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Abstract— Land uses (e.g., commercial, residential, and indus-
trial lands) and functional spaces (e.g., living, productive, and
ecological spaces) are two-level landscape patches and totally
work as basic units for urban planning. The two-level patches are
interrelated and mutually binding, but existing mapping methods
extracted them separately, leading to substantial conflicts and
errors in their mapping results. Accordingly, this study proposes
a synergistic classification of multilevel land patches (SC-MLPs).
It considers a multitask learning strategy and proposes a novel
correlation loss function to measure the correlations between land
uses and functional spaces, which is expected to resolve conflicts
and improve the accuracy of the two-level land patch mapping
results. Consequently, land-use and functional-space maps of
three major Chinese cities are generated, which generally have
a high resolution of 2 m and high overall accuracies of 90.1%
for land uses and 93.8% for functional spaces. Compared to
state-of-the-art land-use and functional-space mapping methods,
our results have not only higher accuracies but also a better
consistency which is improved by 36%. Accordingly, the proposed
SC-MLP can generate not only accurate but also consistent maps
of land uses and functional spaces, which plays a fundamental
role in land system research and urban planning.

Index Terms— Land use, multitask learning production-living-
ecological space, synergistic classification of multilevel land
patches (SC-MLPs).

I. INTRODUCTION

LAND system is generally composed of four levels (see
Fig. 1), i.e., land covers, land uses, functional spaces, and

urban-rural areas [1], [2]. The former two, i.e., land covers
and uses, support micro planning which designs and spatially
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allocates diverse land elements [3], and the latter two, i.e.,
functional spaces and urban-rural areas, aim at macro control
that decides whether micro planning may be granted [4], [5].
Accordingly, land uses and functional spaces are two key
levels for planning, as their interactions directly influence both
macro and micro planning, and play an important role in
overall land planning [6], [7].

Land uses and functional spaces essentially divide the
heterogeneous land into diverse landscape patches according
to their structures, usages, and functions [8], [9]. On the one
hand, land use refers to the purposes and activities through
which people interact with land and terrestrial ecosystems [10],
[11], [12], and involves the management and modification of
the natural environment or wilderness into the built environ-
ment, such as residential, commercial, industrial, and farmland
[13]. On the other hand, functional-space zoning, e.g., living,
productive, and ecological (see Fig. 1), is a method of urban
planning, and it specifies a variety of outright and conditional
functions of land, which determines whether a land-use plan
at the micro-level urban planning may be granted [14]. That
is, the differing regulations in variant functional spaces may
govern the density, size, layout, and types of land uses [15],
[16], [17]. Accordingly, both land uses and functional spaces
are fundamental to urban planning.

Previous studies generally mapped land uses and functional
spaces separately, as they considered the two mapping tasks as
two independent processes, which results in substantial con-
flicts between land-use and functional-space mapping results.
For example, a zone is sorted into “residential land” in
land-use mapping but a “productive space” in functional-
space classification. It is a so-called inconsistency between the
two mapping results and may result from data nonstationary
and classification errors. The inconsistency, besides mapping
errors, is also critical to urban planning because inconsistent
land-use and functional-space maps extremely confuse plan-
ners and can lead to no decision. The inconsistency, however,
has been totally ignored by previous studies and has become
a bottleneck in applying remote sensing mapping results to
urban planning.
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Fig. 1. Land system consisting of four levels, i.e., land covers, land uses, functional spaces, and urban-rural areas, where land covers and uses support micro
design of planning, and functional spaces and urban-rural areas support macro control on planning. Accordingly, land uses and functional spaces are two key
levels for planning, and their correlations are interactions between macro and micro planning, playing an important role in overall land planning.

Generally, consistent land-use and functional-space maps
are hardly available for the following three reasons. First,
the two-level land patches are extremely heterogeneous inside,
as they can be composed of diverse land covers, e.g., road, soil,
water, vegetation, and different buildings, with variant visual
features [9], [18]. Second, their boundaries are ambiguous,
because substantial land uses and functional spaces have sim-
ilar visual clues and can be confusing on their boundaries, e.g.,
residential versus institutional [19], and most land uses and
functional spaces have no physical enclosure. Third, land uses
and functional spaces have strong correlations. As presented
in Fig. 1, functional space can contain several kinds of land
uses with compatible activities and services, and land use
can correspond to one or two functional services [20], [21].
Accordingly, land uses and functional spaces both have three
characteristics, i.e., heterogeneity, ambiguity, and correlation.
The former two (i.e., heterogeneity and ambiguity) complicate
land-use and functional-space classifications; while, the last
one, i.e., correlation, can serve as a clue to resolve conflicts
between two-level classifications and optimize their results
(see Fig. 2). That is, land uses are basic units and fundamental
to identifying functional spaces, and thus functional spaces
can be extracted based on land uses; conversely, functional
spaces are considered as backgrounds and contexts to improve
land-use classifications, which are critical to resolving land
uses’ heterogeneity and ambiguity, as local contexts can reduce
heterogeneity inside and improve distinguishability on the
borders [22].

However, existing studies totally ignored the correlation and
mapped land uses and functional spaces separately, resulting
in substantial errors and conflicts in their mapping results (e.g.,
residential in land-use result but productive in functional-space
result at the same location in the separated classifications). The
previously separated classifications for only land uses or solely
functional spaces are demonstrated as follows.

