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Ice-Core Micro-CT Image Segmentation With Deep
Learning and Gaussian Mixture Model
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Abstract— Ice cores of polar regions (ice sheets) are one of
the most prominent natural archives that can reveal essential
historical information from the past environment of our planet.
The ice-core microstructure is a key feature in determining the
principal properties of ice such as pore close-off, albedo, and
melt events. Microcomputer tomography (CT) scans can provide
valuable information about the microstructure of materials,
although achieving a high-quality automated segmentation of
porous materials, especially with phase/density changes is still
a challenge. This work proposes a new method for improving
the segmentation of porous microstructures where a weak seg-
mentation [Gaussian mixture model (GMM)] on high-resolution
(30 µm) data is used as ground truth to train a deep-learning
model (U-net) for segmentation of low-resolution (60 µm) data.
This approach has reached high segmentation accuracy in terms
of quantitative metrics having the F1-score of 92.5% and an
intersection over the union (IoU) of 91%, with a considerable
improvement compared to thresholding and unsupervised meth-
ods. Also, the segmentation results of U-net are closer to the real
weight, density, and specific surface area (SSA) of the specimen.

Index Terms— Deep learning, ice core, microcomputer tomog-
raphy (CT), segmentation, unsupervised learning.

I. INTRODUCTION

OVER time, snow accumulates in polar ice sheets
(Antarctica and Greenland) and undergoes a process of

compaction due to the weight of the overlying snow layers.
This compaction causes the snow grains to become more
tightly packed, resulting in the formation of a more dense
structure ranging from sintered snow to firn and ice.

As snow accumulates, the underlying firn becomes more
compact, and it can eventually transform into solid glacial ice.
This transformation can take many years or even centuries,
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depending on factors such as temperature, precipitation, and
other environmental conditions [1]. Air that was once in the
open pore structure of snow gets preserved in the form of air
bubbles surrounded by ice. These air bubbles are snapshots of
the atmosphere of the past [2].

Polar ice cores are an excellent repository of historical
climate, due to their ability to preserve a wide range of proxies,
including greenhouse gas concentrations [3], aerosol-related
atmospheric impurity records [4], on timescales ranging from
decades to hundreds of millennia, and they could be utilized
as a tool to track the history of global temperature [5], [6].

One of the main features of the ice core is microstructure.
Ice-core microstructure contains invaluable data about melting
events (melt layers) [7], optical properties, and global warming
information [8], [9], [10].

The evolution from snow to ice occurs typically over the
top 120 m. Hence, to understand the driving processes, it is
necessary to investigate this depth range. The structure of
the snow/firn column plays a critical role in determining the
pore close-off point (age gap between ice and gas) as well as
ice-core dating [11], [12]. This section of the ice core is the
part that this study will focus on.

To interpret the microstructure of snow/ice cores, there
are different techniques such as fabric analysis, Raman spec-
troscopy, large-area scanning microscope (LASM), optical line
scanner, scanning electron microscope (SEM), and computer
tomography (CT). All these methods produce image data that
could benefit computer vision techniques to process [13], [14],
[15], [16], [17], [18].

One of the most promising methods of ice-core microstruc-
ture analysis is X-ray imaging, specifically CT. The CT scan
data is a sequence of 2-D images being horizontal slices
through the core and in this study, each 2-D image is consid-
ered individually. Ice-core micro-CT images can be taken in
various types, modalities, resolutions, and ice characteristics.
This leads to the creation of CT images of a porous material
(e.g., ice-air mixture) that has a diverse density across the top
120 m of ice core starting with low-density snow (0.08 g/cm3)
and then the middle part firn (0.35 g/cm3) and high-density
Polar ice (0.91 g/cm3). This is a major challenge to develop a
robust image segmentation tool for such a range of densities.

To perform image segmentation, the current state-of-the-
art algorithms are divided into two main groups. The first
group is traditional algorithmic-based models such as the
region growing [19], random walk [20], active contour models
[21], and graph cut models [22]. These models perform many
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computations while producing a segmented mask and some of
them are prone to changes in image histogram and range of
intensity values. Also, they require user intervention (manual
inputs) to obtain an accurate segmentation. For example,
the user needs to provide seeds for region growing, graph
construction parameters, adjacency matrix parameters, energy
function parameters, and so on.

