented unlabeled,
and strongly augmented unlabeled branches share the same
mini-batch size of 4 at each iteration. All the methods are
trained for 10K iterations for all the building footprint datasets
and 20K iterations for the road datasets, and they are evaluated
every 500 iterations. During training, the models with the
best validation performance are saved and tested by the test
sets after training. The experiments are implemented based on
PyTorch 1.9.17 on one Tesla V-100 GPU with 32 GB memory.

B. Ablation Study

In general, the whole objective function of AdaptMatch
consists of the supervised loss Lsup for the labeled data and the
unsupervised loss Luns for the unlabeled data. Here, it is worth
noting that Luns is significantly affected by the thresholds
{τ F , τ B}. To verify the respective effect of the two sets, Luns
is split into two corresponding parts, of which one is to only
use the labeled set for calculating {τ F , τ B} (denoted as Ll

uns)
and the other to also use the unlabeled set for calculation
(denoted as Lu

uns). Here, the ablation experiments are con-
ducted in Inria-Austin, Inria-Kitsap, WHU, and DeepGlobe,
with SegFormer-B2 as the binary segmentation model at three
labeled ratios of 1%, 5%, and 20%. Experimental results are
provided in Table II, where overall accuracy (OA) is provided
to evaluate the overall performance of both foreground and
background.

The first lines show the baseline performances trained only
on the labeled sets by the BCE + IoU loss, that is, Lsup.
Beyond that, when the labeled set is used for calculating
τ (Lsup + Ll

uns), the Recall metric improves significantly,

4https://github.com/xiaoyao3302/CCVC
5https://github.com/google-research/fixmatch
6https://github.com/LiheYoung/UniMatch
7https://pytorch.org/
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TABLE II
ABLATION STUDY OF THE PROPOSED ADAPTMATCH

TABLE III
MODEL-AGNOSTIC EXPERIMENTS OF THE PROPOSED ADAPTMATCH

Fig. 3. Adaptive foreground and background thresholds with training iterations under the 1% labeled ratio. For better visualization, red: τ B , blue: 1− τ F .
(a) 1% Inria-Austin. (b) 1% Inria-Kitsap. (c) 1% WHU_Roads. (d) 1% DeepGlobe_Roads.

especially at the small ratio. For example, Lsup + Ll
uns boost

the Recall of 1% labeled Inria-Kitsap from 62.73% to 73.99%,
with an improvement of 11.26% points. After further utilizing
the unlabeled set for the calculation of {τ F , τ B}, there is not

always performance improvement, and there is even a small
drop of Recall at the labeled ratio of 1%. The main reason
is that when there is not enough data for model training,
the pseudo-labels of the unlabeled data are biased to the
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Fig. 4. Pixel number ratios of predicted foreground/background of validation sets by a fixed threshold (FixMatch) and adaptive thresholds (our AdaptMatch),
respectively. The dashed lines are the real pixel ratios of ground-truth foreground/background. (a) 1% Inria-Austin. (b) 1% Inria-Kitsap. (c) 1% WHU_Roads.
(d) 1% DeepGlobe_Roads.

TABLE IV
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-

THE-ART METHODS ON THE INRIA-AUSTIN DATASET BASED ON
SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

background. In this case, these low-confidence foreground
samples are predicted as background and do not contribute
to the threshold of the foreground. Therefore, the foreground
threshold τ F of Lsup +Ll

uns +Lu
uns becomes relatively higher,

resulting in lower Recall or even a marginal drop in some
1% and 5% cases compared with Lsup + Ll

uns. Nonetheless,
Lsup+Ll

uns+Lu
uns yields the more stable performance of all the

datasets under different labeled ratios, which is more friendly
to practical RS semisupervised binary segmentation tasks with
unclear labeled ratios.

In general, the introduction of the adaptive thresholds
{τ F , τ B} significantly improves the recall rate of the fore-
ground while maintaining relatively stable precision, and thus
improves the overall performance, as observed from IoU and
F1. The improvement of OA is not as significant as IoU

TABLE V
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-

THE-ART METHODS ON THE INRIA-CHICAGO DATASET BASED ON
SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

and F1 because the improvement mainly comes from the
foreground, which only accounts for a small part of all pixels
but attracts our main interest. It is worth mentioning that the
performance gain of the proposed decreases with the increase
of the labeled ratio, especially for 20%. The main reason is that
although there is a big gap in the absolute number of labeled
data between 20% and 100%, the increase in effective samples
is not significant. In other words, there are redundant data in
100%, most of which is repetitive from feature representation.
As a result, the performance of Only-Sup quickly reaches
saturation with an increase in the labeled ratio, which can
be observed from the rapid decrease in the gap between it and
Fully-Sup in Section IV-B.
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TABLE VI
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-