A. Land-Use Classification

Existing land-use classification methods can be sorted into
two types. In the early stage, land uses were segmented by

manually delineated road blocks [23], characterized by hand-
crafted features, e.g., image features [24], visual indicators
[25], [26], topic models [27], [28], and finally identified by
traditional classifiers, e.g., K-nearest neighbors [24], random
forest [29], [30], and support vector machine [31]. These
methods cannot resolve the heterogeneity within land uses
and are hard to produce accurate results for complex land
uses, because they rely heavily on the qualities of hand-crafted
features which can be highly heterogeneous and are easily
mis-classified by the traditional classifiers. To resolve this
issue, state-of-the-art deep learning methods have been widely
applied to land-use classifications in recent several years [32],
as deep learning methods can automatically extract robust,
representative, and abstract features of land uses, reducing the
heterogeneity and improving the classification accuracy [33],
[34], [35]. However, deep-learning semantic segmentation
methods, such as RefineNet, PSPNet, and DeepLabv3+ [36],
[37], may exacerbate the ambiguity of land-use boundaries due
to the deconvolution and upsampling processes [38], leading
to inaccurate boundaries of land uses.

B. Functional-Space Classification

Compared to land-use classification, functional-space
mapping is rarely studied, because functional space is a
relatively new concept in the field of urban planning, and
each functional space can have stronger heterogeneity inside
and ambiguity on the boundary, compared to land uses; thus,
it can be more challenging to extract and classify functional
spaces [39]. Li and Fang [14] proposed the first classification
system of productive-living-ecological spaces, and presented a
quantitative identification method for these functional spaces,
which relied heavily on a manually designed indicator, and
required substantial field survey data, thus was not applied
to large-scale functional-space mapping [22], [40], [41].
Duan et al. [42] argued that there were no standard indicators
for quantitatively measuring productive-living-ecological
functions, and thus using different indicators and different
survey data can result in variant functional-space classification
results. In a different way, recent studies have considered
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Fig. 2. Correlations between land uses and functional spaces serve as clues to improve their classification results. (a) Land patch can be recognized as a
park or a forest, but considering its functional zoning as, (b) living-ecological space, it should be a park. On the other hand, (c) functional zone should be a
living or productive space, but considering its (d) local shanty-town land use, it should be a living zone.

using very-high-resolution (VHR) images to extract functional
spaces, as VHR images provide objective, comprehensive,
and fine-scale land surface information, but there can be
a significant semantic gap from image representations to
functional spaces; thus, it is difficult to extract functional
spaces directly from VHR images [43].

As demonstrated above, previous studies considered
land-use and functional-space classifications as two inde-
pendent processes and did not consider their correlations
to improve their classification accuracies and consistency,
which may lead to substantial mapping errors and con-
flicts, negatively affecting land system studies and extremely
confusing urban planners. Accordingly, this study proposes
a synergistic classification of multilevel land patches (SC-
MLPs) which uses a multitask learning strategy to measure
the correlation between land uses and functional spaces and
classifies the two-level patches synergistically. Generally, the
study makes three contributions: 1) it presents a hierarchical
sampling method to generate differentiated samples of land
uses and functional spaces for training SC-MLP, which is
fundamental to improving the mapping accuracy and consis-
tency; 2) it proposes a SC-MLP method which is the first
model to extract functional spaces from satellite images and
can improve classification accuracies for both land uses and
functional spaces; and 3) the SC-MLP method furthermore
improves consistency between land-use and functional-space
mapping results by embedding a novel correlation loss func-
tion and a shared feature encoder. Accordingly, the SC-MLP
is a novel method and totally different from existing sep-
arated land patch classifications; as proved by the study,
the SC-MLP can produce not only accurate but also consis-
tent classification results for different levels of land patches,
directly contributing to land system research and urban
planning.

II. METHODOLOGY

This study essentially aims to propose a novel method to
map land uses and functional spaces simultaneously with VHR
images and generate not only accurate but also consistent
results for both patches. First, a category system and sampling
strategy are demonstrated in Section II-A, which illustrates
the concept baseline of the study and presents a hierarchical
sampling method for land uses and functional spaces. Second,
a SC-MLP approach is proposed in Section II-B, and it is
the key of the study, which employs a multitask learning
strategy to connect land-use to functional-space classifications
and improve both results. Third, a method for evaluating
classification results is demonstrated in Section II-C, where
four indicators are considered to validate the effectiveness of
our method.

A. Category System and Hierarchical Sampling Method of
Land Uses and Functional Spaces

There are different categories of land uses and functional
spaces, and it is very difficult to select representative samples
for them from VHR imagery, especially for functional spaces
which are composed of multiple land uses and have signif-
icant heterogeneity. Accordingly, this section aims to define
category systems and present a hierarchical sampling method
for both patches.

According to the code of urban land-use classification
and planning (namely the standard hereafter) which was
published by the Ministry of Housing and Urban-rural Devel-
opment of China, land uses can be sorted into 12 categories
(see Table I), including three kinds of residential, commer-
cial, industrial, institutional, transport, park, unused, water,
farmland, forest, and grass. According to the standard and
previous studies [14], these land uses can be aggregated
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TABLE I
CATEGORY SYSTEM ILLUSTRATING CORRELATIONS BETWEEN LAND USES AND FUNCTIONAL SPACES

into seven kinds of functional spaces, i.e., living, productive,
ecological, living-productive, living-ecological, productive-
ecological, and no function, where residential and transport are
aggregated into living, industrial into productive, water, and
forest and grass into ecological, commercial, and institutional
into living-productive, park into living-ecological, farmland
into productive-ecological, and unused into no function (see
Table I). This is the first category system that associates
land-use with functional-space categories and is the conceptual
base of the study.

Based on the category system above, we can manually
select and label samples for land uses and functional spaces.
However, functional spaces are highly heterogeneous and
abstract, and it is hard to collect their samples through visual
interpretation. Accordingly, a hierarchical sampling method is
proposed to generate functional-space samples based on land-
use samples. The hierarchical sampling method is shown in
Fig. 3.

