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Abstract— Satellite image time series in the optical and
infrared spectrum suffer from frequent data gaps due to
cloud cover, cloud shadows, and temporary sensor outages.
It has been a long-standing problem of remote sensing research
how to best reconstruct the missing pixel values and obtain
complete, cloud-free image sequences. We approach that problem
from the perspective of representation learning and develop
U-TILISE, an efficient neural model that is able to implicitly
capture spatio-temporal patterns of the spectral intensities, and
that can therefore be trained to map a cloud-masked input
sequence to a cloud-free output sequence. The model consists
of a convolutional spatial encoder that maps each individual
frame of the input sequence to a latent encoding; an attention-
based temporal encoder that captures dependencies between
those per-frame encodings and lets them exchange information
along the time dimension; and a convolutional spatial decoder
that decodes the latent embeddings back into multi-spectral
images. We experimentally evaluate the proposed model on
EarthNet2021, a dataset of Sentinel-2 time series acquired all over
Europe, and demonstrate its superior ability to reconstruct the
missing pixels. Compared to a standard interpolation baseline,
it increases the PSNR by 1.8 dB at previously seen locations and
by 1.3 dB at unseen locations.

Index Terms— Cloud removal, image time series reconstruc-
tion, self-attention, Sentinel-2, sequence-to-sequence model.

I. INTRODUCTION

MODERN satellite images have made it possible to
continuously and systematically monitor the Earth’s

surface. Remotely sensed imagery, and products derived from
it by image classification [1], [2], [3], segmentation [4],
[5], or regression [6], [7], [8], have become an important
data source for applications ranging from environmental
monitoring [9], [10], [11] to agricultural management [12],
[13], [14]. Moreover, multi-temporal satellite image sequences
provide unprecedented opportunities to explore the temporal
dynamics of natural processes, such as the evolution of land
cover phenology [15]. Among Earth observation missions
that systematically revisit the same locations and capture
such sequences, most acquire images in the optical and
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near-infrared part of the electromagnetic spectrum. On the
one hand, optical images are particularly suitable for visual
interpretation by humans. On the other hand, spectral
signatures in that part of the spectrum contain information
that makes it possible to distinguish between different
land cover types and to quantify the health and vitality
of vegetation. Notably, several indicators for vegetation
density and productivity are based on (heuristic, non-linear)
combinations of spectral intensities between 400 nm and
1500 nm. Such indices, including the widely used normalized
difference vegetation index (NDVI) [16], are a mainstay of
current remote sensing practice [17], [18].

Unfortunately, the effective availability of optical satellite
images is considerably lower than the nominal revisit
frequency of the satellites. Data gaps routinely occur, either
due to occlusions or because no image is captured during an
overpass for technical reasons, such as sensor maintenance
or conflicting imaging requests. The primary cause for data
gaps is the weather, i.e., clouds, haze, and cloud shadows
that partially or fully obscure the observed scene. A study
over 12 years of optical data acquired by the MODIS sensor
concluded that, on average, clouds occlude 67% of the
Earth’s surface and 55% of the land surface at any point in
time [19]. The large proportion of data gaps, which moreover
are irregularly distributed, calls for measures to ensure the
usability of monitoring systems in the presence of frequent
clouds.

A first, rudimentary approach adopted by several satellite
processing pipelines is to discard images affected by clouds
before further analysis. Processing solely cloud-free image
observations may make data handling and visual inspection
more convenient, but it also discards a lot of data that may
still be usable, since often only a moderate fraction of an
image or time series is affected by clouds. Moreover, [20] has
shown that learning-based image classifiers trained on curated,
cloud-free training datasets do not perform all that well when
applied to images with even a small amount of clouds,
let alone to images with moderate or severe cloud cover.
More recent pipelines operate on all available input images,
regardless of their degree of cloud cover, and learn to ignore
uninformative pixels at an algorithmic level, for instance, via
data-driven attention mechanisms [1]. An alternative strategy
is to remove clouds and cloud shadows in advance, such
that the subsequent processing is no longer affected by them,
rather than (explicitly or implicitly) ignore them during image
analysis. An advantage of such a two-step approach is that
multiple image analysis pipelines tailored to different tasks
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can all use the same cloud-free images. These pipelines can
then be more efficient and often also more robust because
they need not each devote a significant share of their model
capacity to the detection and handling of data gaps [21].

In the last few years, encoder-decoder style neural networks
have become the prevalent approach to recover missing data
in optical satellite images. Several methods have tried to
directly learn the mapping from a cloudy to a cloudless
RGB image [22], [23], [24], others even try to translate
Synthetic Aperture Radar (SAR) images to multi-spectral
optical images [25], [26], [27], [28], [29]. A recent trend
has been to combine the two inputs and perform SAR-
optical data fusion [30], [31], [32]. SAR systems employ
active illumination with much longer wavelengths, which
are unaffected by clouds and shadows and may provide
complementary information to guide the reconstruction of
occluded content. However, one must bridge a considerable
domain gap to infer optical reflectance values from SAR
amplitudes. Both are likely to change at land cover boundaries,
so SAR may help to restore image gradients, but it can hardly
be expected to offer much information about the actual spectral
values, colors, and texture details. In contrast, sequences of
optical images depicting the same location1 exhibit strong
correlations along the temporal dimension. These spatio-
temporal patterns provide evidence about the spatial structure
and the spectral properties. Importantly, this holds not only
for static or gradually changing land cover but also includes
more complex temporal dynamics, like seasonal variations.
The idea to leverage multi-temporal images for cloud removal
is rather obvious; but most existing approaches [31], [33],
[34], [35], [36] collapse the multi-temporal, cloudy input into a
single gap-free image, often additionally relying on spatially
and temporally co-registered SAR observations to guide the
reconstruction [31].

Here, we focus on full sequence-to-sequence translation:
our goal is to convert the cloudy input time series into a
gap-free product with the same time steps, but containing a
clean, cloud-free image at every frame (no matter whether the
original frame was cloud-free, cloudy, or entirely missing).
To that end, we introduce U-TILISE,2 a neural image sequence
model that captures spatio-temporal relationships between
the spectral intensities in an image time series, and is,
therefore, able to impute missing pixels. U-TILISE operates
in three dimensions, with 2D convolutions to encode multi-
scale local relationships in space and 1D (self-)attention to
encode non-local relations in time. By design, its output has
the same spatial and temporal extent as the input, such that it
jointly reconstructs complete, gap-free time series. The model
supports additional, auxiliary input channels and is therefore,
in principle, able to use SAR amplitudes, too. But empirically
this brings only a tiny improvement (see appendix).

We experimentally test U-TILISE on the EarthNet2021
dataset [37], which contains thousands of 30-frame, 4-channel
(R, G, B, NIR) time series of Sentinel-2 data. Compared
to standard interpolation between the temporally nearest

1Throughout this article, the shorthand “time series” denotes a temporally
ordered, co-registered sequence of images showing the same location.