The second group is based on artificial intelligence (A.I.)
models that rely on convolutional neural networks (CNNs)
which can get the segmentation results with a significant
decrease in inference time and minimal need for human inter-
vention. Among CNN models, the U-shaped encoder–decoder
architecture (U-Net) is well-known for image segmentation
and used by researchers in different fields [23], [24], [25],
[26]. Despite the high accuracy of these models, they are
computationally expensive during the training phase, and they
mostly require plenty of labeled data (supervised learning).
Also, these models are not fully interpretable, and there is a
possibility of creating unexplained features while performing
segmentation [27], [28].

By utilizing the above-mentioned segmentation methods,
different research groups tried to perform segmentation on
micro-CT images of porous materials in different fields of
study [29], [30]. Some researchers have used aggregated
physical microstructure parameters to validate the segmen-
tation results, that is, density, porosity, specific surface area
(SSA), trapped air bubbles, and casting, while others with
ground-truth images used pixelwise metrics such as intersec-
tion over union (IoU), Dice, and accuracy.

Researchers with Otsu’s thresholding and triangle algorithm
of ImageJ (a Java-based image-processing program) seg-
mented ice-core X-rays with an empirical approach. Their
algorithm was able to segment young sea ice through X-ray
microtomographics with an absolute uncertainty of 0.5%–1%
brine volume [31].

Another research group has shown the capabilities of meth-
ods such as sequential filtering (denoising, thresholding, and
postprocessing) as well as energy-based segmentation on CT
scan volumes of snow. Then, the microstructure parameters
such as SSA were computed from the segmented images.
It was shown that both of the methods were prone to hardware
setup, but the energy-based (graph cut) method is not subjec-
tive to the choice of a human user and it benefits from local
spatial information, with less affection of beam hardening [32],
[33], [34].

Similarly, researchers implemented energy-based methods
on super-voxels with a majority voting approach (QCuts-3-D)
to segment a porous media with various particle shapes. After
comparing the model outputs with the given ground truth, they
reported reaching an average IoU of 0.88, which was higher
than previous studies [35].

On the other hand, with a deep-learning (3-D-Unet)
approach, researchers were able to segment lithium-ion battery
microstructures with an averaged Dice score of 0.58 via
training their model on synthetic data. They have also shown
that the accuracy of the 3-D-Unet is higher than that of
the random-walk and k-means clustering methods [36]. In a
similar study, to facilitate the process of obtaining labeled data

for CNN models, a multi simple linear iterative clustering
(MultiSLIC) algorithm was developed to help human users
in pixelwise labeling of rock images [37].

To the best of our knowledge, U-net architecture was never
employed for ice-core microstructure segmentation in CT
images. Overall, generating ice-core structures with enough
details was always a challenge for researchers in the field
of glaciology due to several significant obstacles such as the
following.

1) Complexity of the shape of bubbles and inner structures
which varies with the depth of the ice core (porosity
range of 0.05–0.8).

2) Considering the shape complexity of the microstructure
of Polar ice cores, low-resolution scanning leads to the
creation of many mixed pixels (i.e., partially air and
partially ice).

3) Taking a high-resolution (30 µm) CT scan is tedious
and time-consuming which makes it impossible to scan
the whole ice-core column (120 m) with high resolution.

4) Lack of ground truth leads to rule-based or unsupervised
methods which demand operator intervention all the
time.

5) Manual thresholding, rule-based algorithms, and unsu-
pervised methods have low accuracy while segmenting
low-resolution scans.

6) Ice is a crystal material, so scattering increases with the
increase of ice density in the specimen. This leads to
higher intensity values of air pixels in dense ice. Thus,
no range of intensity can define the air pixels in all
specimens in different depths.

7) As the X-ray source is broadband (cone type), and the
X-ray filament life decays, various types of other noise
and artifacts might occur as well.