First, a study area is segmented into patches with 1536 ×

1536 pixels, and we label about 1/10 patches as samples,
which should cover urban, suburban, and rural areas in a
balanced way. Second, for each patch, two operators, i.e.,
Operator1 and Operator2, are invited to label land uses, and
two sets of land-use samples, i.e., LU1 and LU2, can be
generated. Third, based on the correlations between land uses
and functional spaces (see Table I), LU1 and LU2 can be
reclassified into seven functional-space categories, so that two
sets of functional-space samples are obtained, i.e., FS1 and

FS2. Fourth, LU1 and FS2 is associated and defined as a pair
of samples, i.e., SP1, and similarly another pair of samples,
i.e., LU2 and FS1, is named as SP2. For SP1 or SP2, its land-use
and functional-space samples are generated independently, and
using such pairs of samples can improve the consistency of
land-use and functional-space mapping results. In detail, FS2
is generated from LU2, and can have few differences from
LU1, which can be used to calculate the correlation loss (see
Section II-B) and improve the mapping consistency.

As demonstrated above, the correlations between land uses
and functional spaces are defined in the category system, and
it is employed to generate functional-space samples from land-
use samples.

B. Synergistic Classification of Multilevel Land Patches
(SC-MLPs)

1) Framework of SC-MLP: As demonstrated in Section I,
land uses and functional spaces have strong heterogeneity
inside and ambiguity on the boundary, especially since a
functional space can cover a large area and contain diverse
geographies; thus, it is considerably difficult to extract land
uses and functional spaces from VHR images. Accordingly,
the section aims to propose a novel classification method,
namely SC-MLP (see Fig. 4). It uses a deep semantic segmen-
tation approach to resolve heterogeneity and ambiguity of land
uses and functional spaces, and employs a multitask learning
framework to measure the correlations between land uses and
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Fig. 3. Methodological framework including: 1) category system and hierarchical sampling method, 2) synergistic classification of multilevel land patches,
and 3) evaluation method.

functional spaces, which is expected to reduce conflicts and
improve their classification results.

As presented in Fig. 4, the SC-MLP consists of three
parts: feature encoder, decoder, and synergistic classification,
in which land-use and functional-space classifications share
the same feature encoder and decoder that extract robust
and common features for improving both accuracy and con-
sistency of classification results. First, the feature encoder
consists of an Xception [44] and an atrous spatial pyramid
pooling (ASPP) [36], whose parameters are validated in our
previous study [45] and presented in Fig. 4. The Xception
contains a smaller number of parameters and has a better
feature representation and generalization, compared to other
backbones, and the ASPP has a larger receptive field and
can extract multiscale features; thus, the feature encoder
composed of Xception and ASPP can generate high-dimension
feature maps which can be adaptive, robust, and representative,
and are capable of resolving the heterogeneity of land-use
and functional-space patches. Second, the decoder combines
features generated from Xception and ASPP and up-samples
them to restore patch sizes. Third, the synergistic classifica-
tion is essentially a multitask learning method. It has two
Softmax classifiers and three loss functions including the loss
function of land-use classification (LossL), the loss function
of functional-space classification (LossF ), and the correlation
loss function measuring the conflicts between land-use and
functional-space classification results (LossC). These three loss

functions can link land-use classification to functional-space
one, where land-use classification results can bridge the gap
from VHR images to functional spaces and reduce the strong
heterogeneity inside functional spaces, while functional-space
classification results serve as local contexts to resolve the
heterogeneity and ambiguity of land uses; thus, these loss
functions can improve both patches’ classification results.

2) Three Loss Functions in SC-MLP: As illustrated in the
last section, SC-MLP has three loss functions that are critical
to improve land-use and functional-space classification results,
and are keys to the model.

For LossL , it is defined by a cross-entropy loss. Each pixel’s
land-use classification result can be encoded as a possibility
vector L = {L1, L2, . . . , L12}, where L i (1 ≤ i ≤ 12) refers to
the possibility that the pixel belongs to i th land-use category,
and the corresponding ground truth in the training sample is
encoded as a one-hot vector L̂ = L̂ i |1 ≤ i ≤ 12} with the
labeled category set as 1 and others set as 0; thus, LossL can be
calculated by LossL = −

∑12
i=1 L̂ i logL i . The LossL essentially

measures the difference between land-use classification results
to training samples, with which SC-MLP can generate land-
use classification results consistent with land-use samples.

For LossF , it is also defined by a cross-entropy loss. Each
pixel’s functional-space classification result can be encoded as
a possibility vector F = {F j |1 ≤ j ≤ 7}, where F j refers to
the possibility that the pixel belongs to j th functional-space
category, and the corresponding training sample is encoded
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Fig. 4. Framework of synergistic classification of multilevel land patches (SC-MLPs), where land-use and functional-space classifications share the same
feature encoder and decoder, and are controlled by three loss functions, i.e., LossL , LossF , and LossC .

as a one-hot vector F̂ = F̂ j |1 ≤ j ≤ 12}, thus LossF

can be calculated by LossF = −
∑7

j=1 F̂ j logF j . Similar to
the LossL , the LossF measures the inconsistency between
functional-space classification results and ground truths in
training samples; using LossF can guarantee functional-space
classification results in line with functional-space samples.

For LossC , it is the most significant innovation of SC-MLP
and is measured by a weighted cross-entropy loss. First, the
possibility vector in land-use classification results L can be
transformed into a possibility vector of functional spaces F′

according to the correlations between land uses and functional
spaces (see Table I), which is demonstrated as follows:

F ′

L = L L1r + L L2r + L L3r + LTra (1)
F ′

P = L Ind (2)
F ′

E = L F&g + LWat (3)
F ′

LP = LCom + L Int (4)
F ′

LE = LPar (5)
F ′

PE = LFar (6)
F ′

NF = LUnu (7)

where abbreviations are illustrated in Table I. Then, a weight
matrix W (see Table II) is proposed to measure semantic sim-
ilarities among functional-space categories. Finally, LossC can
be calculated by LossC = −

∑7
i=1

∑7
j=i Fi × logF ′

j × (1 −

Wi j ). There can be two contributions to employing LossC

in SC-MLP for identifying land uses and functional spaces.
On the one hand, LossC measures conflicts between land
uses and functional spaces not only by cross-entropy loss
but also by considering their semantic similarities which are
modeled by the weight matrix W ; on the other hand, LossC

associates classification results of the two levels of patches and
makes their categories and boundaries consistent. The three
losses are finally integrated by a weighted average function
Loss = VL × LossL + VF × LossF + VC × LossC , where

VL , VF , VC are weights of three losses, VL , VF , VC > 0 and
VL + VF + VC = 1.

