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Abstract— Tensor decompositions are a powerful tool for mul-
tidimensional data analysis, interpretation, and signal processing.
This work develops a constrained tensor decomposition frame-
work for complex multidimensional synthetic aperture radar
(SAR) data. The framework generalizes the canonical polyadic
(CP) decomposition by formulating it as an optimization problem
and allows precise control over the shape and properties of the
output factors. The implementation supports complex tensors,
automatic differentiation, and different loss functions and opti-
mizers. We discuss the importance of constraints for physical
validity, interpretability, and uniqueness of the decomposition
results. To illustrate the framework, we formulate a polarimetric
time series decomposition and apply it to data acquired over
agricultural areas to analyze the development of four crop types
at the X-, C-, and L-bands over the period of 12 weeks. The
obtained temporal factors describe the changes in the crops in a
compact way and show a correlation to certain crop parameters.
We extend the existing polarimetric time series change analysis
with the decomposition to show the changes in more detail and
provide an interpretation through the polarimetric factors. The
decomposition framework is extensible and promising for joint
information extraction from multidimensional SAR data.

Index Terms— Agriculture, constraints, optimization, polari-
metric synthetic aperture radar (PolSAR), SAR, tensor decom-
position, time series.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is widely used for
remote sensing and Earth observation with a large variety

of applications in different research areas [1]. In contrast to
optical sensors, SAR has a sensitivity to dielectric and geo-
metrical properties and offers unique advantages such as cloud
penetration. SAR data are defined in the complex domain
where both amplitude and phase carry information. Depending
on the sensor and the acquisition setup, the data have different
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dimensions: SAR images naturally offer the spatial dimen-
sion, polarimetry adds information about wave polarization,
interferometry and tomography combine the phase informa-
tion from two or more acquisitions to obtain sensitivity to
the vertical scattering profile, temporal image stacks capture
changes over time, and radar frequency bands offer sensitivity
to different object properties. Analyzing and interpreting this
high-dimensional and complex data is often challenging and
requires advanced processing methods.

SAR decompositions have been commonly used to reduce
the data to a few key parameters and simplify the analysis.
For polarimetry, many different decompositions have been
proposed including Cloude and Pottier [2], Freeman and
Durden [3], Krogager [4], and Yamaguchi [5]. A detailed
overview can be found in [6]. The parameters obtained from
the decomposition are helpful for unsupervised classification
and land cover characterization. More recently, decompo-
sitions for two data dimensions have been proposed. One
example is the sum of Kronecker products (SKP) decompo-
sition [7] for polarimetric multibaseline data that jointly uses
information from polarimetry and interferometry/tomography.

For data that can be represented as a matrix, several
algebraic matrix factorization and decomposition methods are
available including eigendecomposition, singular value decom-
position (SVD), principle compound analysis (PCA), and
nonnegative matrix factorization (NMF) [8], [9], [10], [11].
Some SAR decompositions build on top of the algebraic
decompositions, for example, eigendecomposition and SVD
are used in Cloude decomposition and SKP decomposition,
respectively.

Combining multiple data dimensions is a promising
approach to extract additional information or improve predic-
tion accuracy. Matrix factorization methods can be applied to
multidimensional data tensors but require reshaping tensors
into matrices before factorization. One example is stacks of
2-D images or matrices. Before factorization, each image is
reshaped into a vector that then forms columns of a new matrix
to be factorized. Since some data properties are not preserved
during reshaping, additional steps might be required before
component interpretation, as in the SKP decomposition.

Tensor decompositions generalize the matrix decomposi-
tions and directly work with multidimensional tensors without
the need to reshape them into matrices. Several tensor decom-
positions exist, the most common being the canonical polyadic
(CP) (also known as CANDECOMP or PARAFAC) [12], [13]
and Tucker [14] decompositions. They are powerful tools to
jointly analyze multidimensional data and are used in several
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research areas. The applications include multidimensional data
analysis, compression, classification, dimensionality reduction,
and many others [15], [16]. A complete overview of tensor
decompositions is given in [17].

In the field of remote sensing, tensor decompositions have
been widely applied to optical hyperspectral data [18]. How-
ever, complex-valued SAR data are inherently different from
optical images both in terms of structure and dynamic range.
Therefore, the existing tensor decomposition methods often
require modifications to be applied to SAR. Recently, different
methods involving tensor decompositions have specifically
been developed for SAR data. In the context of image classi-
fication, polarimetric features have first been extracted before
applying Tucker decomposition in [19]. Tensor decomposi-
tions have also been used for interferometric SAR data stack
filtering and urban mapping in [20]. A despeckling method for
polarimetric time series was proposed in [21].

Tensor decompositions are promising tools for multidi-
mensional SAR data processing and analysis. In this article,
we discuss the CP decomposition, its limitations when applied
to SAR data, and propose some solutions to resolve these
limitations. The first limitation is that the standard formulation
of CP produces vector factors, while some dimensions such
as polarimetry typically represent the data in matrices. The
second limitation is that not all the decomposition solutions
may be physically valid. Therefore, it is important to con-
strain the decomposition solution space and enforce a specific
structure on the resulting factors. For example, polarimet-
ric coherency matrices have to be Hermitian and positive
semidefinite (PSD).

This article introduces a constrained tensor decomposition
framework for SAR data that addresses these limitations.
In Section II, we discuss the standard CP decomposition and
extend it into a framework that allows to define constraints
on factors and allows arbitrary factor shapes. To demonstrate
the framework, we formulate a specific decomposition and
use it to analyze polarimetric time series which is an active
research area with recent works by Alonso-González et al. [22]
and Cloude [23]. To visualize the results, we extend the
change analysis from [22] with the decomposition factors.
In Section III, we evaluate the decomposition in the context
of crop monitoring and change detection. We highlight the
effect of constraints on solution uniqueness, analyze changes
for different crop types and bands, and evaluate the corre-
lation between the decomposition factors and selected crop
parameters. In Section IV, we discuss the findings and present
possible extensions to the framework. Section V concludes this
article.