2U-Net Temporal Imputation Lightweight Image Sequence Encoder.

unoccluded observations, our model improves the peak
signal-to-noise ratio (PSNR) of the reconstructed spectral
values by 1.8 dB at previously observed locations, and by
1.3 dB at unseen locations.

The remainder of this article is organized as follows:
first, we provide an overview of cloud removal methods
in Section II, with a focus on learned (mono-temporal
as well as sequence-based) approaches. In Section III,
we introduce the U-TILISE model, set out its components
(Sections III-C and III-D), and describe the associated
training and inference procedures (Section III-E). Next,
we explain the data (Section IV) and the experimental setup
(Section V) used in our evaluation. Section VI reports and
discusses experimental results, followed by a conclusion
(Section VII). Complementary experiments with additional
SAR observations on top of optical time series are given in
the appendix.

II. RELATED WORK

Reconstructing missing pixels in remotely sensed imagery
has been a long-standing research problem. Early efforts
toward thin cloud and haze removal build on physical rela-
tions [38], [39], [40] or signal processing considerations [41],
[42] to describe the process of light transmission and
interaction with clouds. Methods designed to recover image
content occluded by thick clouds have been based on tensor
factorization [43], [44], [45], on mosaicking of multi-temporal
images [46], [47], [48], [49] or they adopt statistical image
processing methods originally developed for single-image
inpainting [50], [51], [52]. In the following, we concentrate
on data-driven, learning-based methods for cloud removal.
For completeness, we note that video inpainting methods like
[53] share conceptual similarities with satellite time series
imputation, but they are beyond the scope of the present
literature review.

A. Mono-Temporal Cloud Removal
A natural formulation of cloud removal is as an image-to-

image translation task, where the mapping from the cloudy
input to the cloud-free output is learned in a data-driven
manner. For instance, [22] employ a conditional generative
adversarial network (cGAN) [54] to map from a cloudy to a
cloudless RGB satellite image. The mapping is conditioned
on the NIR channel of the input, arguing that near-infrared
wavelengths partially penetrate clouds and may thus capture
information about the observed scene that is unavailable in
the visible spectrum. In [23], the NIR channel is replaced
with conditioning on a SAR image, as clouds are completely
transparent at radar wavelengths. The works of [22], [23] both
do not go beyond a proof-of-concept; the underlying neural
networks are trained and evaluated exclusively on synthetically
generated images with clouds simulated by Perlin noise [55].
It has since been shown that such simulations generalize
poorly to real cloudy images [56]. To side-step the need
for training examples where cloudy and cloud-free images
are in exact, pixel-wise correspondence, [24], [56] rely on a
cycle-consistency loss [57]. In this way, the networks can be
trained directly on images with real data gaps, eliminating the
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potential domain gap between training and test data. While the
method in [24] is limited to thin clouds, [56] do not impose any
restrictions on the maximum permissible cloud coverage or
density. Furthermore, [56] combine explicit modeling of cloud
densities with a residual learning strategy to better preserve
the pixel values in cloud-free image regions. The methods
mentioned so far have in common that they are limited to
images with three optical bands. To address that limitation,
several SAR-to-optical image translation approaches [25],
[26], [27], [28], [29] learn the mapping from a SAR image to
the full stack of multi-spectral bands, often also using cGANs.

Recent advances in learned cloud removal tend to rely on
image fusion, i.e., they synergistically use the cloudy optical
and a cloud-free SAR image to impute the missing pixels in
the former. In [30], a Sentinel-2 image and a temporally close
SAR image of the same scene are stacked together along the
channel dimension and fed into a neural network that regresses
a residual reflectance value at every pixel. Those per-pixel
corrections are then added to the input to remove the missing
data. [58] combine SAR-to-optical translation and SAR-optical
data fusion in a cascaded fashion. First, a GAN is trained to
map the SAR input to an optical image. That synthetic image
is stacked with the original SAR data and the cloudy optical
input and fed into a second GAN, trained to map the multi-
modal input to a cloud-free optical image.

The recent [32] found that stacking optical and SAR
observations into a multi-modal image and processing
them together does not optimally exploit the two inputs,
as feature extraction from SAR is aggravated by speckle noise.
Instead, the authors propose separate embedding branches per
modality, together with an attention-based mechanism that
gradually and selectively fuses features from the two branches.

SAR-optical data fusion approaches have demonstrated that
complementary information in the form of SAR observations
can help to compensate for missing data in optical images.
Still, fusing optical and SAR data remains challenging due to
the large domain gap between the two modalities. One must
also keep in mind that SAR can hardly contribute to restoring
actual spectral reflectance information, like different hues or
fine-grained textures. Its role is to add spatial context, such as
land-cover boundaries, which appear as gradients also in the
SAR amplitude. An alternative approach is to inject contextual
information from other optical sensors, as, for instance, in [59].
Clearly, this will greatly reduce the domain gap, but on the
other hand, there is no guarantee that a temporal close and
largely cloud-free image can be found.

B. Sequence-Based Cloud Removal

Sequence-to-point methods [31], [33], [34], [35], [36], [60],
[61] consume a multi-spectral time series with data gaps
and output a single, gap-free image. In most cases, that
output does not have a well-defined time stamp but rather
is seen as representative of the entire time period between
the start and end dates of the time series. Even if the output
is associated with a specific time, e.g., the middle frame,
the method would have to be run iteratively to reconstruct
an entire time series. Typically, the input time series only
have three to five images. Optionally, the reconstruction can

additionally be guided by a single SAR image [61] or by a
SAR time series (approximately) aligned frame-to-frame with
the input [31]. Some of these sequence-to-point approaches
impose tight restrictions on the maximum cloud coverage per
image, e.g., [33] require at most 10–30% cloud cover, and
[60] require the first and last of three frames to be cloud-free
(0% cover). Furthermore, these methods often assume short
temporal intervals with minimal land cover changes over time
since they accumulate spectral information along the temporal
dimension to create the output image. That assumption rules
out systematic land cover dynamics, in particular seasonal
cycles of vegetation and agriculture.

To our knowledge, [62], [63], [64] are the only published
sequence-to-sequence models, i.e., they output a cloud-free,
multi-spectral image for every frame of the input time series.
In [63], the sequence model is parameterized as a recurrent
neural network with a two-layer GRU [65] architecture and
used to learn the mapping from a SAR time series to a
time series of Landsat images, only for pixels belonging to
a specific land cover class, namely, rice fields. This yields
reconstructions of limited quality (PSNR <28 dB), possibly
due to the well-known difficulties of learning multi-layer
recurrent models [66]. A rather different approach is taken
by [62], who adopt a recent video inpainting technique [67]
that extends the deep image prior (DIP) [68] to videos. The
initial input is a SAR time series (as opposed to random noise
in the original DIP) such that the network effectively performs
a mapping from SAR to optical time series. We point out
that while the DIP employs a neural network parameterization,
it is not a learned model. The convolutional network structure,
which favors lower amplitudes for high-frequency signals,
serves as a hard-wired low-level prior of optical image
statistics. It does not store any a priori information extracted
from training data. Instead, the network weights are optimized
individually for every input sequence at inference time.
The method most related to our proposed U-TILISE model
is [64], an adversarial approach that internally splits the
computation into a first, coarse round of imputation and a
subsequent refinement network. The coarse imputation model
is a 3D spatio-temporal encoder-decoder architecture with
separate backbones for the optical and SAR inputs, followed
by a transformer-style attention mechanism in the bottleneck
to fuse the latent embeddings of the two encoder branches. The
model does not implicitly learn to ignore cloudy observations;
instead, the contribution of cloudy input pixels is suppressed
by explicitly modulating the learned attention masks according
to the given cloud masks before applying them to the latent
embeddings coming out of the optical encoder branch.