These three loss functions play different roles in land patch
classification. LossL and LossF are used to recognize land uses
and functional spaces, respectively; Lossc align the two-level
classification results.

3) Applying SC-MLP to Land-Use and Functional-Space
Mapping: This section illustrates the implementation of
SC-MLP to land-use and functional-space mapping, including
SC-MLP training, hyperparameter setting, and classification.

For training SC-MLP, VHR images, and hierarchical sam-
ples (see Section II-A) are first overlapped, where VHR images
are put at the top, land-use samples in the middle, and
functional-zone samples at the bottom. The overlapped layers
are further clipped into image patches with 512 × 512 pixels,
and the image patches with sample layers are fed into the
SC-MLP and processed through a feature encoder, decoder,
and synergistic classification. As a result, the possibility that
a pixel belongs to different land uses and functional spaces
can be calculated, i.e., L and F, which are compared to the
ground truth of training samples, i.e., SP1 or SP2, and used to
calculate three losses, i.e., LossL , LossF , and LossC . Finally,
the parameters in SC-MLP can be updated by Adam based on
the three losses. This process is iterated until all three losses
converge.

The hyperparameters in the process are documented as
follows. For Xception, it contains three flows, i.e., entry,
middle, and exit flows, whose output size is set as 32 ×

32 with a dimension of 2048. For ASPP, it contains four dilated
convolutions with different convolution kernels (1 × 1, 3 × 3,
3 × 3, 5 × 5) and dilated rates (1, 6, 12, 18); thus, it can extract
features with different vision fields and at different scales. For
Adam, its learning rate is set as 0.0002 for training. For SC-
MLP, it is trained for 50 000 iterations. For loss calculation, the
weights of the three losses are set as: VL = 0.3, VF = 0.3, and
VC = 0.4, respectively, which will be verified in Section III-E.
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TABLE II
WEIGHT MATRIX W MEASURING SEMANTIC SIMILARITIES AMONG FUNCTIONAL-SPACE CATEGORIES

Fig. 5. Three studied cities for verifying the effectiveness of the proposed
method, including (a) Beijing, (b) Shanghai, and (c) Guangzhou (GF-1 images
in band combination 3/2/1, true color).

The hyperparameters are tuned based on approximately 80 000
validation samples in our previous study [46].

For classification, VHR images without sample are fed into
the trained SC-MLP, and output possibility vectors of L and
F. Land-use classification result LU = arg max1≤i≤12(L i ) and
functional-space result FS = arg max1≤ j≤7(F j ) are assigned
to each pixel. Consequently, land-use and functional-space
mapping results can be generated.

C. Evaluation Method of Mapping Results

Four indicators are considered to evaluate land-use and
functional-space classification results and validate the effec-
tiveness of our method, including overall accuracy (OA),
Kappa index (Kappa), mean intersection over union (MIoU),
and consistency between land-use and functional-space clas-
sification results (Cons).

Using the hierarchical sampling method presented in
Section II-A, N patches covering 1536 × 1536 pixels are
manually labeled, and thus 9 × 2 × N = 18N pairs of
samples can be generated, as each patch is clipped into nine
samples with 512 × 512 pixels and is labeled twice by two
operators, where a pair of samples contains both land-use and
functional-space samples at the same location. We use 12N

pairs of samples to train the SC-MLP and employ other 6N
as test ones to measure the four indicators above and evaluate
the mapping results.

The former three indicators, i.e., OA, Kappa, and MIoU,
have been widely used in evaluating patch classification
results. OA refers to the ratio of accurately classified pixels
naccurate to the total number of pixels of test samples ntotal, and
OA = (naccurate/ntotal). Kappa can be calculated by Kappa =

(OA − OP)/(1 − OP), where OP =
∑K

i=1((n
P
i × nS

i )/n2
total),

K is the number of considered categories, n P
i denotes the

number of pixels belonging to the i th category in classification
results, and nS

i is that in samples. MIoU calculates the mean
ratio of intersection to the union of all categories, and MIoU =∑K

i=1(Pi ∩ Si/Pi ∪ Si ), where Pi refers to the i th category
classification results and Si the i th category samples. The last
indicator Cons is similar to MIoU, but it measures results’
consistency between land-use and functional-space results, and
it is calculated by Cons =

∑7
j=1(P F

j ∩ P L2F
j /P F

j ∪ P L2F
j ),

where P F
j denotes the j th category of functional-space clas-

sification results, the L2F means the functional-space results
transformed from land-use classification results by considering
their correlations in Table I, and PL2F

j is the probability of j th
category of L2F.

OA measures overall classification results. Kappa and MIoU
consider the classification result of each category from quan-
tity and form perspectives, respectively. Cons are first proposed
in the study and measure the consistency between land-use and
functional-space classification results; the Cons are important
for land system studies and planning, as inconsistent land-
use and functional-space results will bring uncertainty and
confusion to land system study and planning. Accordingly, the
four indicators assess the classification results from different
aspects and can make a comprehensive evaluation.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Study Area and Used Data

This study selects three metropolises in China, including
Beijing, Shanghai, and Guangzhou (see Fig. 5), as repre-
sentative cases to verify the effectiveness of our method.
There can be three reasons for choosing them. First, these big
cities cover large areas (Beijing covers 16 410 km2, Shanghai
6340 km2, and Guangzhou 7434 km2) and have much more
complex landscape patterns and more diversity in land patches
than small cities. Second, these cities are located in different
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Fig. 6. Land-use and functional-space mapping results of the three cities by using SC-MLP. (a), (d), and (g) are VHR images of the three cities; (b), (e),
and (h) are land-use mapping results; and (c), (f), and (i) are functional-space mapping results.

regions, i.e., Beijing in North China (around 40◦N), Shanghai
in the Middle East (around 31◦N), and Guangzhou in South
(around 23◦N), and thus they can have distinct landforms,
climates, and environments. Third, these cities have different
development histories, cultures, and main functions, and thus
have variant landscapes, forms, and plans. Accordingly, it is
challenging for our method to accurately map the land uses
and functional spaces in these cities.