For the first time by utilizing unsupervised and supervised
machine-learning models along with a unique CT scan system
at AWI CT lab, it is possible to perform a full segmentation
and study the polar ice microstructure on many various
specimens. Here, we propose a combined approach of super-
vised and unsupervised models to compensate for the lack of
ground truth. The low-resolution scans (60 µm) are considered
input data for the deep-learning model. The Gaussian mixture
model (GMM) receives the high-resolution (30 µm) inputs
and generates the segmentation. Then, these segmentations
are downsized to the same size as low-resolution scans to be
used as ground truth for training the deep neural network.
This approach can solve the above-mentioned issues and
offers considerable improvements in ice-core segmentation.
This article describes the methodology and validation of the
proposed model.

II. DATASET GENERATION

For this study, three ice cores (specimens) were taken from
Alfred Wegener Institute ice-core storage and transferred to
the AWI-Ice-CT lab considering frozen transport protocols
(<−20 ◦C). The lab’s CT scan machine can make microscale
CT images from ice cores with a max length of 1 m and
diameter of 15 cm, and the machine source of X-ray is
producing cone shape beams [38].
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TABLE I
ICE-CORE SPECIMEN META-DATA

Fig. 1. Micro-CT imaging procedure.

To increase the accuracy of the measurement, the imaging
method was set to helical mode. In this mode, the projections
are improved by having the signals that are collected from
the center-line beams which were perpendicular to the axis of
rotation having the width of a pixel. This method increases
unification with less distortion and artifacts. As shown in
Fig. 1, the specimen is put inside a carbon fiber tube and
then fixed to a gripper on the machine table. The X-ray
source and the detector are synchronized and move vertically
while the specimen rotates around its axis. To minimize the
noise, in each imaging angle (0.09◦ for 30-µm resolution),
the CT machine takes an image averaging over eight scans.
This forms a helical movement that results in the highest
machine accuracy. In the end, all the images are processed in
the reconstruction stage to make cross sections of the specimen
(see Fig. 2) [39].

To provide images for the current study, the specimens
were scanned with 30-µm resolution resulting in cross-section
images of 4096 × 4096 pixels. The beam power was set to
28 W with an applied voltage of 140 KV, a target current
of 200 µA, an exposure time of 1000 ms, and sampling
with 4000 images per 360◦ rotation. For each specimen, the
scanning time was around 35 h with another 18 h for the
reconstruction process. The reconstruction was performed via
nine graphic cards (NVIDIA GeForce GTX 1080 Ti) at AWI
ice-core CT lab.

To train the neural network, input images and ground truth
should lay on each other perfectly, and any misalignment in
the dataset can ruin the training process. To have this align-
ment between two different resolutions, both of them were
reconstructed from the high-resolution projections. To elabo-
rate, the high-resolution images were reconstructed from the
30-µm projections directly, and the low-resolution images
were reconstructed from the downsized projection (downsizing
from 30 to 60 µm with linear averaging). Consequently, two
sets of images with different resolutions were reconstructed
that could perfectly lay on top of each other after resizing.

The three specimens (see Table I) are selected from three
different depths (snow, firn, and bubbly ice) with a center depth
of 0.4 m to more than 100 m, two samples from Antarctica and
one sample from Greenland to make sure the final developed
model is capable of performing the segmentation of different
ice structures of the snow/firn column from necessary regions
that are the main concerns of polar researchers (see Table I).
Among samples of this study, the bubbly ice is the most
sensitive one since it has the highest ice density which leads
to higher scattering and artifact issues. Also, this specimen
is collected from a marginal location that shows the Glacier
shear stress effects on bubbles. Therefore, preserving the shape
of bubbles during the segmentation is extremely important.
Specimens have a circular cross section with a diameter of
around 10 cm and a length of 15 cm in cylindrical form. The
difference between these specimens is shown in Fig. 2, where
the percentage of ice in sintered snow [see Fig. 2(a)] is less
than air while this proportion changes drastically in bubbly ice
[see Fig. 2(c)]. In this study, each 2-D image (cross section of
the specimen) is considered individually.

The weight of each specimen (see Table I) was measured
with (±0.1-g accuracy). The weights are used for the quanti-
tative validation of segmentations. As we know the voxel size
(resolution), ice density, and ice temperature, we can calculate
the weight of specimens from the segmentation outputs, and
later compare it with the actual physical measured weights.