II. METHODS

A. Notation

The notation mainly follows the definitions used by Kolda
and Bader [17]. We denote vectors with bold lowercase
letters, e.g., a, matrices with bold capital letters, e.g., M, and
tensors with capital calligraphic letters, e.g., X . We denote the
individual elements of tensor X found at index [i1, . . . , im]

by X[i1,...,im ].

B. SAR Polarimetry

A fully polarimetric SAR system provides the scattering
matrix S for each pixel with matrix elements representing the
complex scattering coefficients of the received and transmitted
horizontal (H) and vertical (V) polarization combinations

S =

[
SHH SHV
SVH SVV

]
. (1)

While the matrix is able to completely describe deter-
ministic scatterers, a second-order formalism is required for
distributed scatterers [1]. The elements can be arranged into
the scattering vector k in the Pauli basis [24] that follows a
zero-mean complex Gaussian distribution given a large number
of distributed scatterers within the resolution cell:

k =
1

√
2

SHH + SVV
SHH − SVV
SHV + SVH

. (2)

The covariance matrix T describing the Gaussian distribution
(also known as coherency matrix) can be estimated by com-
bining vectors ki from n pixels

T =
1
n

n∑
i=1

ki ◦ k∗

i (3)

where ∗ denotes the complex conjugation, and ◦ represents
the outer product. T completely describes the polarimetric
response of distributed scatterers under the Gaussian hypoth-
esis and it is commonly used for polarimetric SAR analysis.
The matrix T is Hermitian, PSD, and has real and nonnegative
eigenvalues by construction.

The choice of the Pauli basis has an advantage when it
comes to interpreting the scattering mechanisms [25]. We refer
to the diagonal elements of T as Pauli elements since they cor-
respond to the backscattered power of the Pauli components in
the k vector. The first element T[1,1] (HH + VV polarization)
can be associated with surface scattering, the second T[2,2]

(HH − VV) indicates dihedral scattering and the third T[3,3]

(HV + VH) can be related to volume scattering. A common
Pauli RGB color scheme displays the first, second, and third
elements in blue, red, and green, respectively.

C. CP Tensor Decomposition

The CP decomposition factorizes a tensor into a sum of
components. Each component is constructed from an outer
product of factor vectors, with one factor for each dimension.
In the 3-D case, a tensor X ∈ CI×J×K decomposes into
R components each defined by the factor vectors ar ∈ CI ,
br ∈ CJ , and cr ∈ CK

X ≈

R∑
r=1

ar ◦ br ◦ cr . (4)

The reconstruction function r(·) reconstructs the tensor R
from the tuple F that contains all the factors

r(F) = R (5)

with F = (a1, . . . , aR, b1, . . . , bR, c1, . . . , cR). Any ten-
sor X can be perfectly reconstructed (X = R) by the
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Fig. 1. Standard CP decomposition and the proposed decomposition with
constraints and flexible factor shapes. The colors indicate different constraints
applied to the factors.

CP decomposition given a sufficiently large R. The tensor rank
is the smallest R that fully reconstructs the tensor. Each of the
decomposition components is a rank-1 tensor.

There exist several algorithms performing the CP decompo-
sition. The alternating least squares (ALS) algorithms optimize
one factor dimension at a time, keeping the others fixed and
repeating the process for all the dimensions until convergence.
Another class of algorithms directly obtains the factors using
gradient-based optimization. An extensive overview of the CP
decomposition and the decomposition algorithms can be found
in [17] and [26].

D. Constrained Tensor Decomposition Framework

Here, we propose a decomposition framework that general-
izes the standard CP decomposition with two main extensions:
allow for flexible factor shapes and introduce different factor
constraints, as illustrated in Fig. 1.

Flexible factor shapes remove the restriction for factors to
be vectors and allow them to be matrices or even other tensors.
This is especially useful when working with polarimetric
SAR data that are commonly expressed through covariance
matrices.

Factor constraints restrict the solution space for the decom-
position output. In the context of SAR, constraints are used
to eliminate solutions that are physically nonvalid, such as
negative backscatter powers or covariance matrices that are
not PSD.

We formulate the decomposition as an optimization problem
and use the solution of the problem to obtain the constrained
factors. The differentiable function to be optimized consists of
three main steps: applying the factor constraints, reconstruct-
ing an approximation of the original tensor, and computing
the loss, as shown in Fig. 2.

First, the constraint function c(·) maps the tuple of uncon-
strained factors Fu to the tuple of constrained factors Fc

Fc = c(Fu). (6)

Then, the reconstruction function r(·) transforms the con-
strained factors into the reconstructed tensor R

R = r(Fc). (7)

Finally, the loss function l(·) evaluates the difference between
the tensors X and R

L = l(X ,R). (8)

Fig. 2. Formulation of the constrained decomposition as an optimization
problem. The function to be optimized consists of three main parts: constrain-
ing factors, reconstruction of the approximation tensor, and loss calculation.

Fig. 3. Constraint implementation: the set of unconstrained factors is mapped
to a constrained factor set. Examples for positive vectors (R+) and PSD
matrices (both full-rank and rank-1).

1) Constraint Implementation: The factor constraints are
realized by mapping the unconstrained set onto the constrained
set. Examples of constraints illustrate the idea in Fig. 3.
To achieve a factor with only positive real values, we start
from a vector with any real numbers and apply the exponential
function elementwise. A more advanced example is the PSD
constraint on matrices. One way to implement it is to start with
an arbitrary full-rank matrix and multiply it by the conjugate
transpose of itself, resulting in a constrained full-rank PSD
matrix. Another way is to start with a vector and form an
outer product between the vector and the conjugate of itself,
resulting in a rank-1 PSD matrix. More details on constrained
optimization on manifolds and a list of constraints can be
found in [27].