III. METHOD

To impute missing image content, we design U-TILISE,
a learnable image sequence model in the form of a
neural network. Once trained, the weights of that network
encode a prior over spatio-temporal patterns of multi-spectral
reflectance. When a time series with data gaps is fed into
the network, the prior fills in the missing values to obtain a
complete, gap-free time series. In contrast to existing cloud
removal pipelines, our approach does not rely on auxiliary
SAR observations to guide the imputation. Instead, we exploit
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Fig. 1. Overview of the proposed model: U-TILISE is a neural sequence-to-sequence model that takes as input a multi-spectral satellite image time series in
which missing reflectance values are masked and outputs a complete and gap-free time series with the same dimensions. U-TILISE employs a convolutional
U-Net architecture [69] over the spatial and spectral dimensions and a transformer-style self-attention mechanism along the temporal dimension. The attention
masks operate on the (spatial) bottleneck between the encoder and decoder parts of the U-Net as well as on the skip connections (after suitable upsampling).

spatial and temporal patterns within the multi-spectral time
series itself to reconstruct the spatio-temporal evolution of
the depicted land cover. Furthermore, our model jointly
reconstructs all images in a given time series, as opposed
to pipelines that reconstruct a single frame, considered
representative of the entire sequence.

A. Problem Formulation

Let X ∈ R
T ×C×H×W denote a multi-spectral time series,

represented as a 4D tensor with T the temporal length, C
the number of spectral bands, and H × W the spatial extent.
Our goal is to regress a reflectance for every spatio-temporal
location, so as to obtain a complete, gap-free multi-spectral
time series Ŷ ∈ R

T ×C×H×W . Our model assumes that the
spatio-temporal locations to be imputed are marked by a binary
mask M ∈ R

T ×1×H×W , where the value 1 denotes pixels with
a valid observation and 0 denotes missing data values. Note
that we do not impose any assumptions or requirements on
the mask M: it may denote any type of data gaps, including
clouds and cloud shadows, but also frames that are entirely
missing, for instance, due to sensor maintenance.

B. Overview

Fig. 1 gives a graphical overview of our method.
At its core is U-TILISE, a learned sequence-to-sequence
model that captures spatio-temporal relationships between
the spectral intensities, and thereby is able to reconstruct
realistic, complete, and gap-free multi-spectral time series.
For efficiency, the mask M ∈ R

T ×1×H×W of missing pixels
is not separately fed into the model but imprinted directly
on the multi-spectral input X ∈ R

T ×C×H×W by setting all
masked pixels to the maximum intensity 1. U-TILISE consists
of three components. First, a shared multi-scale convolutional
encoder transforms every image of the masked sequence into

a latent embedding. Next, an attention-based temporal encoder
combines the per-frame embeddings across time to impute
missing values in the latent sequence representation. Last,
a shared convolutional decoder reconstructs every image from
its latent embedding to obtain a gap-free time series with the
spatial, spectral, and temporal dimensions of the input.

C. 3D Spatio-Temporal Sequence-to-Sequence Model
U-TILISE builds on recent advances in learned time

series processing. Its architecture is inspired by U-TAE [4],
a model originally developed for crop mapping, which maps
a time series to a (mono-temporal) panoptic segmentation.
In a nutshell, U-TAE combines convolutions for multi-
scale spatio-spectral encoding with a lightweight non-local
temporal attention mechanism [2]. Intuitively, the latter learns
to focus on the most salient observations within a given
time series. By design, U-TAE collapses the input along
the temporal dimension to produce a mono-temporal output.
We take inspiration from the design of modern transformer
models [70], [71] and extend the architecture to a full
3D spatio-temporal sequence-to-sequence model that preserves
the temporal dimension.

U-TILISE consists of (i) symmetric multi-scale spatio-
spectral encoding and decoding modules in the style of
U-Net [69] and (ii) a lightweight temporal encoding module
based on multi-head self-attention [72], see Fig. 1. We now
describe each of these components in more detail.

1) Spatial Encoder: The spatial encoder gradually trans-
forms the masked time series of size (T × C × H × W ) into
a multi-scale latent embedding via a sequence of convolutional
blocks. Each block comprises a 3×3 convolutional layer
with stride 1 and d filter channels, followed by a rectified
linear unit (ReLU) as non-linear activation function and a
residual 3×3 convolution with stride 1, d ′ filter channels,
and ReLU activation. Between the convolutional blocks,
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a strided convolution equipped with ReLU activation decreases
the spatial resolution of the intermediate embeddings by a
factor of 2. After encoding all images in the time series
(individually and in parallel), we temporally stack their
latent representations to produce a multi-temporal sequence
embedding with dimensions (T × D × H/8 × W/8), with
D the channel depth of that embedding.

2) Temporal Encoder: The temporal encoder operates
individually on the spatial locations (low-resolution “pixels”)
of the latent embedding. For each such pixel, it captures
the pairwise dependencies between the values in all pairs of
different frames and uses them to fill in missing information.
The temporal encoder is based on the Lightweight Temporal
Attention Encoder (L-TAE) of [2], which, in turn, is a
simplified version of the multi-head self-attention mechanism
of the transformer architecture [72]. Unlike [2], we employ
data-driven queries to preserve the temporal dimension of the
input. Moreover, we use residual skip connections as in the
original transformer model [72]. We retain the computational
simplifications of [2] and use a channel grouping, where
the G attention heads process mutually exclusive subsets
of D/G channels of the embedding. The learned attention
scores are directly applied to the embedding vectors that
come from the encoder (without first modulating them with a
fully-connected layer). Following recent findings about neural
sequence-to-sequence models, we prefer pre-normalization
with the groupnorm scheme [73]. Furthermore, we employ
GELU activations [74] rather than the classical ReLU
activations in the multi-layer perceptron (MLP) of the attention
block.

3) Spatial Decoder: After the latent representation has
been passed through the attention module, the spatial
decoder progressively restores multi-spectral images from the
individual per-image embeddings. These images have the same
spectral and spatial resolution as the input to the network
but no more missing values. The structure of the spatial
decoding blocks is the same as for the spatial encoding blocks,
except that fractionally strided, transposed convolutions with
stride 1/2 replace the strided convolutions. Once the native
spatial resolution of the input has been reached, a final
convolutional block maps the latent embedding to the spectral
space. The final layer uses sigmoid activations instead of
ReLU, so as to regress reflectances in the range [0, 1]. Finally,
the reconstructed frames are stacked along the temporal
dimension to recover the complete, gap-filled time series.