Overall, after preprocessing and removing extra images,
the final dataset consisted of 7792 2-D images (2620 snow,
2848 firn, and 2324 bubbly ice) in “.PNG” format of which
6195 were used for training and 1597 were employed for
testing purposes. The test images were selected from the lower
20% of each sample (proportion according to Table II). As
the testing volume is separated from the training volume, it is
easier to identify overfitted models. An overfitted model will
have poor performance on a test set located outside of the
training volume.

III. METHODOLOGY

A. Flow of the Study

The flow of the study is shown in Fig. 3. High-resolution
scanning is very time-consuming, so segmenting with no or
few high-resolution images is the goal of this study. The
first step is to enhance the image brightness, remove the salt
pepper noise, and crop the outer ring (carbon fiber casing)
to have only ice particles in the image. Next, the GMM
model is used as a weak learner for making ground truth
from high-resolution images (30 µm). The GMM was fit on
the image pixels to classify them by considering a Gaussian
distribution of intensities for both ice and air. The GMM
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Fig. 2. Dataset sample of 2-D images from (a) sintered snow, (b) firn, and (c) bubbly ice.

Fig. 3. Flow of the study.

output was a high-resolution binary mask. In the next step,
every two binary masks were combined and downsampled
(averaged) to one low-resolution mask. Next, with thresholding
of the subsampled masks, a binary mask was made. Then,
these low-resolution binary masks were used as ground truth.
The U-net is trained using the low-resolution images (60 µm)
and the downsampled binary masks produced from the GMM
model as ground truth. Finally, the model weights are saved
and transferred to the inference phase, and during the inference
workflow, low-resolution images are given to the model for
testing and utilization on later scans.

As shown in Fig. 4, the image that is resized to a lower
size from high-resolution scanning is much sharper than the
low-resolution scans. Low-resolution scans are closer to the
CT machine images than the resized images and contain all
the noises. Therefore, in this study, low-resolution scans were
used as the input for training the U-net model. Consequently,
the U-net model is more reliable, as it was trained with all the
blurriness, noises, and other issues within the low-resolution
scans.

Fig. 4. (a) Resized from high-resolution and (b) low-resolution scans.

B. Producing Ground Truth

Utilizing high-resolution images to provide the ground truth
and later merging high-resolution masks to build a downsam-
pled segmentation increases the accuracy of the ground truth.
To do so, automatic segmentation of high-resolution scans with
nonlearning methods is needed. Among nonlearning methods,
the algorithms with minimal need for user manual input (i.e.,
seed points, energy thresholds, and tuning parameters) are
needed to have a robust segmentation pipeline.

As is common in the field of machine vision, the pri-
mary step for segmentation is trying basic image-processing
techniques that might be able to segment the dataset with
minimal user intervention. Thus, global thresholding, as usual,
comes first for producing a binary mask. Utilizing this method
demands careful investigation of the image histograms along
with frequent manual checks. One method (weight-based
threshold) is to determine a threshold for a specimen (e.g.,
1-m ice core) in a way that the physical weight of the specimen
is almost equal to the calculated weight from the generated
binary mask. The disadvantage of this method is the need
for operator intervention in every meter of ice. Also, the
Z -direction noise (noise from one layer to another). As the
ice density and image noises differ in the dataset, selecting
a specific threshold for the whole specimen increases the
uncertainty of segmentation, and therefore, global thresholding
is not a feasible way for segmenting ice-core CT images.
Also, it is not practical to provide manual thresholds for each
image in the dataset. Additionally, due to the crystal shape
of ice particles, there is a considerable range of scattering
which changes with different ice densities. Consequently, the
intensity values of air in bubbly ice are around 15% higher
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Fig. 5. Different segmentation methods on low-/high-resolution images of three specimens showing missing features and histograms. (a) Original low-res
snow. (b) Original high-res snow. (c) Original low-res firn. (d) Original high-res firn. (e) Original low-res bubbly ice. (f) Original high-res bubbly ice. (g) Otsu’s
method on low-res snow. (h) Otsu’s method on high-res snow. (i) Otsu’s method on low-res firn. (j) Otsu’s method on high-res firn. (k) Otsu’s method on
low-res bubbly ice (l) Otsu’s method on high-res bubbly ice. (m) GMM on low-res snow. (n) GMM on high-res snow. (o) GMM on low-res firn. (p) GMM
on high-res firn. (q) GMM on low-res bubbly ice. (r) GMM on high-res bubbly ice. (s) histogram low-res snow. (t) histogram high-res snow. (u) Histogram
low-res firn. (v) Histogram high-res firn. (w) Histogram low-res bubbly ice. (x) Histogram high-res bubbly ice.

than the air pixel intensities in snow. On the other hand,
there are automated thresholding methods such as Otsu’s
method and GMM that can automatically threshold each image
individually to tackle these issues.