We apply factor constrains to each factor dimension indi-
vidually and allow different dimensions to have different
constraints. We denote the function that maps the tuple of all
the unconstrained factors to the tuple of all the constrained
factors with c(·) and the dimension-specific functions with
cdim(·) where dim is the dimension.

2) Reconstruction Function: The reconstruction function
r(·) transforms the constrained factors to the reconstructed
tensor. In the standard CP decomposition, the reconstruction
is a sum of outer products of factors as indicated in (4).
In the constrained decomposition framework, we use the same
reconstruction function. However, the factors are no longer
limited to vectors and can be matrices or tensors.
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The outer product of two tensors U ∈ CI1×···×IM and V ∈

CJ1×···×JN is a tensor W ∈ CI1×···IM ×J1×···×JN . For example,
a product of a 3 × 42 matrix and a seven-element vector
creates a 3 × 42 × 7 tensor. Similar to the vector case, the
entries of W are products of combinations of the entries in U
and V

W[i1,...,im , j1,..., jn ] = U[i1,...,im ]V[ j1,..., jn ]. (9)

After forming the outer products of factors, the resulting
component tensors are summed up to obtain the final recon-
struction R.

3) Loss Function: The loss function l(·) measures the
difference between two input tensors and outputs a single
scalar L ∈ R. Let X ∈ CI1×···×IN , then the norm of X is

||X || =

√√√√ I1∑
i1=1

I2∑
i2=1

, . . . ,

IN∑
iN =1

|X[i1,i2,...,iN ]|
2. (10)

The standard CP decomposition uses the squared error loss
function which can be expressed using the tensor norm

l(X ,R) = ||X −R||
2. (11)

Some formulations use the mean squared error resulting in a
slightly different loss value; however, it has no effect on the
optimization solution.

The choice of the loss function implicitly assumes the
distribution of the data. For example, the squared error loss
assumes a Gaussian distribution. A recent CP formulation
in [26] allows us to flexibly choose other loss functions and
lists several candidates for different data distributions. Our
proposed framework shares this flexibility allowing to use any
differentiable function mapping X and R to L . In this article,
we use the standard squared error loss and discuss optional
regularization in Section III-B2.

E. Decomposition With Optimization

Function optimization is a large research area with well-
developed tools, formalism, and implementations. Our goal is
to minimize the loss L and obtain the factors best reconstruct-
ing the tensor X

L = l(X ,R) = l(X , r(Fc)) = l(X , r(c(Fu))). (12)

When the function gradient is known, efficient minimization
is possible using first-order iterative gradient descent-based
algorithms such as Adam [28]. If the number of function
input parameters is relatively small and the second deriva-
tive (Hessian matrix) is available, second-order optimization
methods such as Broyden–Fletcher–Goldfarb–Shanno (BFGS)
[29], [30] can provide faster convergence. For the scope of
this article, the specific choice of the optimizer is not of
great importance. Therefore, we choose the commonly used
first-order Adam optimizer.

1) Automatic Differentiation: To perform the optimization,
we need to obtain partial derivatives of each element of
each unconstrained factor in Fu with respect to the loss L .
An analytical expression can be derived by hand applying the
chain rule. However, when experimenting with the decomposi-
tion framework, adapting constraints, and adding dimensions,

having to derive an analytical solution after every change can
be time-consuming. Therefore, we suggest using automatic
differentiation to compute the gradient in an efficient way
when the function is evaluated.

We use PyTorch [31] to perform optimization and automatic
differentiation for the decomposition. PyTorch is a widely
adopted machine learning framework with a large commu-
nity, which provides an efficient implementation of many
tensor operations, enables hardware acceleration, and supports
complex tensors and differentiation through Wirtinger calcu-
lus. Other frameworks such as TensorFlow [32], JAX [33],
or Keras [34] can also be used for automatic differentiation.
The degree of support for complex differentiation varies but
is improving over time.

2) Decomposition Factor Estimation: To find the con-
strained decomposition factors, we start with randomly
initialized unconstrained factors and iteratively perform opti-
mization steps until convergence. During each optimization
step, we first apply the constraints to obtain the constrained
factors. Then, we reconstruct R using the reconstruction
function and compute the loss L . We obtain the gradients
with respect to the unconstrained factors through automatic
differentiation and use them to update the unconstrained
factors. The optimization steps are repeated until convergence.
Finally, we apply the constraints to the unconstrained factors
and obtain the constrained decomposition output.

F. Application: Polarimetric Time Series Decomposition

In this section, we formulate a specific decomposition
problem to illustrate the proposed decomposition framework.
We decompose fully polarimetric time series data into R com-
ponents made up of 1-D temporal and 2-D polarimetric
factors. The decomposition only uses temporal and polarimet-
ric information keeping the number of dimensions small for
straightforward interpretation. At the same time, decomposing
a 3-D tensor is sufficient to illustrate the contributions of
the proposed framework including different factor shapes
and constraints. The decomposition assumes R underlying
mechanisms responsible for the backscatter signal. These
mechanisms keep the same polarimetric signature but change
their intensity as the scene changes over time.

We decompose the data tensor X ∈ CN×3×3 created from
a stack of N polarimetric 3 × 3 covariance matrices. Each of
the R decomposition components is defined by a polarimetric
3 × 3 matrix factor Pr describing the scattering mechanism
and an N -element temporal factor vector tr describing how
the intensity of the component changes over time. The detailed
compute graph is shown in Fig. 4.