4) Skip Connections: Skip connections from encoder to
decoder levels of equal spatial resolution are a key component
of the U-Net [69] architecture to propagate high-frequency
details and localization information that is lost during spatial
downsampling operations. We adopt the same strategy as in
[4] and temporally weight the information transferred between
corresponding layers of the spatial encoder and decoder.
The attention masks learned by the temporal encoder serve
as weights, which we spatially upsample to the adequate
spatial resolution using bilinear interpolation. The temporally
weighted output of the encoding layers is processed with a
shared 1 × 1 convolutional layer followed by ReLU activation
before channel-wise concatenation with the output of the
corresponding decoding layers for further processing.

D. Sinusoidal Positional Encoding
By itself, the self-attention mechanism is agnostic to the

sequence order. To provide positional information, we follow
the standard procedure for transformers [72] and add a
positional encoding (PE) to the input of the temporal encoder
before applying self-attention:

PE(t, k) = sin
(

day(t)/τ
2k
D +

π

2
mod (k, 2)

)
. (1)

PE(t, k) consists of fixed sinusoidal functions with
predefined wavelengths and describes the position of the
t th observation in the sequence, with D the channel depth
of the embedding and k the coordinates of the positional
encoding. We set τ = 1000, as in [2]. Contrary to [72],
we do not directly encode the ordinal position t in the
sequence. Instead, we encode the observation date day(t),
expressed as the number of days since the 1st of January of the
respective calendar year. This strategy has proved beneficial
for learned time series processing [2], [75], since it preserves
information about seasonal patterns (e.g., lighting conditions
or phenology of the vegetation) and accounts for irregular
temporal sampling.

E. Training and Inference
It is not possible to quantitatively assess the performance

of time series imputation for real data gaps due to the lack
of ground truth reflectances. Therefore, we train and evaluate
U-TILISE with simulated data (generated by masking cloud-
free frames with real cloud masks taken from other sequences,
cf. Section IV-C) and examine its capability to generalize to
sequences with actual data gaps due to real clouds. We train
U-TILISE in a supervised manner by minimizing the pixel-
wise absolute differences between the imputed time series Ŷ
and the corresponding ground truth time series Y :

L1 =
1

NC H W

N ,C,W,H∑
i=c=x=y=1

1
T i

T i∑
t=1

∣∣Ŷ i
tcxy − Y i

tcxy

∣∣ (2)

where N denotes the number of training sequences and T i the
length of the i th sequence.

We train U-TILISE for a fixed temporal length of T = 10,
i.e., the input is a time series that comprises at most 10 images.
Shorter sequences are padded with no-data frames. During
training, longer sequences are randomly cropped if T i > T .
At test time, we retain the full time series and process it in
one shot if T i

≤ T , or in sliding window fashion if T i > T .

IV. DATA

We evaluate our method on EarthNet2021, a large, publicly
available dataset of Sentinel-2 time series. Note, however, that
our method is sensor-agnostic and can adapt to the properties
of different multi-spectral imaging sensors, given suitable
training data.

A. EarthNet2021 Dataset
The EarthNet2021 [37] dataset was originally designed for

satellite image forecasting, conditioned on future meteoro-
logical variables. It includes more than 32 000 Sentinel-2



5408716 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

time series collected over Central and Western Europe
from November 2016 to May 2020. Each time series
consists of 30 images with Level-1C top-of-atmosphere (TOA)
reflectances. The images are acquired in a regular temporal
interval of five days, where acquisition dates without an obser-
vation are encoded as images of NaN values. Every image is
composed of the four spectral bands B2 (blue), B3 (green),
B4 (red), and B8 (near-infrared) and covers a spatial extent
of 128×128 pixels (2.56×2.56 km in scene space), resampled
to the resolution of 20 m. For every observation, the dataset
further includes a pixel-wise cloud probability map3 obtained
via the S2Cloudless algorithm [76] and a binary cloud and
cloud shadow mask based on heuristic rules similar to [30].

In our experiments, we reserve ≈ 20% of the training
sequences for validation, where training and validation tiles are
mutually exclusive. For testing, we use the iid and ood test
splits. Time series in the iid test split stem from the same
Sentinel-2 tiles as the training data and the ones in the ood test
split from previously unseen locations.

B. Preprocessing

We adopt the preprocessing protocol of prior works [37] and
value-clip the optical images to the range [0, 10 000], followed
by normalization to the unit range of [0, 1].

To train a system for cloud removal that regresses time
series rather than a single image, we found experimentally
that pixel-wise supervision for every spatio-temporal location
is crucial for learning seasonal changes and land surface
dynamics over time. Since obtaining such ground truth for time
series with real data gaps is impossible, we resort to cloud-
free time series and introduce synthetically generated data gaps
during training and evaluation, as described in Section IV-C.
Starting from a time series with real data gaps, we first
identify all images with partially occluded pixels or images
that are occluded/missing entirely by applying a threshold to
the cloud probability maps (if available) or the binary cloud
masks. We choose the threshold in a conservative manner to
minimize the number of undetected data gaps. We then remove
all images with data gaps to produce cloud-free time series that
exhibit a valid4 observation for every spatio-temporal location.
Second, we discard time series with less than five remaining
images, as we deem such sequences too short for learning
spatio-temporal patterns. See the appendix for a summary of
the number of time series, their temporal lengths, and the
temporal resolution before and after filtering images with data
gaps.

C. Simulation of Data Gaps

Realistically simulating cloud cover in satellite images
is notoriously difficult. Synthetic images generated with
existing physics-inspired simulation methods, like the well-
known Perlin noise model [55], do not match the radiometry
of real data well enough: it has been shown that cloud
removal methods trained with such synthetic images do not

3Pixel-wise cloud probabilities are only available for the training data.
4A few cloudy images may remain in the cloud-filtered time series due to

inaccuracies of the preceding cloud detector.

generalize well to images containing actual clouds [56].
To create time series with artificial data gaps for training and
evaluation, we thus refrain from rendering synthetic clouds.
Instead, we adopt a strategy commonly employed for image
inpainting [77], [78], [79] and completely mask out invalid
pixels by setting them to the maximum intensity value 1.
In this way, one only has to realistically simulate binary
cloud masks, which is straightforward: all one needs to do
is randomly sample real cloud masks from other acquisition
times and/or locations within the same Sentinel-2 tile and
apply them to a gap-free time series. With that strategy,
we obtain time series with data gaps of realistic shapes and
sizes and with known ground truth reflectances at all masked
pixels in a controlled, fully automatic manner.

V. EXPERIMENTS

A. Setup

Sequence-to-point methods typically use a temporally close
cloud-free image of the same location to quantify the fidelity
of the synthesized output. [31], one of the few existing
sequence-to-sequence approaches, regresses a time series of
multi-spectral Sentinel-2 images but restricts the evaluation
to a single time step, namely, the one with the lowest cloud
cover. Such single-frame evaluation protocols are, in our view,
problematic. On the one hand, they do not actually measure the
quality of the regressed time series, as the temporal aspect is
completely ignored. On the other hand, metrics computed only
from the least cloudy image will likely be too optimistic, since
the imputation task becomes more challenging with increasing
occlusions.