Otsu’s method determines an optimal threshold value from
the image histogram automatically and without user interven-
tion for each image. Although Otsu’s algorithm automatically
performs the segmentation, the segmentation quality is consid-
erably low in some cases. When one cluster possesses more
data points than the other one, Otsu always tends to stand
in the middle of these two clusters. Thus, in high-density ice
specimens, it tends to overestimate the ice (shrinking the holes)
or even not be able to identify some air bubbles as shown in
Fig. 5(i)–(k).

On the other hand, unsupervised methods such as the GMM
demonstrate high-quality segmentation. The GMM algorithm
automatically adapts to the image histogram on every image
in the dataset and computes the natural distribution of the
intensities of the pixels which leads to higher performance
independent of the depth of the ice-core specimen and it can
identify more bubbles than Otsu [see Fig. 5(p) and (q)].

As shown in Fig. 5(s)–(x) with increasing density of ice
(moving from snow to bubbly ice), the shape of the histogram
differs considerably, so, the thresholding method should adapt
accordingly. While it is observed that Otsu’s method remains
always in the middle of two clusters, the GMM model can
get closer to the ice cluster, for example, detect more bubbles
in Fig. 5(q) and (r). It is also observed that small channels,
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Fig. 6. GMM probability predictions on image histogram of low-resolution
sintered snow.

thin bridges, and elongated bubbles are sometimes ignored in
low-resolution segmentation, although they are visible with a
shadowy appearance [see Fig. 5(n) and (r)].

Overall, the GMM model had better performance both
quantitatively [see Fig. 5(v) and (w)] and qualitatively [see
Fig. 5(k) and (q)] in comparison to other Otsu’s method.

C. Machine-Learning Models

A GMM that is fit on a distribution of pixels is developing
a Gaussian probability distribution for each class with an
assigned weight to keep the probability between zero and
one. Often the Gaussian mixture components correspond to
different “types.” Here, the assumption is made, that one
component is snow and another one is air. The probability
distribution is shown in Fig. 6 with µ as the mean value and
σ as the variance.

GMM is a probabilistic model that assumes that the
observed data is generated by a mixture of several Gaussian
distributions [40], [41]. The basic equation for the likelihood
function of a GMM is

P(x |θ) =

K∑
k=1

πkN (x |µk, 6k) (1)

where x is the observed data, k is the number of Gaussian
components, θ is the vector of parameters of the distribution
of observation associated with cluster k including variance and
mean, πk is the mixing coefficient of the kth distributions, µk

is the mean of the kth component, and 6k is the covariance
matrix of the kth component. In this study, there are two
clusters ice and air, and the observations are the intensity
values, that is, scalar, and therefore 6k is a 1 × 1 matrix.

The basic equations for the expectation step (E-step) and the
maximization step (M-step) of the expectation-maximization
(EM) algorithm for estimating the parameters of a GMM are
as follows.

E-Step: This step calculates the expectation of the compo-
nent Ck for each data point in x , given the model parameters
are πk , 6k , and µk with initial step

γnk =
πkN (xn|µk, 6k)∑K

j=1 π jN
(
xn|µ j , 6 j

) . (2)

The M-step is then using the calculated expectation γnk to
improve the model as follows:

πk =
1
N

N∑
n=1

γnk (3)

µk =
1∑N

n=1 γnk

N∑
n=1

γnk xn (4)

6k =
1∑N

n=1 γnk

N∑
n=1

γnk(xn − µk)(xn − µk)
T . (5)

The implementation of GMM was made with Scikit-learn1.2.0.
In this study, the covariance matrix type was set to “tied” (i.e.,
all components share the same general covariance matrix), and
K-means clustering was used for the initialization step [42].