GF-1 satellite images covering the three cities are used,
which were acquired in September 2015. Basically, the mul-
tispectral bands are merged with the panchromatic band to
produce the pan-sharpened image [47] which has a very
high resolution of 2 m and four bands (i.e., blue, green,
red, and near-infrared). Furthermore, the images have been
ortho-rectified to provide accurate image features for identify-
ing land uses and functional spaces.

B. Land-Use and Functional-Space Mapping Results

Using the proposed hierarchical sampling method and SC-
MLP, we produce land-use and functional-space maps for the
three cities (see Fig. 6). In general, Fig. 6 clearly presents
the spatial distributions of different land uses and functional
spaces, and the mapping results have specialists compared to
existing maps.

On the one hand, compared to existing high-resolution land-
use maps, e.g., EULUC-China [48] which is generated based
on Sentinel-2A/B with a 10 m resolution and based on street
blocks restricted by regular shapes, our land-use results have
a higher resolution of 2 m and can represent land uses with
irregular shapes. On the other hand, compared to existing

functional-space datasets, e.g., PLEL [49] with rough units of
administrative districts and solely three categories, i.e., produc-
tion, living, and ecological, our functional-space results have
a much finer spatial resolution and consider seven functional
categories. Accordingly, the mapping results are unique and
contribute to fine-scale land surveys and plans, and the results
can be freely available at https://geoscape.pku.edu.cn/.

Furthermore, nine representative regions in the three cities
are selected to show the mapping results in detail (see
Fig. 7). For Beijing, the first region is in the downtown and
includes the Beijing North Railway Station [see Fig. 7(a)],
the Beihai Park [see Fig. 7(b)], the Imperial Palace [see
Fig. 7(c)], hutongs [see Fig. 7(d)], and the Beijing Rail-
way Station [see Fig. 7(e)]; the second region is located in
the northwest Beijing and contains the Summer Palace [see
Fig. 7(f)], the Yuanmingyuan Park [see Fig. 7(g)], a campus
[see Fig. 7(h)], the ZOL commercial zone [see Fig. 7(i)], and
the Tsinghua University [see Fig. 7(j)]; the third region is
located in the southeast Beijing and includes Beijing-Benz
factory [see Fig. 7(k)] and Yizhuang commercial district [see
Fig. 7(l)]. For Shanghai, the fourth region is located in the
downtown and covers The Bund Commercial District [see
Fig. 7(m)], the Lujiazui Commercial District [see Fig. 7(n)],
Century Park [see Fig. 7(o)], and villas [see Fig. 7(p)]; the
fifth region is located in the north Shanghai and covers
golf course [see Fig. 7(q)], an airport [see Fig. 7(r)], the
Baoshan Steel Industrial Zone [see Fig. 7(s)]; the sixth region
is in the east Shanghai and contains a wildlife park [see
Fig. 7(t)] and the Pentagon World Trade Plaza [see Fig. 7(u)].
For Guangzhou, the seventh region is in the downtown and
includes the Tianhe Sports Center [see Fig. 7(w)] and two
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Fig. 7. Land-use and functional-space mapping results of representative areas in three cities, where classification results are 60% transparent and overlapped
with VHR images. (a)–(l) are located in Beijing, (m)–(u) in Shanghai, and (v)–(ab) in Guangzhou.
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TABLE III
COMPARISON BETWEEN SYNERGISTIC (SYC) AND SEPARATED (SEC) CLASSIFICATION RESULTS

parks [see Fig. 7(v) and (x)]; the eighth region is in south-
east Guangzhou and covers the Sun Yat-sen University [see
Fig. 7(y)] and a wetland park [see Fig. 7(z)]; the ninth
region is in the northeast Guangzhou and contains a park
[see Fig. 7(aa)] and an expressway [see Fig. 7(ab)]. All these
scenes are accurately identified in the land-use and functional-
space mapping results. For example, the hutongs in Fig. 7(d)
are correctly recognized as level-3 residential land and living
space in land-use and functional-space maps, respectively; and
the Yumingyuan Park of Fig. 7(g) is identified as park and
living-ecological in the two-level mapping results.

Here, we want to explain the reason why the SC-MLP can
produce such accurate results. Taking the park in Fig. 7(t) as an
example, it can be easily misrecognized as farmland according
to its spectrum, texture, and location, but it is accurately
identified by SC-MLP by considering its function, i.e., living-
ecological. Furthermore, the productive space in Fig. 7(s) has
an ambiguous boundary and is confused with surrounding
living and living-productive spaces, but it is correctly identified
by SC-MLP considering its land-use type, i.e., industrial.
Accordingly, the synergistic classification strategy in SC-MLP
can avoid many misclassifications and improve classification
accuracy and consistency. Summarized above, the SC-MLP
method can produce fine-grained, accurate, and consistent
land-patch mapping results, which are different from exist-
ing land-use and functional-space datasets, and contribute to
fine-scale and real-time land system studies and urban plans.

C. Comparison Between Synergistic and Separated
Classifications

Aiming at verifying the effectiveness and advances of
synergistic classification (SyC) by using SC-MLP, ablation
experiments are performed by comparing SC-MLP’s results to
traditional separated classification (SeC) results. Specifically,
the separated classification differs from SC-MLP in that SeC
does not use the correlation loss, i.e., Lossc, in Section II-B
during training, so SeC classifies land uses and functional
spaces independently and totally ignores their correlations
while classification. Essentially, SeC represents a widely used
mapping strategy of land-use and functional-space mapping,

which is considered a benchmark to compare with the SyC
proposed in the study.