We argue that the evaluation should take into account all
images with missing pixels, irrespective of the degree of cloud
cover. As ground truth reflectances are unavailable for time
series with real data gaps, we quantitatively evaluate U-TILISE
on cloud-free sequences with synthetically added data gaps.
Additionally, we apply the learned model (without further fine-
tuning) to time series featuring real data gaps to qualitatively
assess performance in the true application setting.

We follow the procedure described in Sections IV-B
and IV-C to generate time series with synthetic data gaps.
Unless stated otherwise, we randomly trim the cloud-filtered
time series to a maximum length of T = 10 images during
training. At test time, we process the full-length sequences in
sliding window fashion if their length exceeds T . To simulate
data gaps, we randomly superimpose at most 50% of the
images per time series with cloud (and cloud shadow) masks
drawn randomly from the dataset, with a minimum of one
masked image per sequence. When processing sequences with
real data gaps, the actual cloud masks are used to mark missing
pixels.

B. Implementation Details

U-TILISE is implemented in PyTorch [80]. For training,
we use an NVIDIA GeForce RTX 2080 Ti GPU for time series
with four spectral bands and an NVIDIA TITAN RTX GPU for
time series with 13 spectral bands. Source code and pretrained
models are available at https://github.com/prs-eth/U-TILISE.
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In our experiments, we use 64 filter channels for the
spatial encoding and decoding convolutional layers, except
at the lowest spatial resolution, where we use 128 filter
channels. Accordingly, the temporal encoder has a latent
feature dimension of 128. Temporal self-attention employs
G = 4 heads, with a dimension of four for the data-driven
keys and queries. To augment the training data, we randomly
rotate all images in a sequence by α ∈ {0◦, 90◦, 180◦, 270◦

}

and randomly flip them along the x and y axes.
We train with the Adam optimizer [81] with hyper-

parameters {β1 = 0.9, β2 = 0.999}, a batch size of three,
and no weight decay. During the first 250 epochs, the initial
base learning rate of 2 · 10−4 is halved every 50 epochs.
Training is stopped once the L1 loss (cf. Section III-E) on
the validation set has converged. In our experiments, this
took about 1000 epochs, or 20 days of training on a single
GPU. The computational cost for applying the trained model
is low: the forward pass for a time series consisting of (at
most) 10 images takes ≈ 0.02 seconds. Longer sequences are
processed in sliding window fashion, which on average takes
0.13 seconds for a 30-frame sequence.

C. Evaluation Metrics
We adopt a suite of metrics commonly used to evaluate

cloud removal and inpainting methods: mean absolute error
(MAE), root mean square error (RMSE), spectral angle
mapper (SAM) [82], peak signal-to-noise ratio (PSNR), and
structural similarity index (SSIM) [83]:
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where Ŷ i denotes the i th predicted time series with C spectral
bands and T i frames, Y i the corresponding ground truth time
series, and (x, y) and t the spatial and temporal coordinates.
In the SSIM computation, µŶ i

t
and σŶ i

t
express the mean

reflectance and standard deviation of Ŷ i at time step t , µY i
t

and σY i
t

the corresponding mean and standard deviation w.r.t.
Y i , and σŶ i

t Y
i
t

their covariance. ϵ and ϵ′ are small constants
for numerical stability.

MAE, RMSE, and PSNR are popular metrics that quantify
the pixel-wise reconstruction error. MAE and RMSE are
expressed relative to the TOA reflectance range (ρTOA, recall
that reflectances have been rescaled ρTOA ∈ [0, 1]). PSNR
is in decibel (dB). SAM measures the spectral fidelity

of the reconstructed pixels, defined as the average angle
(in degrees) between predicted and ground truth spectral
vectors. SSIM is a unitless per-image metric that measures
the overall structural similarity between a reconstructed
image and the corresponding ground truth. We compute the
pixel-based metrics over all imputed pixels (according to
the input mask). Similarly, to compute the average SSIM,
we only take images into account that contain masked pixels,
denoted as T i

m .
To generate the cloud-free reference time series for

evaluation, we define a global threshold on the cloud
probability maps (if available) or the binary cloud masks.
That threshold may not be ideal for every single image;
consequently, small clouds or haze may remain undetected.
To alleviate the impact of these remaining data gaps (in the
ground truth) on quantitative analysis, we compute the pixel-
based metrics only for those imputed pixels (t, x, y) for which
a cloud-free reference reflectance is available according to the
original cloud masks, denoted as �i for the i th time series.

D. Baseline Methods

We compare U-TILISE against several natural baselines that
operate independently on every spatial location over time. The
simplest baseline (last) imputes missing pixels by copying
the last valid observation before the current frame. The next
baseline (closest) copies either the last or the next following
observation, depending on which one is closer in time. The
third baseline linearly interpolates between the last and next
observations (according to the absolute time span in days),
an approach frequently employed in operational practice [84].

VI. RESULTS

A. Imputation Quality of U-TILISE

We begin by evaluating our method on Sentinel-2 time
series augmented with synthetic data gaps. Quantitative
results are shown in Table I, visual examples are given
in Figs. 2 and 3. U-TILISE generates coherent and gap-
free optical time series that capture the natural evolution
of the depicted land cover. It can handle occlusions of
various shapes and sizes, recover images that suffer from
severe occlusions, and reconstruct complete times series
from input sequences that include multiple consecutive
frames of missing data. Note how the model has implicitly
learned to adapt to radiometric variations within the time
series,5 such that imputed pixels seamlessly blend into the
surrounding image content, even if the frames that show
the same regions unoccluded are radiometrically different.
Besides naturally adapting reflectance values, U-TILISE is
able to recover plausible color transitions and impute missing
information in scenes with non-trivial temporal dynamics
(Fig. 2, row 5). Furthermore, it preserves high reflectance
values not associated with clouds (Fig. 3, row 3). Abrupt scene
changes, such as harvested agricultural fields, are sometimes
missed (Fig. 3, row 7), which is natural since their exact timing
depends on weather conditions that the model has no access to.