THE-ART METHODS ON THE INRIA-VIENNA DATASET BASED ON
SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

C. Model-Agnostic Experiments

To verify the generalizability of our AdaptMatch on seg-
mentation models, in this section, we conduct model-agnostic
experiments based on Deeplab_V3, EfficientUNet_B1, and
SegFormer_B2, of which the first two are classical CNNs
and the third is ViT architecture. Similar to Section IV-B, the
experimental results are based on Inria-Austin, Inria-Kitsap,
WHU_Roads, and DeepGlobe_Roads as the model at three
labeled ratios of 1%, 5%, and 20%. The results are shown in
Table III.

The proposed AdaptMatch can boost the performance of
all the models at different ratios to different extents, demon-
strating its robustness and generalization to models. When
only considering models, we find that Deeplab_V3+ shows
the worst performance in comparison with EfficientUNet_B1
and SegFormer_B2 for both Only-Sup and AdaptMatch. For
example, at the ratio of 1%, the smallest IoU gain of
Deeplab_V3+ is 2.25% of Inria-Kitsap; in contrast, at the
same ratio, the smallest IoU improvements of Efficien-
tUNet_B1 and SegFormer_B2 are 4.68% of Inria-Kitsap and
3.21% of WHU, respectively. The relatively poor segmentation
ability of Deeplab_V3+ leads to unstable feature represen-
tation and probability predictions, limiting the capacity of
the proposed AdaptMatch to utilize high-quality unlabeled
data for self-training. When it comes to EfficientUNet_B1
and SegFormer_B2, the gains obtained from AdaptMatch are
greater and more stable. This phenomenon demonstrates that

TABLE VII
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-

THE-ART METHODS ON THE INRIA-KITSAP DATASET BASED ON
SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

an excellent segmentation model can not only provide high
base performance in the only supervised setting but also
produce high-quality and stable predictions of unlabeled data
for further SSL.

D. Visualizations of Adaptive Thresholds and Rebalanced
Pseudo-Labels

To intuitively show the effect of our AdaptMatch, we visu-
alize the thresholds of the foreground and the background
when training. The used datasets and labeled ratios are set
the same as in Section IV-B and IV-C. The thresholds are
plotted in Fig. 3. In Fig. 3, the dashed line represents the fixed
threshold of 0.95 that remains consistent with FixMatch [34].
The red lines are the thresholds calculated by AdaptMatch of
the foreground at the 1% labeled ratio, and the blue lines are
those of the background.

When we pay attention to the difference between classes,
it can be observed that, compared with the foreground, the
background has a much higher threshold that rapidly con-
verges to quite close to 1; in contrast, the threshold of the
foreground does not reach 0.95 in most cases. This indicates
that it is harder for models to detect the foreground than
the background, which is consistent with our motivation to
decrease the threshold of the foreground and increase that of
the background for balanced training. From the perspective of
tasks, we find that WHU_Roads and DeepGlobe_Roads have
lower thresholds of the foreground (road) than Inria-Austin and
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TABLE VIII
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-

THE-ART METHODS ON THE INRIA-TYROL DATASET BASED ON
SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

TABLE IX
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-THE-

ART METHODS ON THE MASSACHUSETTS BUILDINGS DATASET BASED
ON SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

Inria-Kitsap (building footprint), revealing that road extrac-
tion is harder than building footprint extraction. There are
two possible reasons for this: 1) the image resolution of
WHU_Roads and DeepGlobe_Roads is lower than that of
Inria, which increases their difficulty in obtaining fine-grained

TABLE X
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-

THE-ART METHODS ON THE WHU_ROADS DATASET BASED ON
SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD AND THE

SECOND ONES ARE UNDERLINED

semantic features; and 2) there are many occlusions on roads,
such as trees and buildings, which is more severe than that of
buildings.

To further demonstrate the effect of AdaptMatch in rebal-
ancing pseudo-labels, in Fig. 4, we plot the pixel ratios of the
predicted foreground to the background of validation sets dur-
ing training based on a fixed threshold of 0.95 (i.e., FixMatch)
and adaptive thresholds calculated by our AdaptMatch. Fig. 4
shows that the adaptive thresholds of our AdaptMatch have
similar converging trends of pixel number ratios to the fixed
threshold of FixMatch due to their similar strong-to-weak self-
training mechanism. However, the ratios of FixMatch remain
higher than the real ratios in the middle and later stages of
training; in contrast, the ratios of the adaptive thresholds are
closer to the real ratios (shown by dashed lines in Fig. 4).
Such results verify the positive effects of adaptive thresholds
on rebalancing foreground and background distributions.