Four indicators, i.e., OA, Kappa, MIoU, and Cons (see
Section II-C), are measured by threefold cross-validation and
employed to quantitatively assess the classification results.
As presented in Table III, SyC which considers correlations
between land uses and functional spaces outperforms SeC
which ignores patch correlations. Generally, compared to
SeC, SyC produces more accurate land-use and functional-
space results with higher OA, Kappa, and MIoU, and SyC’s
results are more consistent, while land-use and functional-
space results have higher Cons. This is attributed to the
usage of Lossc which measures correlations between two-level
patches and improves their results. Using Lossc can slightly
improve land-use results, whose OA is increased by 0.5%,
Kappa by 0.01, and MIoU by 0.02 on average. Using Lossc can
significantly improve functional-space results, with their OA
increased by 9.5%, Kappa by 0.05 on average, and MIoU by
0.05. Most importantly, considering Lossc can greatly improve
the consistency between two-level patches’ results with their
Cons increased by 0.19 (improved by 36%), contributing to
multilevel land surveys and plans that require high consistency
between land uses and functional spaces.

Apart from the quantitative evaluation, we also compare
SyC and SeC results by visual interpretation. For land-use
classification results, a campus [see Fig. 8(a)], a commercial
[see Fig. 8(b)], level-3 and level-2 residential [see Fig. 8(c)
and (d)], and an unused [see Fig. 8(e)] lands in Beijing are
broken in SeC results but are completely extracted in SyC
results. In Shanghai, a level-2 residential district [see Fig. 8(f)]
is wrongly identified as level-1, and an industrial zone [see
Fig. 8(g)] is misclassified into institutional in SeC results; in
Guangzhou, level-3 residential [see Fig. 8(h)] and transport
lands [see Fig. 8(i)] are misclassified into commercial zones
in SeC results; however, they accurately classified in SyC
results. For functional-space classification results, a living [see
Fig. 8(j)] and a living-productive [see Fig. 8(k)] spaces in
Beijing are misidentified as no function and productive spaces
in SeC results, but they are correctly identified in SyC results.
In Shanghai, two living spaces [see Fig. 8(l) and (m)] are
wrongly classified into living-ecological and living-productive
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Fig. 8. Comparisons between synergistic classification (SyC) and separated classification (SeC) results for land uses and functional spaces in six representative
scenes, where classification results are 60% transparent and overlapped with VHR images.

spaces; in Guangzhou, two living-productive spaces [see
Fig. 8(n) and (o)] are misclassified as living-ecological and
living spaces; their SyC results, however, are accurate. Accord-
ingly, the SyC classification results outperform SeC for
two-level patches in the three cities.

Furthermore, we want to compare the two strategies from
the principle perspective. Taking the level-3 residential area
in Fig. 8(c) as an example, it can be recognized as res-
idential or commercial lands according to its visual clues,
but it should be the former one considering its functional-
space category, i.e., living space; thus, functional spaces can
serve as local and semantic contexts to improve land-use
classification results. In addition, Fig. 8(m) can be sorted into

living or living-productive spaces considering its features and
surroundings, but it should be a living space, as it is labeled as
a residential area in the land-use results. It is evidence that SyC
measuring the correlation between land uses and functional
spaces can produce more accurate and consistent results than
SeC.

D. Different Linking Rules Between Land Uses and
Functional Spaces Applied to SC-MLP

As verified in the comparison experiment in the last section,
the correlation between land uses and functional spaces mea-
sured by the Lossc is critical for extracting the two levels
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TABLE IV
COMPARING TWO CORRELATION LOSSES (LossC VERSUS Loss′

C ) APPLIED TO SC-MLP

TABLE V
COMPARING TWO CORRELATION LOSSES (LossC VESUS Loss′

C ) APPLIED TO SC-MLP

Fig. 9. Dynamic changes in (a) land-use and (b) functional-space results of the three cities with the increasing VC , where four measures including OA,
Kappa, MIoU, and Cons are considered.

of patches, but the Lossc can have different measurements.
Accordingly, this section analyzes the impact of using different
Lossc measurements and different linking rules on the land-use
and functional-space classification results.

In Section II-B, the correlation Lossc is measured by
LossC = −

∑7
i=1

∑7
j=i Fi × logF ′

j × (1 − Wi j ), which con-
siders semantic similarities (i.e., Wi j ) among functional-space
categories. Differently, ignoring the semantic similarities,
Lossc can be calculated by an ordinary cross-entropy loss, i.e.,
Loss′

C = −
∑7

i=1 Fi × logF ′
i . The two measurements, i.e.,

LossC and Loss′

C , are compared here, with respect to both
land-use and functional-space classification results. As pre-

sented in Table IV, LossC produces more accurate results
in most cases with higher and more stationary OA, Kappa,
and MIoU, but Loss′

C generates more consistent results for
two-level patches with higher Cons. Accordingly, LossC and
Loss′

C satisfy different demands, as LossC is applied to accu-
rate mapping but Loss′

C experts in synergistic multilevel-patch
mapping and analysis.

Despite using correlation losses, we can link land-use results
to functional spaces directly by reclassification using the
correlations in Table I. That is, we can first generate land-use
results by SeC in Section III-C, and then reclassify the land
uses into functional spaces. Here, we compare the two linking
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rules, i.e., using LossC (soft link) versus direct reclassification
(hard link). As shown in Table V, using LossC outperforms
reclassification in extracting functional spaces, because reclas-
sification results of functional spaces are totally dependent on
the land-use results which, however, have some errors and can
further influence functional-space results. On the contrary, SC-
MLP links land uses to functional spaces using LossC , which
can reduce the interferences of mutual misclassifications and
improve both land-use and functional space results simulta-
neously. In a word, the reclassification is a hard connection
between land uses and functional spaces, and errors will be
directly transferred; while using LossC is a soft connection
that can reduce error transmission.