Quantitatively, the predicted reflectances agree well with the
true values across all optical bands. See Fig. 4. U-TILISE

5Primarily caused by illumination changes due to atmospheric effects.
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT IMPUTATION METHODS FOR TIME SERIES OF THE EARTHNET2021 DATASET, SEPARATELY EVALUATED

FOR GEOGRAPHIC LOCATIONS SIMILAR TO THE TRAINING SET (iid) AND FOR PREVIOUSLY UNSEEN LOCATIONS (ood). COLUMNS 3–7 REPORT
METRICS COMPUTED OVER ALL PIXELS (OR IMAGES, IN THE CASE OF SSIM) WITH MISSING INPUT DATA, WHEREAS COLUMNS 8–9

MEASURE THE QUALITY OF OUTPUT PIXELS (OR IMAGES) WITH VALID INPUT VALUES

Fig. 2. Visual comparison of U-TILISE with selected baselines for a Sentinel-2 time series of the EarthNet2021 iid test split with predominantly gradually
changing land cover. We show the true-color RGB composite for every image in the time series. The number above an image denotes its temporal distance to
the previous observation in the sequence or its MAE, evaluated over all pixels that have been masked in the corresponding input image and across all spectral
bands (R, G, B, and NIR).

yields a MAE below 1% of the intensity range and a PSNR
on the order of 38 dB. Recall, these errors are averaged
only over imputed pixels and not inflated by the trivial
reconstruction of observed values (cf. Table I, iid test split).
The SSIM, averaged over all images with data gaps, amounts
to 0.97. Notably, there is only a moderate performance penalty
when applying the model to previously unseen locations
(cf. Table I, ood test split). The MAE increases by 27%
to roughly 0.01 and the SAM by 10% from 1.9 degrees
to 2.1 degrees. Yet, with a PSNR of almost 37 dB and a
SSIM of 0.96, this still amounts to high fidelity and visual
quality.

B. Comparison to Baselines

Table I compares U-TILISE against the three baselines.
We first discuss the performance on iid test sequences,
corresponding to the imputation of new sequences acquired
at previously seen locations. As expected, the last baseline,
which copies the last valid observation, yields the largest
reconstruction errors. Instead, cloning the temporally closest
observation improves the reconstruction quality and the
spectral fidelity markedly, reducing MAE, RMSE, and SAM
by more than 10% and increasing PSNR by about 1 dB; mostly
because the last heuristic degrades for longer data gaps where



STUCKER et al.: U-TILISE: A SEQUENCE-TO-SEQUENCE MODEL FOR CLOUD REMOVAL 5408716

Fig. 3. Visual comparison (true-color RGB composites) of two Sentinel-2 time series of the EarthNet2021 iid test split, gap-filled using either U-TILISE or
linear interpolation over time. Rows 1–4 depict a static scene, while rows 5–8 show a scene with sudden land cover changes due to agricultural activities by
humans. The number above an image indicates its temporal distance to the previous observation in the sequence or its MAE, evaluated over all pixels that
have been masked in the corresponding input image and across all spectral bands (R, G, B, and NIR).

the same location is repeatedly occluded. Linear interpolation
between the most recent and the next available observation
brings further gains. MAE, RMSE, and SAM drop by another
≈ 14%, and PSNR improves by 1.5 dB to 36.0 dB. U-TILISE
consistently outperforms all baselines by a significant margin.
Compared to linear interpolation, the MAE, RMSE, and SAM
values decrease by 20%, and the PSNR increases by more than
1.5 dB. We observe similar trends when evaluating the ood test
set of previously unseen locations. We note in passing that the
ood test set is objectively more difficult: all methods perform
slightly worse on it, although the baselines do not involve
any learning and can, by definition, not overfit to specific
geographic locations.

U-TILISE predicts a reflectance value for every spatio-
temporal location in the output sequence, including pixels with
valid input observations. In principle, those predicted values
could deviate from the actual, observed values at cloud-free

pixels.6 For a complete evaluation, we thus also evaluate the
spectral fidelity at pixels with valid input reflectances (Table I,
columns 8–9). By construction, all baselines achieve the same,
maximal performance, since they do not alter valid reflectance
values. U-TILISE, on the other hand, must learn to preserve
the reflectances at unoccluded (spatio-temporal) locations.
It does that astonishingly well, with a MAE around 1/5000
of the intensity range—less than the radiometric sensitivity of
Sentinel-2.7

The estimates of U-TILISE are also qualitatively superior
to those of the baselines, especially in the presence of
significant spectral changes in time (cf. Fig. 2) and of

6Obviously, one could, in practice, copy valid input pixels to the output.
We regard this as a postprocessing option available to any cloud removal
method, not as a part of the actual model.

7https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-
msi/resolutions/radiometric

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric
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Fig. 4. Channel-wise ground truth reflectances versus reflectances regressed by U-TILISE for missing pixels in optical time series of the EarthNet2021
dataset (iid split). (Left to right) B4 (red), B3 (green), B2 (blue), and B8 (near-infrared).

Fig. 5. Self-attention in the temporal encoder. We show the attention scores
for imputing the 5th image in the example time series (highlighted with a
red frame in row 1), displayed separately for each of the four attention heads
(rows 2–5). The attention masks are bilinearly upsampled to the native spatial
resolution of the input time series and color-coded from black (no attention)
to yellow (maximum attention).

remaining atmospheric effects (cf. Fig. 3, rows 1–4). A striking
example is the southernmost, circular field in Fig. 2, for which
U-TILISE smoothly transitions from dark to bright brown and
then changes abruptly to dark green, which agrees well with
the true evolution of the depicted scene. In contrast, copying
or simple interpolation lead to evident visual artifacts.

C. Learned Multi-Temporal Attention
The attention masks of the temporal self-attention mech-

anism encode the contribution of each input pixel to the
regression of the output pixels.8 This makes them a useful
visual cue to determine on which input frames the learned
model bases its predictions. Figs. 5 and 6 depict the attention
masks for the first time series in Fig. 3, demonstrating
that U-TILISE indeed discovers, in a data-driven manner,
which observations are most useful for its task. Not only
is the attention low in data gaps (cf. Fig. 6), the model
has also learned to preferentially attend to temporally close
observations; to use information from unoccluded regions of
the current frame, presumably to match its radiometry; and to
let the attention heads specialize on different portions of the
sequence (cf. Fig. 5).

D. Importance of Temporal Encoding
We go on to study the influence of different network

configurations, starting with the temporal encoder. To this

8Strictly speaking, the attention scores express the contribution w.r.t. the
high-dimensional, but spatially coarsened latent embedding.

Fig. 6. Self-attention in the temporal encoder. For the time series in
row 1. Rows 2–9 show the attention masks for one of the four heads, with
rows corresponding to frames of the output (in temporal order). The masks
are bilinearly upsampled to the native spatial resolution of the input and
color-coded from black (no attention) to yellow (maximum attention). Note
how the attention progressively moves through time to focus on unoccluded
inputs and unoccluded pixels of partially occluded inputs, while it borrows
information from temporally nearby frames where needed.

end, we conduct two ablation experiments: (i) we replace the
temporally weighted skip connections between corresponding
layers of the spatial encoder and decoder with ordinary
skip connections, and (ii) we remove the temporal encoder
altogether, resulting in a standard U-Net architecture that
processes each frame of the input sequence independently.
As expected, we observe a significant deterioration in all
evaluation metrics when U-TILISE cannot exploit the time
series to fill in missing image content (Table II, 3rd row):
without a mechanism to represent spatio-temporal relations,
the model must hallucinate the missing spectral values only
from the unoccluded context in the same image. In the extreme
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TABLE II
QUANTITATIVE RESULTS OF DIFFERENT U-TILISE VARIANTS. WE ABLATE THE INFLUENCE OF THE TEMPORAL ENCODER AND TEMPORALLY