To ensure the physical validity and interpretability of the
decomposition result, we constrain Pr to be a PSD matrix and
tr to only contain real and positive values. The tuples Fu and
Fc of unconstrained and constrained factors are given by

Fu = (tu,1, . . . , tu,R, pu,1, . . . , pu,R) (13)
Fc = (t1, . . . , tR, P1, . . . , PR) (14)

where tu,r ∈ RN and pu,r ∈ C3 are the unconstrained
temporal and polarimetric factors, respectively. The functions
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Fig. 4. Compute graph of polarimetric time series decomposition. Two
components are shown in this example.

constraining the individual factor dimensions are given by

tr = ctime(tu,r ) = exp(tu,r ) (15)

Pr = cpol(pu,r ) = pu,r ◦ p∗

u,r (16)

where exp denotes the exponential function applied
elementwise. Constructing Pr from an outer product of
vectors has the additional effect of constraining the matrix
to be rank-1. It is also possible to use full-rank polarimetric
factors for each component of the decomposition and we
discuss the differences in Section III-B.

The reconstruction function is a sum of the outer products
of the constrained vector and matrix factors

X ≈ R =

R∑
r=1

tr ◦ Pr . (17)

To avoid scaling ambiguities, we normalize the temporal factor
elements to sum up to one

N∑
n=1

tr [n] = 1. (18)

The scaling magnitude is then absorbed into the corresponding
polarimetric factor Pr . Temporal factor normalization high-
lights the relative changes and makes it easier to compare how
different components change over time. After normalization,
the weight wr of the component can be obtained as the trace
of Pr

wr = Tr Pr . (19)

The relative weight of the individual component is defined by

wrel
r =

wr∑R
i=1 wi

. (20)

We order the components by their weights in descending order,
so that the first component has the highest importance in the
reconstruction.

As opposed to some matrix decompositions such as
the SVD, the obtained factors are generally not orthogonal.
Therefore, each polarimetric factor is able to represent com-
binations of different scattering mechanisms (e.g., dihedral
and volume scattering) and is not restricted by other factors.
The decomposition finds a nonorthogonal polarimetric basis
that best approximates the time series data under the given
constraints. The temporal factors describe the evolution of the

Fig. 5. Change matrices visualize increasing and decreasing signal compo-
nents for each pair of acquisitions in the upper and lower triangular parts,
respectively. The Pauli RGB color in the matrices is interpolated between the
time points and indicates the polarization.

corresponding polarimetric factor over time. Nonorthogonality
is also important for the temporal factors since orthogonal
factors would be too restrictive in combination with the
nonnegative constraint. Compared with a time series of an
individual coherency matrix element, temporal factors are
more robust to noise in the data, since they have a full
polarimetric matrix attached to them.

An important difference to the existing SAR decomposi-
tions [3], [4], [5], [7] is that the number of the components can
be chosen depending on the application. For example, perform-
ing the decomposition with only one component will extract a
single scattering mechanism with the highest importance over
the whole time frame. Using several components refines the
reconstruction and allows the analysis of fine-grained changes.

Another notable property is that there are no initial
assumptions on the specific scattering mechanisms. The
decomposition finds the mechanisms that best describe the
measured signal in a completely automated and data-driven
fashion. We then use the polarimetric factors to interpret the
mechanisms.

It should be noted that an alternative vector representation
of second-order polarimetric information as suggested in [35]
can also be used in the proposed decomposition framework.
In this case, the constraint function cpol(·) needs to be adjusted
to map unconstrained vectors to the subspace of physically
feasible constrained vectors.

G. Polarimetric Change Analysis and Visualization

To visualize and compare the decomposition results in a
compact and concise manner, we use the polarimetric change
matrix visualization first introduced in [22]. The method quan-
tifies the changes in the signal for each acquisition pair and for
each polarization using the generalized eigendecomposition

T2wi = λi T1wi (21)
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where T1 and T2 are the coherency matrices from two acqui-
sitions, and wi and λi (i = 1, . . . , 3) represent the generalized
eigenvectors and eigenvalues, respectively.

The eigenvalues and the corresponding eigenvectors are then
separated into the increasing (λi > 1) and decreasing (λi < 1)
sets and define the color and the intensity of the changes in the
visualization. The color indicates the changing polarization in
the Pauli basis (see polarimetric definitions in Section II-B).
HH + VV, HH − VV, and HV polarizations are displayed in
blue, red, and green, respectively. The intensity depends on
the amount of increase or decrease reflecting the magnitude
of the generalized eigenvalues: black means no change and
bright colors indicate strong changes. In the visualization, the
increasing and decreasing signal components are shown in
the upper and lower triangular parts of the change matrix,
respectively, as illustrated in Fig. 5 (top). Details on the
polarimetric change analysis and an in-depth explanation of
the visualization can be found in [22].

We extend the change matrix visualization to the individual
decomposition components. Within the component, the polari-
metric signature is defined by the polarimetric factor and the
changes in time only represent a different scale defined by the
temporal factor. Therefore, the color is extracted directly from
the three diagonal Pauli elements of the polarimetric factor,
and the intensity of the change is defined by the weights within
the temporal factor as illustrated in Fig. 5 (bottom).

III. EXPERIMENTAL RESULTS

A. Dataset

The dataset to be analyzed was obtained by the DLR
F-SAR [36] airborne radar during the CROPEX campaign
in 2014. The imaged area is located in southern Germany near
Wallerfing and covers several agricultural fields with different
crop types. A region of the imaged area is shown in Fig. 6.
In this article, we focus on corn, wheat, barley, and rapeseed.
The time period spans about three months from mid-May to
early August and covers several stages in crop development as
shown in Fig. 7. Ground measurements of the crop parameters
such as vegetation height, plant water content, soil moisture,
and the phenological stage are available.