E. Comparison Experiments

To objectively evaluate the effectiveness of the proposed
AdaptMatch in RS semisupervised binary segmentation, it is
compared with some SSS methods based on the same model
of SegFormer_B2 with the same training iterations. There are
eight comparison methods in total, two supervised baselines,
and seven diverse state-of-the-art methods, as follows.

1) Only-Sup, which only uses the limited labeled data for
model training.
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TABLE XI
COMPARISON RESULTS (%) OF ADAPTMATCH AND SOME STATE-OF-THE-

ART METHODS ON THE DEEPGLOBE_ROADS BUILDINGS DATASET
BASED ON SEGFORMER_B2. THE BEST RESULTS ARE IN BOLD

AND THE SECOND ONES ARE UNDERLINED

2) Fully-Sup, which utilizes all the labeled data for training.
3) CCT [20], which keeps consistent predictions when

adding various perturbations at the feature level, and is
applied to semisupervised change detection in [51].

4) CutMix [46], [47], which applies the data augmentation
technique of CutMix to the self-training of the SSS
model as a regularization.

5) CPS [21], which introduces a classical cross-pseudo
supervision regularization based on the predictions from
two homogeneous but differently initialized models.

6) CCVC [22], which further extends the cross-supervision
predictions to heterogeneous forms and proposes a dis-
tance loss to decrease their feature distance on the basis
of CPS.

7) ICNet [44], which designs an iterative contrastive net-
work for the semisupervised segmentation method of RS
images.

8) FixMatch [34], which utilizes the high-confidence
pseudo-labels from a weakly augmented instance
selected by a fixed threshold to supervise the classifi-
cation of a strongly augmented counterpart.

9) UniMatch [37], which further introduces a feature
perturbation branch and another strong-augmentation
branch on top of FixMatch.

Here, the proposed AdaptMatch follows a classical strong-
to-weak self-training paradigm for the unlabeled data of
FixMatch and UniMatch. However, different from the fixed
threshold of FixMatch and UniMatch, the proposed method

TABLE XII
TRAINING TIME OF AN ITERATION OF DIFFERENT METHODS ON

1% LABELED INRIA-KITSAP, WHICH IS OBTAINED BY AVERAG-
ING 100 ITERATIONS FOR STABLE RESULTS

Fig. 5. Foreground IoU of the validation set during training.

further designs an adaptive threshold mechanism for selecting
class-wise high-confidence pseudo-labels based on class-aware
convergence difficulties.

The comparison experiments are conducted on Inria-
Austin, Inria-Chicago, Inria-Vienna, Inria-Kitsap, and Inria-
Tyrol, Massachusetts_Buildings, WHU_Roads, and Deep-
Globe_Roads at the labeled ratios of 1%, 5%, and 20%. Since
Massachusetts_Buildings contains relatively high noise labels,
there is no 1% labeled Massachusetts_Buildings. The results
are provided in Tables IV–XI.

From the perspective of methods, it can be seen that: in com-
parison with Only-Sup, the baseline, the CutMix, CCT, CPS,
and CCVC methods show negative effects of the utilization of
unlabeled data on model training; in contrast, UniMatch, Fix-
Match, and the proposed AdaptMatch have positive influences
on performance improvement for the comprehensive metrics
of IoU and F1-score, which consider Recall and Precision
together. The significant difference among them is that the
first group of methods uses all the unlabeled data for training,
while the second group of methods only uses the high-
confidence pseudo-labeled data for training via fixed/adaptive
thresholds. Their performance gaps verify the necessity of
the selection of pseudo-labels in RS semisupervised binary
segmentation, especially with the serious imbalanced distri-
bution of foreground and background. Although FixMatch
outperforms AdaptMatch in a few scenarios, our AdaptMatch
still achieves the majority of the best results, which are more
robust across datasets in different ratios.

From the perspective of metrics, it could be observed
that when maintaining relatively stable Precision, AdaptMatch
has a high Recall ratio of the foreground. The Recall of
AdaptMatch is higher than UniMatch and FixMatch while its



HUANG et al.: AdaptMatch: ADAPTIVE MATCHING FOR SEMISUPERVISED BINARY SEGMENTATION 5625416

Fig. 6. Sample visualization of our AdaptMatch and comparison methods. Here, red represents the areas that are foreground in ground-truth but are predicted
as background, blue represents the areas that are background in ground-truth but are predicted as foreground, and white represents the areas that are correctly
predicted as foreground. In other words, “red + white” is the ground-truth, while “blue + white” is the predicted area. The less area red + blue covers, the
better the performance is.