WEIGHTED SKIP CONNECTIONS IN THE SPATIAL U-NET (ROWS 2–3), THE STRATEGY USED FOR POSITIONAL ENCODING (ROWS 4–6), THE
NUMBER OF IMAGES T PROCESSED IN ONE SHOT (ROWS 7–8), AND THE NUMBER OF ATTENTION HEADS G OF THE TEMPORAL ENCODER

(ROWS 9–11). THE METRICS ARE COMPUTED OVER ALL PIXELS (OR IMAGES, IN THE CASE OF SSIM) WITH MISSING DATA IN
THE INPUT TIME SERIES

Fig. 7. Visual comparison of different U-TILISE variants for the 8th time
step in the sequence from Fig. 2 (the 2nd totally masked image). (a) U-TILISE
with ordinary skip connections. (b) U-TILISE with default parameter settings.
(c) U-TILISE with 16 attention heads. (d) Ground truth.

case of a fully occluded view, this means blindly synthesizing a
multi-spectral image from a blank slate. Due to this severe ill-
conditioning, the model merely learns to reproduce observed
values while replacing missing pixels with the average
reflectance value of the training set. On the contrary, as soon
as the temporal encoder is added in the bottleneck of the
U-Net, while still using ordinary skip connections otherwise,
U-TILISE learns to leverage the temporal context to inform
the reconstruction of missing pixels. MAE, RMSE, and SAM
are about 3× lower than without temporal encoding, while
the PSNR increases by 8.7 dB (Table II, 2nd row). Visually,
U-TILISE predicts plausible spectral intensities and colors
in occluded image regions but fails to recover fine-grained
texture details [Fig. 7(a)]. The full model, which also uses the
upsampled attention maps in the skip connections, manages
to restore visibly more high-frequency details [Fig. 7(b)]. The
relative improvement amounts to ≈ 15% in MAE and RMSE,
and more than 20% in terms of SAM (Table II, 1st row). PSNR
improves by another 1.7 dB.

E. Choice of Positional Encoding
Next, we evaluate the influence of the positional encoding

scheme (cf. Section III-D) on the model output. We found
experimentally that information about the image order and
the relative temporal distance between observations is crucial
to reconstruct realistic, gap-free time series. Without any
positional encoding, the performance of U-TILISE drops
significantly; MAE, RMSE, and SAM increase by ≈ 40%
and PSNR drops by almost 3 dB (Table II, 6th row). Injecting

Fig. 8. MAE as a function of the full sequence length Ti and the temporal
window T of U-TILISE.

ordinal information improves MAE and RMSE by 13% and
SAM by 17%, while also improving the perceptual similarity
to the target sequence (Table II, 5th row). Encoding the
temporal offset from the first observation in the sequence
rather than the ordinal position brings another improvement
of ≈ 20% in MAE, RMSE, and SAM and boosts PSNR
by 2 dB (Table II, 4th row). We find only a tiny difference
between encoding the temporal distance to the first observation
or encoding the acquisition date of every observation relative
to the 1st January of the respective calendar year. We speculate
that the latter strategy suffers from a bias inherent in our
training data: most of the EarthNet2021 time series are
captured between May and October; likely, the dataset does
not offer sufficient variability to extract an expressive prior
over seasonal patterns.

F. Influence of Input Sequence Length T

To test the sensitivity of U-TILISE to the number of
images processed as one sequence, we define two model
variants by varying the temporal window length T . In detail,
we retrain U-TILISE once with training sequences that are
randomly trimmed to a maximum temporal length of five
images (T = 5), and once with time series that comprise up
to 15 images (T = 15). At test time, we always process the
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Fig. 9. Imputation results for two time series of the EarthNet2021 dataset with real data gaps due to clouds, cloud shadows, and missing frames (shown in
black). Example 1 is from the ood test split and example 2 from the iid test split.

full-length time series, employing a sliding window scheme if
the temporal length Ti is larger than the maximum length T
used during training.

We find that all evaluation metrics remain relatively stable
when varying the temporal window of U-TILISE (Table II,
rows 7–8), with fluctuations below 2% compared to our default
setting (T = 10). For a more fine-grained analysis, we thus
separately measure the performance for time series consisting
of (i) at most 9 images, (ii) 10 to 14 images, or (iii) 15 or
more images. As shown in Fig. 8, the MAE at imputed pixels
slightly reduces with longer time series and temporal window
T , indicating that U-TILISE can exploit long temporal context
if needed.

G. Number of Attention Heads
U-TILISE is fairly robust with varying numbers of temporal

attention heads. We find marginal quantitative gains when
adding more heads (Table II, rows 9-11), and also only small
differences in visual quality [Fig. 7(c)].

H. Time Series With Real Data Gaps
In the last experiment, we use the trained U-TILISE model,

unaltered, to impute missing pixels in time series with real data
gaps. This scenario corresponds to the practical application
case, where the masked pixels are truly unobserved. Of course,
this also implies that the resulting outputs can only be assessed
through visual inspection, since no ground truth exists for
the masked areas. Note that the application to real cloudy
time series may, from a machine learning perspective, involve

some degree of generalization. As clouds do not have sharp
boundaries, the unmasked regions just outside the cloud mask
may, in some cases, still be affected by thin clouds and haze.
During training, where cloud-free images are synthetically
masked, the model has not been exposed to such a situation.

Fig. 9 depicts imputation results for two representative
30-frame time series from the EarthNet2021 test set. The
original, observed time series suffer from severe data gaps
from clouds, shadows, haze, and missing images. Furthermore,
the second example exhibits a rather long period without
any valid observations. Despite these challenges, U-TILISE
creates realistic, gap-free time series of high visual quality.
The reconstructed time series do occasionally suffer from
remaining clouds or haze, if they were missed by the cloud
masking algorithm (Fig. 9, 5th last frame of the second
example).

VII. CONCLUSION

We have presented U-TILISE, a learned sequence-to-
sequence model for data imputation in optical satellite image
time series. The model combines 2D convolutions over the
spatial and spectral dimensions and 1D self-attention across
time into an efficient prior over multi-spectral and multi-
temporal reflectance patterns. Given an optical time series in
which invalid reflectance values are masked, U-TILISE creates
a coherent time series with a clean, cloud-free image at every
time step of the input.

In a series of experiments, we have shown that U-TILISE
reconstructs gap-free Sentinel-2 sequences with high accuracy.
It removes clouds and cloud shadows of various shapes
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and sizes, manages to recover multiple consecutive frames
of missing data, and generalizes to previously unseen
geographical locations. On the EarthNet2021 dataset, the
average MAE within the data gaps is in the order of 1% of
the intensity range, and the PSNR is ≈ 38 dB.