We perform the decomposition on individual fields where
only one crop type is present. To represent the changes over the
whole field with a single change matrix, the polarimetric data
are averaged over all field pixels resulting in one polarimetric
coherency matrix per acquisition. The coherency matrices
are then stacked along the temporal dimension resulting in
a 3-D tensor.

B. Solution Uniqueness

The constrained decomposition framework obtains the fac-
tors by starting with randomly initialized values and following
the gradient to minimize the loss until convergence. It is
important to keep in mind that the gradient-based minimization
finds a local minimum. If the optimized function is not
convex, there can be several local minima yielding different
decomposition solutions.

The solution uniqueness is affected by the number of
decomposition components, the applied constraints, the regu-
larization, and the rank of the decomposed tensor. To illustrate
this, we decompose a polarimetric time series obtained at
the C-band over a wheat field and evaluate the convergence.
We take advantage of the decomposition framework’s flexibil-
ity allowing us to apply regularization and experiment with
different constraints. Three different scenarios are shown in
Fig. 8: rank-1 polarimetry, full-rank polarimetry, and full-rank
polarimetry with regularization.

When discussing the decomposition results, we plot the
change matrices for the original and the reconstructed tensors
and provide the relative reconstruction error

error(X ,R) =
||X −R||

||X ||
. (22)

In addition, we plot one change matrix per decomposition
component. The components are sorted by the component
weights wrel

r in descending order, with the most important
component being the first. In every row, the first change
matrix is directly derived from the original data X as pro-
posed in [22]. The second change matrix is derived from
the decomposition reconstruction R. Both appear very similar
when the reconstruction error is low. The last three change
matrices are created by performing the decomposition and then
applying the visualization from [22] to each component. The
visualizations also include normalized temporal factor weights
for each component in a line plot.

1) Constraints: Constraints play an important role in
obtaining a unique solution by removing excessive degrees of
freedom. Fig. 8(a) shows two decompositions runs where the
polarimetric factors are constrained to be rank-1 PSD matrices
according to (16). Even though the factors are initialized
differently, the decomposition converges to the same solution.
Fig. 8(b) shows two runs with more relaxed constraints. The
polarimetric factors are full-rank PSD matrices constructed
from an unconstrained full-rank matrix

Pr = Pu,r PT ∗

u,r . (23)

While the reconstruction is equal (up to numerical errors)
across two runs, the factors show differences. In this case,
the interpretation of the factors is ambiguous as they change
from run to run.

2) Regularization: Regularization is a common concept to
reduce the model capacity and prevent overfitting in machine
learning [37]. Some of the regularization strategies such as the
L2 regularization add an additional term to the loss function
(see Section II-D3) that depends on the input parameters. For
the polarimetric time series decomposition, after normalizing
the temporal factors, we can add L2 regularization to the
constrained polarimetric factors

ll2(X ,R, P1, . . . , PR) = ||X −R||
2
+ λl2

R∑
r=1

||Pr ||
2 (24)

where λl2 is the regularization strength that balances the
two objectives of high approximation accuracy and small
component norm. L2 regularization penalizes large entries in
the factors and guides the decomposition toward a solution
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Fig. 6. Pauli images at the X-, C-, and L-bands taken on June 18 during the CROPEX 2014 campaign. Color coding: HH + VV polarization in blue,
HH − VV in red, and HV + VH in green.

Fig. 7. Crop development during the CROPEX 2014 campaign. Corn growth was fully covered during the campaign. Barley, rapeseed, and wheat have
mostly reached the maximal height at the beginning and started to dry out during the campaign.

with components having a smaller norm. From the physical
perspective, the decomposition finds an approximation of the
original tensor trying to use as little energy as possible.

In the context of the constrained tensor decomposition, reg-
ularization can be seen as an additional soft constrain affecting
the loss landscape. When the initial choice of the constraints
does not provide a unique solution [example in Fig. 8(b)],
regularization can be used to guide the decomposition to
a specific solution [see Fig. 8(c)]. Different regularization
functions are possible each favoring specific solutions. For
example, L1 regularization is known to encourage sparse
solutions [26]. Note that the decomposition framework allows
regularizing both the constrained and unconstrained factors.
Regularizing constrained factors is generally preferred as it
simplifies the physical interpretation of the regularization.

The appropriate value for the regularization strength λl2
can be chosen empirically depending on the application. In
Sections III-C and III-D no regularization was used (λl2 = 0)
as rank-1 polarimetry constraints were sufficient to obtain a
unique solution.

3) Number of Components: The number of decomposition
components directly affects the reconstruction error and the
solution uniqueness. In general, the number of components
should be chosen so that the reconstruction captures the
original data well but filters out noise in the measurements.
It should be noted that if the number of components is
too high, the decomposition solution is no longer unique.
This is consistent with the standard formulation of the
CP decomposition. For example, infinitely many solutions
are possible when decomposing a rank-1 tensor into two
CP components.

If there are too few components, some parts of the data are
no longer reconstructed well resulting in a large reconstruction
error and a high loss value. Therefore, the loss can be used as
an indicator to pick an appropriate number of components.

In this article, we use three components to obtain an accu-
rate reconstruction and capture the changes in the data. Using
more than three components does not significantly improve the
reconstruction (see Fig. 9) and leads to ambiguous solutions
unless regularization is used.
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Fig. 8. Unique decomposition solution can be obtained by either apply-
ing stricter constraints (rank-1 polarimetry) or adding regularization. The
same tensor (wheat at C-band) is decomposed into three components in all
runs. (a) Unique solution with rank-1 PSD polarimetry (stricter constraints),
no regularization. (b) Different solutions with full-rank PSD polarimetry
(relaxed constraints), no regularization. (c) Unique solution with full-rank
PSD polarimetry (relaxed constraints), regularization applied.

Fig. 9. Relative reconstruction error [see (22)] depending on the number of
components for different crop types at the X-band.