In summary, this section compares different linking rules
and strategies in synergistic land-use and functional-space
classifications. Generally, using correlation losses is better than
direct reclassification, but selecting LossC or Loss′

C depends
on the demand. LossC will be used if accurate mapping results
are required, but Loss′

C will be employed while performing
a synergistic land analysis and planning, e.g., a territory
development plan. Furthermore, the correlation losses and
linking strategies are still open, which can be purposefully
designed for other mapping tasks.

E. Impacts of Loss Weights on SC-MLP Results

As illustrated in Section II-B, three losses, i.e., LossL ,
LossF , and LossC , have three weights, i.e., VL , VF , and VC ,
in measuring the integrated loss. However, these weights have
different impacts on SC-MLP results, which will be analyzed
in the section.

It is assumed that land-use and functional-space classi-
fications are considered equally important and should have
the same weights, that is, VL = VF = (1/2)(1−VC).
Accordingly, a set of isometric progressive VC , i.e., VC =

0.1, 0.2, 0.3, . . . , 0.9, are considered to analyze the weights’
impacts on SC-MLP results. As presented in Fig. 9, with
increasing VC , OA, Kappa, and MIoU of SC-MLP’s land-
use and functional-space results first ascend when VC <

0.2, and then drop down when VC > 0.4, because when
VC becomes larger, the training samples of land uses and
functional spaces will play a lesser role in the classification;
while, Cons generally go up but level off after VC = 0.4,
because increasing VC makes patch classification results more
consistent, but it is difficult to further improve the consistency
due to the decreases in classification accuracies. Overall, VC =

0.4 and VL = VF = 0.3 produces both accurate and consistent
results for land uses and functional spaces, and thus they are
employed in the experiments.

In this case, VC is larger than VL and VF , indicating that the
proposed correlation LossC are more important than traditional
loss functions, i.e., LossL and LossF . Accordingly, correlations
should be considered in multilevel land patch classifications.

F. Spatial Patterns of Land Uses and Functional Spaces

The generated land-use and functional-space classification
results in Section III-C can be applied to spatial landscape
pattern analysis in different cities.

Generally, the two-level patches in Beijing are totally dis-
tributed in a radial pattern, those in Shanghai are distributed
along the river, while those in Guangzhou are distributed
along the mountain. For land uses, the three cities have
similar patterns of land-use distributions in urban areas [see
Fig. 10(e)–(g)], where urban areas are segmented by global
urban boundaries (GUBs) [50]: commercial, institutional, and
level-2 residential lands are mostly located in downtown
areas; industrial lands are usually distributed in suburban
areas; parks, level-1, and level-3 residential lands are scattered
across cities. However, these cities have different land-use
patterns in suburbs (see Fig. 6), as suburbs in Shanghai
are mainly covered by farmland, those in Guangzhou are
forest, and those in Beijing are mixed by farmland and
forest. For functional spaces, the productive and living-related
spaces in the three cities have similar spatial patterns, but
ecological and productive-ecological spaces have significant
differences in these cities [see Fig. 10(h)–(j)], as Guangzhou
has a large area of ecological spaces, but Shanghai has large
productive-ecological areas in suburbs.

The proportions of diverse land uses and functional spaces
are calculated to quantitatively measure landscape patterns
in these cities (see Fig. 10). For land uses, Beijing and
Guangzhou have similar proportions of land uses from the
whole city perspective [see Fig. 10(a)], but Shanghai has a
different land-use pattern with a larger proportion of farmland
(45.4%). Their differences will stand out [see Fig. 10(b)] solely
considering urban areas which are extracted by GUB data,
where Beijing has larger proportions of transport (16.6%),
parks (13.1%), and unused lands (10.4%) compared to other
cities, Guangzhou has larger proportions of forest (10.9%)
and commercial land (5.9%), while Shanghai has larger pro-
portions of industrial (17.5%) and level-2 residential lands
(13.9%). For functional spaces, Beijing and Guangzhou have
similar functional-space patterns from the whole city per-
spective [see Fig. 10(c)]. Differently, Shanghai has a lager
productive-ecological space which accounts for almost half
the administrative area, and Shanghai’s living space accounts
for 1/4 of the city. From the urban area point of view [see
Fig. 10(d)], Shanghai has the largest productive related spaces;
Guangzhou has the largest proportion of ecological space
(17.4%), 8.4 and 5.2 times those in Beijing and Shanghai;
Beijing has a larger proportion of living space (42.9%).

Accordingly, the generated land-use and functional-space
results are applied to landscape pattern analysis and potentially
contribute to land system research.

IV. DISCUSSIONS

A. Pros and Cons of SC-MLP

As demonstrated in Section I, there have been plenty of
land-use classification methods emerging in the past ten years
[23], [27], [28], [34] but a few functional-space classifications
have just emerged in recent years [42], [51], [52]. All these
methods separate land-use and functional-space classifications
and do not consider their correlations, resulting in many errors
and conflicts [14], [49], [53]. Differently, this study proposes
an SC-MLP to link the two-level land patch mapping and
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Fig. 10. Land-use and functional-space proportions in three cities: (a) land-use proportions of the three cities, (b) land-use proportions in the urban areas of
these cities, where urban areas are delineated by global urban boundary (GUB) data, (c) functional-space proportions of these cities, and (d) functional-space
proportions in these cities’ urban areas. (e)–(j) represents spatial land-use and functional-space patterns in the urban areas.

identify them synergistically. The section aims to discuss the
pros and cons of the proposed SC-MLP, compared to existing
land patch mapping and analysis work.