Precision is higher than others in general. This indicates that
our method has a more balanced performance. As a result,
AdaptMatch achieves almost all the best IoU and F1-score
values.

Another interesting phenomenon is that our Adapt-
Match with 20% labeled data can obtain performances that
approach or even exceed Fully-Sup with 100% labeled
data in some cases, such as Massachusetts_Buildings and
DeepGlobe_Roads. The main reason is that the proposed
AdaptMatch focuses on selecting balanced pseudo-labels
for self-training to avoid the model bias to the dominant
foreground, which is not sufficiently considered in the fully-
supervised setting. In addition, AdaptMatch applies widely
used strong augmentations to unlabeled data that are helpful
for model generalizability. Moreover, these datasets contain
more noisy data increasing as the labeled ratio rises, which
reduces the gain of the labeled data; by contrast, the adaptive
thresholding mechanism of AdaptMatch can filter out numer-
ous noise.

In general, the proposed AdaptMatch can achieve superior
and more robust performance across different RS semisuper-
vised binary tasks at various labeled ratios, in comparison with
other SSS methods.

F. Training Complexity and Convergence

Training complexity and convergence are important in prac-
tice and are therefore discussed in this section. A comparison
of training complexity and convergence is made among the
basic method Only-Sup, the two best comparison methods,
UniMatch and FixMatch, and the proposed AdaptMatch.

Running on the same hardware Tesla V-100 GPU, Table XII
shows the time cost of an iteration of the methods with their
best IoUs. Overall, UniMatch, FixMatch, and AdaptMatch
have a similar training complexity between 1.31 and 1.53 s
for each iteration, which is around 2.3× that of Only-Sup.
The key difference between FixMatch and AdaptMatch is
that AdaptMach utilizes an extra memory mechanism to store
predictions and calculate thresholds. Nevertheless, the increase
in training time from FixMatch to AdaptMatch is only 0.07 s
by 4.8%, which verifies the efficiency of the proposed memory
bank-based threshold strategy.

The foreground IoU of the validation set of the methods
during training is shown in Fig. 5. It can be found that the
proposed AdaptMatch outperforms other comparison methods
with higher and more stable results, especially in the second
half stage. As shown in the dashed rectangle, AdaptMatch
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convergences to stable status roughly from 8000 iterations
which is similar to Only-Sup; by contrast, FixMatch and
UniMatch have fluctuating performance until 9000 iterations.
The results demonstrate the superior training convergence of
the proposed method.

G. Visualization of Some Samples

To intuitively compare the performance of the proposed
AdaptMatch and the comparison methods, some example
visualizations are provided in Fig. 6.

It can be seen that our method can achieve the most
balanced performance between Recall and Precision. What’s
more, we can intuitively observe some characteristics of
wrongly predicted areas, which we hope will inspire future
work in RS semisupervised binary segmentation. First,
we observe that many wrongly predicted pixels are located
at the edges of buildings and roads (foreground) as a result of
the occlusion from high objects (such as trees), the shadows
caused by slanting sunlight, and inaccurate ground-truth. The
second error source is the insufficient feature learning of some
confusing objects and areas, such as the rectangular square in
1% labeled Inria in Fig. 6, which is similar to buildings.

V. CONCLUSION

In this article, we rethink RS semisupervised binary seg-
mentation tasks from the perspective of the imbalanced
distribution of the foreground and background, which severely
degrades the self-training of unlabeled data on segmenta-
tion models. To alleviate this problem, we propose a novel
AdaptMatch-based segmentation framework for RS semisu-
pervised binary segmentation. The proposed AdaptMatch can
select high-quality pseudo-labels and thus create a relatively
balanced self-training through the use of adaptive thresholds
for foreground and background. In addition, AdaptMatch is
a plug-and-play module that can be easily combined with
various CNN and ViT backbones. In comparison with some
other state-of-the-art SSS methods, our AdaptMatch achieves
superior and more robust performance on different RS binary
segmentation tasks at various labeled ratios, demonstrating its
effectiveness and generalizability.

In future work, some more fine-grained thresholds related to
semantic information could be further designed to obtain more
accurate pseudo-labels. Taking building footprint extraction
as an example, the buildings could be separated into several
types, each with its own respective thresholds.
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