C. Crop Analysis

SAR is sensitive to different vegetation and soil parameters
that are of interest for agricultural crop monitoring. The
backscatter signal changes over time and is influenced by
plant growth, changes in plant water content, changes in soil
moisture, and changes to the geometrical structure of the crop.

In this section, we use the polarimetric time series decom-
position in combination with polarimetric change analysis
from [22] to analyze four crop types at the X-, C-, and
L-bands. We decompose the measured signal into three com-
ponents each having a specific polarimetric signature that
changes its intensity over time. We apply rank-1 polarimetry
constraints and do not use regularization.

The change matrices show distinct signatures for each crop
type in different bands as shown in Fig. 10. Several processes
such as plant growth, fruit maturation, drying, and harvest
can be identified from the change matrices and interpreted
in combination with information from ground measurements.
Radar frequency bands interact differently with the crops and
are sensitive to different properties and changes. On the F-SAR
system [36], X-band has the shortest wavelength of 3 cm
interacting with smaller objects such as leaves and having less
penetration into the vegetation. On the other hand, the L-band
has a longer wavelength of 23 cm, penetrating deeper into the
vegetation and being more sensitive to larger scatterers and the
ground. The C-band is located between the X- and L-bands
with a wavelength of 6 cm.

The decomposition provides components that best describe
the observations. Each of the components has a polarimetric
factor defining the scattering mechanism and a temporal factor
capturing the intensity changes in the scattering mechanism
over time. Assuming that the changes in the signal are mainly
caused by the changes in the crops, we expect to see a
correlation between certain temporal factors and the crop
parameters. Fig. 11 shows several cases of measured crop
parameters and the temporal factors where large similarities
are visible. In the following, we discuss the decomposition
results and the visible changes for each crop type and band.

1) Corn: Corn [see Fig. 10(a)] growth period was com-
pletely covered during the campaign starting with an almost
bare field and ending with vegetation reaching 3 m in height.
The X- and C-bands show similar changes. There is a strong
decrease in surface scattering (first component, blue) after the
first two acquisitions and an increase in double bounce (red)
and volume (green) components, which can be attributed to
the growth of the plants, larger stems, and more leaves.

At the L-band, no decrease is observed across all the
components, except for the first dates. The first component
can be attributed to surface scattering based on its polarimetric
signature. As the plants grow, we expect to see a stronger
contribution of the corn stalks and leaves. This is clearly
seen in the second and third components that represent a
combination of dihedral and volume scattering and show
a high correlation to the measured plant height as shown
in Fig. 11(a).

The decomposition components show additional details not
visible in the change matrix of the original data. For example,
the X- and C-bands show a small increase in the first com-
ponent (blue, surface scattering) in the middle of the growing
period. This change is rather weak in relative terms and gets
overpowered by larger changes in other components. However,
the first component has a larger weight [indicated by wrel

1 in
Fig. 10(a)], and the change is significant in absolute terms.

Change matrices of the original data provide a compact
visualization of all the observed changes. The decomposition
components show additional information and allow the detec-
tion of small relative changes in each component.

2) Wheat: Wheat [see Fig. 10(b)] was still growing at
the beginning of the campaign and reached its full height
shortly after the first acquisitions. The dashed line indicates
the harvest.
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Fig. 10. Decomposition results for different crops at the X-, C-, and L-bands. Dashed lines indicate crop harvest. (a) Corn. (b) Wheat. (c) Barley. (d) Rapeseed.

Fig. 11. Measured parameters of several crops show similar trends to the temporal factors. For the barley field, the measurements were obtained from a
similar field nearby for the first two dates. Dashed lines indicate crop harvest. (a) Corn at the L-band and the measured crop height. (b) Barley at the L-band
and measured plant water content. (c) Rapeseed at the C-band and measured plant water content. (d) Rapeseed at the X-band and measured plant water
content.

The X-band shows no significant changes till the end of
the campaign. All the components show a strong increase just
before the harvest and a decrease after. The decrease is less
pronounced in the first component related to the surface.

The C-band also shows a strong increase; however, it hap-
pens earlier during the campaign around the fruit maturation
period. The first two polarimetric factors of the C-band show
a mixture of surface and double-bounce scattering.

The L-band signal increases and decreases over time with
no clear structure. In contrast to the X- and C-bands, the
changes caused by fruit maturation and plant drying are not
so significant for the L-band. The changes mostly occur at the
head of the plant which is mostly transparent to the L-band
as the head is smaller than the wavelength.

For wheat, no clear similarities between the temporal factors
and the ground measurements were observed. A possible rea-
son is that several processes (such as drying and geometrical
changes) counteract each other and cannot be separated by the
decomposition. In this case, extending the decomposition by

another data dimension (e.g., interferometry) might improve
the separation.

3) Barley: Barley [see Fig. 10(c)] has reached its maximal
height at the beginning of the campaign and the observed
changes are related to fruit maturation, drying, and harvest.

The X-band starts with a low signal power and increases
during fruit maturation. The drying and the bending of the
head and the stalks in June do not show large changes. The
harvest is visible as a strong increase in the surface component
(blue) and a small decrease in dihedral (red) and volume
(green) components.

The C-band also starts with a weak signal and shows a
strong increase in the second and the third components in the
middle of the acquisition period. Toward the later dates, drying
and harvest are responsible for the strong decrease visible in
the lower triangular part of the change matrices. Interestingly,
the second component appears in green indicating a slightly
stronger volume scattering than dihedral effects represented by
the third component.
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The L-band shows a decrease in all the components except
the first (surface scattering) which shows alternating increase
and decrease over time. The decrease in the second and third
components can be attributed to the drying process, as the
crops become increasingly transparent to the long-wavelength
radar signal. The decreasing dynamics are similar to the
measured volumetric water content as shown in Fig. 11(b).
Note that the first two ground measurements were taken from
a different field and do not necessarily match the conditions
on the decomposed field very well.