SC-MLP generally has four advantages. First, it produces
more accurate classification results for both land uses and
functional spaces. Previous methods did not consider cor-
relations between two land patches which led to inaccurate
results, but SC-MLP considers land uses as basic components
to reduce heterogeneity of functional spaces and improves
functional-space classification results (see Fig. 2 and Table III),
and furthermore SC-MLP employs functional-space categories
as local contexts to improve land-use classification results
(see Table III). Second, SC-MLP generates more consistent
results for both patches. Previous methods perform land-use
and functional-space classifications separately, whose results
are independent and have substantial conflicts. Differently,
SC-MLP characterizes land uses and functional spaces by a
shared feature encoder and a shared decoder, also considers a
correlation loss while training, and can classify land uses and
functional spaces simultaneously; thus, SC-MLP results are
much more consistent (see Section III-C). Third, SC-MLP can
produce VHR land patch mapping results. Existing land-use
and functional-space maps often have relatively rough resolu-
tions, e.g., 10 m of EULUC-China and 30 m of GlobeLand30,
which cannot support fine-grained land survey and analysis,
while SC-MLP results have a high resolution of 2 m and is
more suitable for land surveys at the fine scale. Fourth, SC-
MLP has the potential to be a new paradigm of multilevel
remote sensing image classification. SC-MLP can be applied

to multilevel classification tasks, e.g., land cover and land
use mapping, population and gross domestic product mapping,
and so on, if their correlations can be measured and defined.
In summary, SC-MLP can produce fine-grained, accurate, and
consistent land patch maps, and thus contributes to a wide
range of multilevel image classifications.

Apart from the excellent performance of SC-MLP, it also
has three limitations. First, SC-MLP qualitatively recognizes
seven functional-space categories but cannot quantify the
main function of a patch. For example, SC-MLP can identify
a park as a living-ecological space, but cannot distinguish
which is its main function, living or ecological. Second,
SC-MLP is verified to be applied to VHR satellite images
(at meter-level resolution), as they can represent the internal
textures and structures of land patches, but SC-MLP’s
adaptability to other resolutions of remote sensing imagery
has not been discussed. Third, although the category system
and correlation rules defined in SC-MLP are validated as
effective in China, their adaptabilities to different countries
need further verification [41].

B. Insights Into SC-MLP’s Contributions to Land System
Study and Overall Planning

Apart from the direct application to multilevel land patch
mapping and spatial landscape pattern analysis, SC-MLP and
its results have great potential for land system study [54], [55]
and overall land planning [4], [56].
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Fig. 11. Land system can be analogous to a human body. Physical
examination and treatment mainly target tissues and organs, while synergistic
multilevel patch classification targets land uses and functional spaces, as well
as their correlations, and the two levels are the most important in land system
studies.

First, as presented in Fig. 1, the land system can be generally
composed of four levels, including: 1) land cover, 2) land
use, 3) functional space, and 4) urban-rural area [57], [58],
[59]. Land covers are indivisible and basic units of the land
[60], and usually include buildings, impervious ground, trees,
and soil; thus, they are analogous to human cells which
are the basic components of the human body (see Fig. 11).
Land uses, e.g., commercial, residential, and industrial lands,
can consist of multiple land covers with variant features
[61], [62], and they can be regarded as tissues which have
certain structures. Functional spaces combine diverse land uses
and refer to living, productive, and ecological spaces in the
study, but more generally they refer to main functional zones
in city planning and are analogous to organs with specific
functions [63]. Urban-rural areas compose the whole city
and can be regarded as body systems. In analogy to life
science research, land system research should consider the
component relations among these four levels to understand the
compositions, structures, and functional services at different
levels of land systems. Previous studies, however, separate the
four levels, ignore their correlations, and cannot understand
the whole land system [32], [64]. Although SC-MLP does not
measure these four levels totally, it takes one step forward
and connects the two middle levels of land use and functional
space, whose results contributes to learning functional spaces’
compositions and internal structures, as well as land uses’
spatial distributions and functional contexts; thus, it plays an
important role in land system studies.

Second, overall land planning, e.g., territorial spatial plan-
ning strategy in China, aims at the unity of main functional,
land-use, and urban-rural planning [65]. The current status
of functional spaces influences the division of main func-
tional zones, which further constrains land-use planning and
forms a new status of land uses and functional spaces [66].
Accordingly, overall land planning needs coordinating land
uses and functional spaces [4]. However, existing land-use and
functional-space mapping results have substantial errors and

conflicts, and cannot satisfy overall land planning [62], [67].
SC-MLP produces not only accurate but also consistent results
for both land uses and functional spaces, and can resolve their
conflicts, significantly contributing to overall land planning.
In summary, SC-MLP results can potentially contribute to land
system study and overall land planning which will be the focus
of our future study.

V. CONCLUSION

Previous studies ignored correlations between land uses and
functional spaces, and extracted them separately, resulting in
substantial errors and conflicts in both patches’ classification
results. To resolve this issue, the study proposed an SC-MLP
method, which measures the two-level patches’ correlations
and produces not only accurate but also consistent mapping
results. Accordingly, SC-MLP is a novel method for multilevel
land patch classification and is totally different from existing
separated classifications.

Compared to separated classification: 1) SC-MLP improves
land patch classification accuracies, especially for functional
spaces whose OA are improved by 9.5% in three case cities;
2) SC-MLP further improves the consistency between land-use
and functional-space results with Cons, an indicator for mea-
suring consistency, increased by 0.19 (improved by 36%),
indicating that the conflicts between the two-level land patch
mapping results are significantly reduced; and 3) SC-MLP
generates accurate and consistent land patch maps for three
major Chinese cities with a high resolution, high accuracies,
and high consistencies, and the generated maps are applied to
exploring the differences in spatial landscape pattern of cities
(see Fig. 10).

In the future, we will further resolve the technical issues
raised in Section IV-A and update the land patch dataset
supporting multilevel land studies, plans, and policies.
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