The second model that is used in this study is a deep neural
network. Deep neural networks are the most typical artificial
intelligence (AI) models for processing image data. These
models usually consist of convolution layers, max-pooling,
upsampling, batch normalization, and skip connections.
U-Net uses a series of downsampling and upsampling layers.
The downsampling layers are used to extract features from
the input image, while the upsampling layers are used to
reconstruct the output image [43].

As shown in Fig. 7, the U-Net architecture consists of two
main parts: the encoder part is a sequence of convolutional and
max-pooling layers that reduce the spatial resolution of the
input image. This is used to extract features from the image.

The decoder part is a sequence of convolution and
upsampling layers or transposed convolution layers. It is a
combination of these layers that increases the spatial resolution
of the feature maps. This is used to reconstruct the output
image [44].

The U-Net architecture also features skip connections that
concatenate feature maps from the encoder part with the
corresponding feature maps from the decoder part. This allows
the network to combine high-level semantic information with
low-level spatial information, which improves the performance
of the network. U-Net architecture is widely used for image
segmentation and generation tasks in fields of medical imag-
ing, remote sensing, engineering, and so on [45], [46], [47].

With a heuristic approach, a U-net model was developed
and tested, and finally, the following hyperparameters were
considered an optimal solution. To tune the U-net architec-
ture for the current binary segmentation task, the number of
features was reduced compared to standard U-net, to decrease
model complexity which led to a decrease in overfitting and
computational time. The developed U-net model (see Fig. 7) is
made of five stages both in the encoder and the decoder. In the
encoder part, the image passes through double 2-D convolution
layers with the [3 ∗ 3] kernel, the stride of one, and padding
same from 32 to 128 features. Next, the data is passed through
the nonlinear activation function of the rectified linear unit
(ReLU). Finally, the data is passed to a max-pooling layer to
perform downsampling to reduce the input size. In the decoder
part, with five steps of 2-D convolution and upsampling (scale
factor of 2 and mode of nearest), the number of features is
reduced to reach the input size. The final layer is a Sigmoid
function that returns a binary image as the model output.
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Fig. 7. U-Net architecture (shown in straight shape) with 2-D image input and output.

During the training process, the loss function was calcu-
lated via binary cross-entropy, and Adam was selected as
the optimizer [48]. The model (1.5M trainable parameters)
is developed with the PyTorch package and trained on GPU
NVIDIA Quadro RTX 4000 (GPU Memory 8 GB) first with
30 epochs to find the best number of epochs and later was
trained again with 15 epochs, and each epoch takes around
30 min.

D. Model Metrics

Segmentation models are used to divide an image into
multiple segments or regions, each of which corresponds
to a specific class or object. Evaluating the segmentation
model performance is often done using specific metrics that
are designed to measure the quality of the segmentation
results. In this study, ice particles (white pixels) are considered
“positive.” To evaluate the performance of the developed deep-
learning model, the following metrics are utilized.

Pixel Accuracy: It is a measure of the proportion of pixels
that are correctly classified in the predicted segmentation
compared to the ground truth segmentation [41]

Acc =
TP + TN

TP + TN + FP + FN
(6)

where TP is true positives, the number of pixels that are
correctly labeled as the target class. FP is false positives, the
number of pixels that are incorrectly labeled as the target class.
FN is false negatives, the number of pixels that should be
labeled as the target class but are not.

The accuracy as a metric might be misleading when the
proportion of pixels in each class is considerably different
(e.g., many black pixels out of the interest region). The
F1-score is a measure of the balance between precision and
recall for a binary segmentation problem. It is the harmonic
mean of precision and recall

F1 =
2TP

2TP + FP + FN
. (7)

The F1-score is mostly averaging the performance, and we
have the inference from several specimens. Thus, for a better
comparison, it needed to use a metric that emphasizes the
worst predictions

Fig. 8. Prediction error per epoch (one cycle of passing all training data to
the U-net model).

Fig. 9. Prediction accuracy and F1-score per epoch (one cycle of passing
all training data to the U-net model).