4) Rapeseed: Similar to barley, the rapeseed [see Fig. 10(d)]
plants were already fully grown before the first acquisition.

The X- and C-bands show similar changes over time. The
backscatter remains strong in the first half of the campaign
until the plants start to dry out. The changes are best seen
in the second and third components which are mostly related
to volume and dihedral scattering. The strongest component
related to surface scattering shows very little change at the
X-band with an almost completely black change matrix.

The temporal factors at the C- and X-bands show a corre-
lation to the plant water content in Fig. 11(c) and (d). Both
the second and third factor shapes are similar to the measured
plant water content. The separation between the first factor
and the others is less pronounced at the C-band than at the
X-band.

The L-band signal shows complex dynamics with several
changes. The similarities to the change matrices of wheat hint
that similar processes including drying are observed in both
the cases. The first component steadily decreases over time,
the second component shows an increase closer to the drying
and the harvest phases, and the third component has several
increases and decreases.

D. Comparison of Different Fields

To evaluate the stability of the proposed decomposition,
we compare the results obtained from different fields. While
each field can have different conditions (irrigation, soil type,
etc.), we expect the overall dynamics to be similar.

Fig. 12 shows the decomposition output for five different
corn fields observed at the L-band. The reconstruction error
is around 8%–9% for all the fields. The first component
is dominated by the surface scattering and has a similar
polarimetric signature across all the fields. The second and
third components show a mix of scattering mechanisms with
dihedral scattering being the strongest. While polarimetry
shows differences, the temporal factors of the second and third
components have similar trends across different fields.

Corn field 5 shows differences in the shape of the first tem-
poral factor compared with the other fields. The polarimetric
signature indicates a clear surface scattering contribution that
is interpreted as a change in the soil conditions. To confirm
this hypothesis, we have investigated the available polarimetric
images for fields 4 and 5. Both the fields are located next to
each other and have a minimal difference in the incidence
angle. Field 4 shows a change in the soil structure between
the first two acquisitions. The row structures are clearly visible
during the first acquisition, but they are not pronounced
during the second acquisition resulting in less backscatter.

Fig. 12. Comparison of different corn fields at the L-band.

Field 5 shows no significant changes: row structures are
visible on both the acquisitions. This different behavior is
directly visible in the corresponding change matrix of the
first component of field 5 with no significant increase or
decrease. In contrast, the temporal factors of the second and
third components show similar behavior across all the fields.
This example illustrates that the proposed technique can isolate
different temporal trends into different factors.

IV. DISCUSSION

Polarimetric time series decomposition is a useful tool
for crop analysis that separates the polarimetric signal into
components and allows to analyze the changes for each
component individually. In this section, we highlight the poten-
tial benefits of decomposition for crop parameter estimation,
discuss connections to existing polarimetric decompositions,
and propose possible improvements to the general constrained
decomposition framework.

A. Toward Crop Parameter Estimation

Crop and cropland parameter estimation using SAR data
is an active research area. Recently, there has been a lot of
progress in land cover and crop classification using super-
vised machine learning methods [38], [39], [40]. However,
the estimation of parameters such as plant height or water
content with supervised machine learning approaches is still
challenging due to the very limited amount of available ground
measurements. Other approaches for crop parameters’ estima-
tion, especially for crop height, often use techniques adapted
from forest height estimation [41], [42]. In contrast to forests,
crop height estimation is more challenging as crops tend to
change faster. Higher precision in the estimation is important
and the existing techniques still require improvements for
practical applicability [43].

1) Crop-Specific Polarimetric Models: Polarimetric models
have been proposed to estimate physical parameters including
soil moisture over vegetated agricultural areas [44]. Typically,
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the same model is inverted regardless of the crop type. Since
different crops show large differences in the geometrical
structure, growth dynamics, and maximal height, a single
polarimetric model is unlikely to perform well across all the
crop types. Different crop-specific polarimetric models are
likely to estimate the parameters more accurately.

Tensor decompositions reduce the data dimensionality and
help with exploratory data analysis for individual crop types.
The polarimetric time series decomposition is not limited
to a single field but can be used to extract the main
polarimetric mechanisms across many different fields. The
coherency matrices from all the acquisition dates and fields
with the same crop type are stacked along the temporal axis
and jointly decomposed. The resulting polarimetric factors
describe the main scattering mechanisms and can help develop
crop-specific physical models. For example, an appropriate
volume scattering representation for each crop type can be
selected based on the polarimetric factors. Combined with crop
classification, an appropriate polarimetric model can then be
inverted for each field.

2) Integration of Prior Knowledge: The estimation accu-
racy of crop parameters can be improved by integrating prior
knowledge as shown in [45], where a logistic growth model
assists the height estimation of rice. In the proposed decompo-
sition framework, prior knowledge can be integrated by adding
additional constraints to the temporal factors. For example, the
factors can be constrained to follow the expected parameter
dynamics, such as increasing biomass or decreasing plant
water content. The expected dynamics can be extracted from
crop models such as decision support system for agrotech-
nology transfer (DSSAT) [46] that simulate the evolution
of crop and soil parameters in time. The most promising
temporal factors to be constrained are those already showing
a correlation to the crop parameters as shown in Fig. 11.