A limitation of the current approach is that it relies on
cloud (and cloud shadow) masks as auxiliary input. Detecting
cloudy pixels in remotely sensed imagery is challenging and
still not completely solved. Mistakes of the preceding cloud
detector limit the performance of U-TILISE, since it implicitly
learns to preserve input reflectances that are valid according to
the masks. Furthermore, the model may of course reconstruct
radiometrically plausible but incorrect transitions in cases
where the available information is too sparse to determine
when a sudden change has occurred, such as, for instance,
a harvesting event during a multi-frame data gap.

An interesting future research direction is to eliminate the
need for external cloud masks and instead design the model
such that it implicitly performs the detection of invalid pixels.
Another useful extension for users of the U-TILISE output
will be to integrate a probabilistic deep learning scheme and
supplement the output with spatially and temporally resolved
uncertainty estimates.

APPENDIX
COMPLEMENTARY EXPERIMENTS

Some authors [31], [61] have advocated the use of co-
registered SAR observations, which are largely unaffected
by the atmosphere, to support optical image imputation.
It is a natural idea to also augment U-TILISE with a time
series of spatially and temporally co-registered SAR images.
Technically, this is straightforward: we add the two-channel
SAR images (ortho-rectified VV/VH log-amplitude) as
additional input channels that need not be reconstructed and,
accordingly, increase the filter depth of the first layer by two.
We train and test this multi-modal variant of U-TILISE in
a simulated setting using the SEN12MS-CR-TS dataset [31],
a multi-modal and multi-temporal dataset specifically designed
for multi-modal cloud removal. Unfortunately, it turns out
that the dataset is not only considerably smaller than
EarthNet2021 (see Table III), but its sequences also exhibit
comparatively lower temporal variability and dynamics and do
not allow a conclusive comparison. We refrain from drawing
firm conclusions about the impact of complementary SAR
observations and instead conclude that a more informative
dataset must be created to investigate the issue, possibly by
augmenting EarthNet2021 with SAR observations.

A. SEN12MS-CR-TS Dataset

SEN12MS-CR-TS [31] comprises about 15 000 globally
sampled Sentinel-2 time series (Level-1C with top-of-
atmosphere reflectances) from 2018 with a spatial extent of
256×256 pixels (2.56×2.56 km in scene space). Each time
series contains 30 images, with varying temporal spacing
of 5 to 15 days between consecutive observations. The
images encompass all 13 spectral bands, upsampled to 10 m
resolution. Furthermore, every optical image is paired with a
spatially co-registered, temporally close (but not synchronous)

TABLE III
ACQUISITION DETAILS OF THE TWO SENTINEL-2 DATASETS. WE LIST

THE NUMBER OF SEQUENCES, THEIR AVERAGE LENGTH, AND
THE TEMPORAL RESOLUTION; SEPARATELY FOR THE TRAINING,

VALIDATION, AND TEST PARTS (FOR EARTHNET2021, FUR-
THER DIVIDED INTO iid AND ood TEST SETS). WE ALSO

SHOW THE STATISTICS FOR THE SIMULATED TRAIN-
ING SEQUENCES, AFTER REMOVING IMAGES WITH

ACTUAL CLOUDS

C-band SAR image with two channels representing the
σ0 backscatter coefficients in the VV and VH polarizations,
in units of decibels (dB). The temporal offset between paired
optical and SAR observations is three days on average,
although, for 5.5% of the pairs, the temporal difference is
over one week. The dataset also includes pixel-wise cloud
probabilities and binary cloud masks, produced with the
S2Cloudless detector [76].

B. Experimental Setup

We adopt the preprocessing protocol of [31], [32] and
value-clip the optical images to the range [0, 10 000] and
the SAR images to [−25, 0], followed by normalization to
the unit range [0, 1]. Like for EarthNet2021, we extract
cloud-free optical time series for training and evaluation
(cf. Section IV-B). In rare cases, SEN12MS-CR-TS sequences
exhibit data gaps of several consecutive months. To limit
potential land cover and seasonal changes to a reasonable
range, we temporally trim the time series such that the
temporal spacing between adjacent valid frames is at most
four weeks. The resulting time series are, on average, shorter
than those of EarthNet2021, and they have about 50% larger
temporal spacing between consecutive frames (cf. Table III).

After removing real data gaps, we introduce synthetic gaps
into the optical images (cf. Section IV-C) and concatenate the
resulting, masked optical time series with the (unmodified)
SAR time series along the channel dimension to produce
multi-modal input for U-TILISE.
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TABLE IV
QUANTITATIVE COMPARISON OF U-TILISE WITH CONVENTIONAL BASELINES FOR THE SEN12MS-CR-TS DATASET. THE METRICS ARE COMPUTED

OVER ALL PIXELS (OR IMAGES, IN THE CASE OF SSIM) WITH MISSING DATA IN THE INPUT TIME SERIES. WE TRAIN AND EVALUATE U-TILISE
ONCE ONLY WITH OPTICAL TIME SERIES AND ONCE WITH ADDITIONAL SAR INPUT

Fig. 10. Visual comparison of two U-TILISE variants on the SEN12MS-CR-TS dataset. On the left are the inputs for an exemplary sequence. For
multi-spectral data, the RGB channels are displayed; SAR data are rendered as two-channel image composites (VV/VH amplitude). Numbers indicate the
temporal spacing from the preceding image. U-TILISE prediction from only optical time series (top) and from combined optical and SAR input (bottom) are
visually indistinguishable. Numbers are mean absolute errors over all masked pixels, across all 13 spectral bands.

C. Training Details

We use the Adam optimizer [81] with hyper-parameters
{β1 = 0.9, β2 = 0.999}, batch size 3, and a weight decay
of 10−5. The base learning rate of 2 · 10−4 is reduced by 50%
every 80 training epochs. Due to the larger spatial dimensions
of the input time series (256×256 pixels, compared to
128×128 pixels in EarthNet2021), we add an additional
convolutional block in the spatial encoder and decoder, such
that the (spatial) dimension of 16×16 pixels in the bottleneck
is the same as for EarthNet2021.

D. Results

We provide quantitative results in Table IV and a visual
example in Fig. 10. As already observed with EarthNet2021,
linear interpolation between the most recent and the next
available observation performs significantly better than the
more widely used baselines that replicate either the last or the
temporally closest observation. U-TILISE achieves marginally
better error metrics with SAR guidance than without, but the
differences (< 0.05% of the intensity range in MAE and
RMSE, < 0.2◦ in SAM, < 0.2% in SSIM) are negligible
and well within the stochastic fluctuations of deep network
training. Moreover, the linear interpolation baseline is on par
with both variants, and all three results remain well below
the fidelity achieved on EarthNet2021 (Table I), although the
numbers are not directly comparable since SEN12MS-CR-TS
includes 13 bands of which 9 have been upsampled to 10 m
GSD, whereas EarthNet2021 consists of 4 bands that were
downsampled to 20 m GSD. Upon inspection, we find that
SEN12MS-CR-TS contains many sequences where the land
cover is static and largely homogeneous. The results we obtain
on SEN12MS-CR-TS neither confirm nor rule out a possible
benefit through SAR guidance. We believe that a larger dataset
with more non-linear temporal variations will be needed to
carry out a conclusive comparison.
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