IoU =
TP

TP + FP + FN
. (8)

IoU: Also known as the Jaccard index, it is a measure of the
overlap between the predicted segmentation and the ground-
truth segmentation. It is defined as the ratio of the intersection
of the two segments to the union of the two segments [49].

IV. RESULT AND DISCUSSION

During the training process, the developed U-net model is
trained until it reaches the maximum possible accuracy on the
test set. Each training epoch took almost 30 min considering
the above-mentioned system characteristics. As the size of the
dataset is considerably large, the majority of the parameters
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TABLE II
MODEL METRICS PER ICE-CORE SAMPLE

Fig. 10. Microstructure parameters. (a) 2-D-SSA snow. (b) 2-D-SSA firn. (c) 2-D-SSA ice. (d) Density snow. (e) Density firn. (f) Density ice. (g) Ground-truth
intercept length. (h) Ground-truth 2-D-SSA. (i) Ground-truth density.

are tuned well during the first epoch of training. The loss that
is calculated between the U-net output and the ground truth
(GMM output from high-resolution images) is shown in Fig. 8.
It is observed that the loss is decreased considerably after the
second epoch and training over the 15th epoch pushes the test
loss and train loss to diverge (overfitting issue). The training
process was first set with 30 epochs (see Fig. 8), to find the
minimum generalization gap and an optimal number of epochs.
To avoid the overfitting issue, later on, the model was trained
again with the optimal number of epochs (15 epochs).

In Fig. 9, U-net model metrics are shown per epoch for all
three specimens combined. The accuracy and F1-score of the

test set are moving in the same pattern which shows that the
model becomes better in determining the ice particles. The
accuracy and F1-score increase until epoch 15 and they drop
with training more than 20 epochs, and later on, the model
was retrained with only 15 epochs.

The accuracy and F1-score of the test set do not increase
considerably after 20 epochs of training, and the F1-score is
mostly fluctuating around 91.5% until epoch 30.

To evaluate the model performance on each ice core sep-
arately, the model outputs are given in Table II individually.
In terms of accuracy, the first core with sintered snow had
the highest accuracy, but considering a high number of black
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Fig. 11. Detected boundaries by U-net (red) versus the ground truth (GMM from high-resolution, green). The red boundary is drawn on top of the green
one, so where no green is visible, both coincide. (a) Sintered snow. (b) Firn. (c) Bubbly ice.

pixels out of the ice-core contour, accuracy might not be
a proper metric for evaluation. The F1-score considers the
achievements of both classes simultaneously, thus the outer
black part of the image affects this metric less. The F1-score
of the snow and firn is higher than the bubbly ice, and this
difference also exists in IoU. Bubbly ice has a considerably
lower ice–air interface, and therefore, the weight error is less
affected by segmentation issues.

The relation between several basic microstructure param-
eters and the U-net prediction for a few images of the test
set (not including broken ice samples) is shown in Fig. 10.
According to Fig. 10(a)–(f), the predicted 2-D-SSA and ice
fraction are relatively accurate and the majority of the points
are laying on the 45◦ bisector (shown with red color). Although
the ice fraction is very high and the ice 2-D-SSA is very low,
the predicted values are slightly biased [see Fig. 10(c) and (f)].
Due to decreasing the interface between the two clusters going
from snow to ice, it is expected that the F1-score will increase
and the segmentation task becomes easier by considering
F1-score numbers Fig. 10(g)–(i). However, with a quality
check (see Fig. 11), it is obvious that detecting small bubbles
in ice becomes more difficult.

Despite having very close metrics for cores 1 and 2, the
snow core has a lower percentage of IoU. This is an indication
that the ground truth is considering a wider border for ice
particles than the deep-learning model, which can also be
related to the ground-truth weight error (+2.2%). The DL
model is considering even tighter borders leading to (+5.1%)
which is also visible in Fig. 11(a).

The ground truth for the deepest ice core (bubbly ice) had
the lowest quality, as the amount of ice is proportionally much
higher than the air and the air bubbles are very small and

Fig. 12. Detected boundaries by U-net versus ground-truth mask (GMM on
high-resolution) for sintered snow.

might be lost among the noise. Also, this specimen is collected
from the high-stress areas of the glacier, and bubbles and
air channels are pulled horizontally, and therefore, many air
channels lose their vertical shape and have a tangential position
against the image plane (CT cross-section images). Thus, the
slightly low model metrics of this ice core are to be expected.