B. Connection to Polarimetric Decompositions

The proposed tensor decomposition for polarimetric time
series has a few notable differences from the classical polari-
metric decompositions (e.g., Cloude and Pottier [2], Freeman
and Durden [3], or Yamaguchi et al. [5]). The main difference
is the input: while classical decompositions operate on a single
coherency matrix, the proposed decomposition operates on a
tensor created from multiple coherency matrices. Furthermore,
the outputs differ significantly. Classical decompositions pro-
duce a set of parameters that characterize the input coherency
matrix. In contrast, the proposed decomposition produces
a set of factors where each of the factors corresponds to
a data dimension. This allows the analysis of the factors
with techniques specific to the dimension and simplifies data
understanding. For example, one of the dimensions in the
proposed decomposition is polarimetry with the corresponding
polarimetric coherency matrices as factors. In that sense,
classical polarimetric decompositions can be applied to the
results of the proposed decomposition.

In this article, we refer to the canonical Pauli scattering
mechanisms to interpret the polarimetric factors. When each
polarimetric factor describes exactly one individual Pauli
mechanism (component change matrices appearing in pure red,

green, and blue), the temporal factor trends are very close to
the trends of the Pauli elements in the original tensor. This
is more common at shorter wavelengths, especially at the X-
band. At longer wavelengths (L-band), the polarimetric factors
often represent a mix of Pauli polarizations and the temporal
factors show different dynamics from the time series of Pauli
elements in the original tensor. More research is needed to
explain these observations.

C. Possible Extensions

Tensor decompositions on multidimensional SAR data is
a new research area and opens several directions for explo-
ration. We discuss possible extensions to the constrained
decomposition framework and ways to improve the existing
decompositions or integrate additional data dimensions using
the framework.

1) Constrained SKP Decomposition: The SKP decom-
position introduced by Tebaldini [7] extracts polarimetric
and structural factors from a multibaseline multipolarization
matrix. The original implementation uses SVD in combination
with several reshaping operations and component recombi-
nations to obtain the final factors. The SVD performs the
decomposition on vectorized matrices and does not necessarily
preserve some matrix properties. Therefore, component recom-
bination is required to ensure that the final factors are PSD
and carry a physical meaning. The component recombination
parameters typically have a range of valid values meaning that
the recombination solution is not unique. In cases where the
data do not follow the assumptions from [7], the recombina-
tion can fail yielding no solution. Furthermore, the original
implementation only allows to obtain two components.

We can increase the robustness of the decomposition, allow
an arbitrary number of components, and use different loss
functions using the constrained decomposition framework.
First, we constrain the factors to be PSD. Then, we recon-
struct the approximation with the sum of Kronecker products.
Finally, we compute the loss and optimize until convergence.
The factors are guaranteed to be PSD by construction. In addi-
tion, we can address solution uniqueness by adding stricter
constraints and limiting the rank of the factor matrices.

2) Integration of Physical Models: Physical models have
been used for the interpretation of SAR data and parameter
inversion [47], [48]. The constrained decomposition frame-
work can be integrated with the models for one or several
data dimensions. The key observation is that any differ-
entiable function can be used for reconstruction or factor
constraint implementation. Therefore, we can integrate any
physical model that is represented as a differentiable function
reconstructing a factor from a set of physical parameters.
For example, a polarimetric matrix factor associated with a
specific physical process (e.g., scattering from a surface or a
volume of particles) can be reconstructed from the parameters
defining the process. After the optimization procedure, the
decomposition results provide the physical parameters that best
describe the data.

The physical model can also be seen as a specific type of
constraint that limits the solution space to the factor subset
spanned by the model. Physical models can be applied to
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individual data dimensions and combined with the standard
factors describing data dimensions with no known models.

3) Computational Performance: The performance of the
decomposition framework is important for practical appli-
cations. Depending on the size and dimensionality of the
tensor, the optimization procedure can take many steps until
convergence. In our implementation, we rely on the PyTorch
library to run the decomposition efficiently. PyTorch supports
optimization on GPUs further speeding up heavy matrix
operations.

The decomposition performance can further be improved
using a suitable optimizer. When the size of the factors and the
number of free parameters are relatively small, second-order
optimizers such as BFGS typically lead to fewer optimization
steps and faster convergence. Several optimizers are already
implemented in PyTorch and can be used for decomposition
optimization.

Finally, the initialization of the factors has a large effect on
the convergence speed. Factors initialized to values using prior
knowledge about the solution require fewer optimization steps
until convergence.

V. CONCLUSION

This work introduces a constrained tensor decomposition
framework for SAR data. We generalize the CP decom-
position, extend it with constraints, and allow different
factor shapes and loss functions. The framework enables
joint analysis of multidimensional SAR data, can be inte-
grated into existing SAR decompositions, and opens ways
to connect data-driven and model-based approaches by inte-
grating physical models. We formulate the decomposition as
an optimization problem and implement it using PyTorch,
a well-established machine learning and optimization frame-
work. Automatic differentiation and optimization simplify the
decomposition design, facilitate experiments with different
data dimensions, and allow to concentrate on the choice of the
constraints and interpretation of the factors. The importance of
constraints for physical validity, interpretability, and solution
uniqueness has been discussed.

To demonstrate the decomposition framework, we formulate
the polarimetric time series decomposition, apply it to agri-
cultural data, and analyze the development of four different
crop types. The decomposition reduces the dimensionality
and extracts the polarimetric and temporal factors that best
explain the data. Notable differences to the existing SAR
decompositions include nonorthogonal factors and a variable
number of components.

We extend the polarimetric change analysis visualization
with the decomposition results to show additional details.
By performing the decomposition and plotting a change
matrix for each component, we can detect more small and
fine-grained changes in each component. This approach also
ensures that large relative changes in weak components do
not hide small changes in strong components. The component
weights provided by the decomposition indicate the relative
importance of each component.

The polarimetric time series decomposition is not limited to
agricultural areas and can be used for many other applications.

The decomposition describes the time series in a compact way:
polarimetric factors define the scattering mechanism for each
component while temporal factors describe how the intensity
of that mechanism changes over time. The information can
be used directly for exploratory data analysis or be combined
with other methods including change analysis, as presented in
this article.
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