Low-resolution images (inputs of U-net) are illustrated in
Fig. 11 along with the ground-truth boundary and the U-net
model output boundary for three given specimens. In terms of
qualitative analysis, the firn [see Fig. 11(b)] had the highest
alignment between predictions and ground truth. Similarly,
sintered snow [see Fig. 11(a)] was segmented with high
accuracy, despite the weight error that comes with imaging
uncertainty. In contrast, the performance of the model on
segmenting the bubbly ice [see Fig. 11(c)] was less successful
than the others, taking into account that the provided ground
truth by the GMM model also had less quality than other ice
cores.
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Fig. 13. U-net (red) and ground truth (green) for TEDRIST_bag43.

According to Table II, the higher weight error was pro-
duced by the model while segmenting the sintered snow
(KohnenQK_D38_KF540). This error (5.5%) is visible in
Fig. 12 where the ground truth is filled with white color and
the U-net output is shown with red borders. It is observed that
overall, the deep-learning model has tighter borders around ice
particles compared to the ground truth. From Fig. 12, we also
observed that some small ice particles are available in the
ground truth but the deep-learning model misses them. The
sintered snow has a large weight error adds a comparatively
more significant uncertainty in the ground-truth segmentation
which plays an important role in deep-learning model training.

On the other hand, in the second core (TEDRIST_bag43),
the deep-learning model is improved both in terms of
weight error and segmentation quality. The weight error
was decreased from −1.1 to −0.1 as shown in Table II.
Also, in this ice core, the deep-learning model is correcting
some parts of the ground-truth mistakes. There are several
small air bubbles in the ground truth caused by noise and
shadows, which we know from the field knowledge is incor-
rect, and the deep-learning model is ignoring them properly
(see Fig. 13).

V. CONCLUSION

Ice-core microstructure investigation begins with having an
accurate segmentation of ice and air. Deep-learning algorithms
trained with the help of weak learners can generalize the image
patterns to have a wide range of abilities for segmentation.
Therefore, utilizing the deep-learning models can bring the
following advantages.

1) Quality of the segmentation is increased consider-
ably, and one model can segment ice cores gathered
from different depths and regions without needing user
intervention.

2) It is not needed to scan the cores with high resolution
anymore, so it saves time and effort.

3) The validation process specifically with the weight of the
specimen is a steady approximation of the overall error
of the model, and the deep-learning model demonstrated
considerable improvement and versatility.

4) The deep-learning performance on segmenting
low-resolution images is better than unsupervised
methods (GMM) or algorithmic approaches such as
Otsu’s method.

Despite these advantages, the deep-learning model relies on
the produced ground truth that makes it vulnerable in case
the weak learner produces a wide range of errors. In this
study, the last core (bubbly ice) ground truth had several
issues, leading to lower final accuracy of the U-net model in
determining some bubbles. Also, the 2-D U-net is sensitive
to image misalignment, and before passing images to the
U-net we need to be sure the low-resolution input image has
the exact corresponding downsampled high-resolution ground
truth. This prevents the current approach from reaching further
resolution differences.

In future work, the study will continue. In this study,
we have used a limited number of samples, and yet we
have to discover the performance of the model on a larger
domain of specimens, so in the future study, we shall expand
the number of samples with more variations. Also, a 3-D
deep-learning model will be developed to increase the spatial
information given to the model to reduce errors and help the
model interpret the objects (ice/air) in a 3-D format with
a more significant difference in resolution. The developed
models in this study and future studies are going to be used for
segmenting the Polar ice cores available in the AWI archive.

DATA AND CODE AVAILABILITY

The dataset produced for this study is available on
https://doi.org/10.5281/zenodo.8325366. Also, the code is
available on the GitHub link https://github.com/Faramarz-
bagherzadeh/Icecore_GMM_U-net. The raw data contains
16k images with sizes 4096 × 4096 and 8k images with
sizes 2048 × 2048. The total size of the raw dataset is
around 120 GB.
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