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Elastic Least-Squares Reverse Time Migration
Using Decoupled P- and S-Wave Equations for PP

and PS Reflectivity Imaging
Xuejian Liu and Lianjie Huang

Abstract— Recent development of elastic least-squares reverse
time migration (ELSRTM) focuses on producing high-resolution
images of elastic model perturbations such as elastic impedance
images. There is a clear gap between such development and
conventional elastic reverse time migration (ERTM) that gen-
erates images of PP and PS reflectors. We develop a novel
ELSRTM method for iteratively enhancing PP and PS images.
To achieve this purpose, we introduce a vector reflection dem-
igration operator by combining reflection demigration theory
with decoupled velocity–stress equations. This vector ELSRTM
(VELSRTM) method is practical without introducing any phase
distortions of sources, adjoint, or demigration wavefields and
performs well with kinematically accurate migration velocity
models. We demonstrate the effectiveness and advantages of
our VELSRTM method using layer, Marmousi2, SEG Advanced
Modeling (SEAM) models, and a field data example. Numerical
results show that our VELSRTM method with only a few
iterations successfully improves both PP and PS images with
higher spatial resolution and more balanced imaging amplitudes
than ERTM images.

Index Terms— Elastic, least-squares, reflectivity imaging,
reverse time migration (RTM), vector demigration, vector elastic
least-squares reverse time migration (VELSRTM).

I. INTRODUCTION

REVERSE time migration (RTM) is a routine procedure
of seismic processing for imaging complex subsurface

structure [1]. However, although the Earth is elastic (Fig. 1),
most RTM methods are limited to the acoustic assumption.
With improving computational capacity and seismic data
acquisition techniques, elastic RTM (ERTM) methods are
increasingly used to handle three-component (3C) seismic data
to better image subsurface [2]. ERTM can produce not only
conventional PP images but also converted PS images [3], [4],
[5], [6], [7]. Joint analysis of PP and PS images can help
detect sweet spots of tight-sandstone reservoirs and interpret
reflectors within or beneath gas-charged sediments [2].
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Fig. 1. Schematic illustration of seismic reflections in isotropic elastic media.
The red, blue, and green arrow lines, respectively, represent the downgoing
P-wave, the reflected P-wave (i.e., PP wave), and the converted S-wave (i.e.,
PS wave). The polarization direction of P-wave is along with its propagation
direction, whereas the polarization direction of S-wave is perpendicular to its
propagation direction as indicated by the green dashed-line arrow.

ERTM can be straightforwardly implemented by cross-
correlating P- and S-wavefields, which are computed by
applying the divergence and curl operations to elastic vec-
tor wavefields, respectively. However, this method produces
prestack PS images with polarity reversal, which is hard to
be accurately accounted for, leading to destructive stacking
[3]. By contrast, vector ERTM (VERTM) can be implemented
more easily because it does not have the polarity reversal issue
on the converted PS images, which are produced by applying
the dot-product imaging condition to independently propa-
gated vector P- and S-waves through decoupled elastic-wave
equations [4], [5], [6], [7], [8]. Additionally, the decoupling
procedure does not distort the phase characteristics of P- and
S-waves [9].

However, ERTM belongs to standard migration rather than
reflectivity inversion, which tends to suffer from low imaging
resolution, unbalanced imaging amplitudes, and migration
artifacts [10], [11], [12]. Least-squares migration (LSM) is a
linear inversion, and it can mitigate these issues and improve
the subsurface imaging quality [13], [14], [15], [16], [17],
[18], [19]. Elastic least-squares RTM (ELSRTM) combines
LSM with elastic Born modeling. However, ELSRTM usu-
ally produces images of elastic model perturbations, such
as elastic moduli, velocity, or impedance perturbations based
on parameterization choices [20], [21], [22], [23], which are
different from PP and PS images produced using ERTM.
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An alternative ELSRTM method employs the energy norm
[24], which, however, only produces a scalar reflectivity image
with multicomponent data.

To be consistent with ERTM for PP and PS imaging,
we develop a new vector ELSRTM (VELSRTM) method using
a novel vector reflection demigration operator based on the
nature of the reflectivity function. We extend the reflection
demigration formula for acoustic media [25], [26], to the vec-
tor case for modeling PP and PS reflections [27]. We compute
gradients using VERTM with updated adjoint sources at each
iteration. We derive demigration and migration formulas in the
time domain using decoupled velocity–stress wave equations.
We demonstrate using synthetic and field seismic data that our
new imaging method successfully improves PP and PS images
with higher spatial resolution and more balanced imaging
amplitudes.

II. THEORY

A. Decoupled P- and S-Wave Equation

In isotropic elastic media, U = (ux , u y, uz)
T represents the

vector displacement wavefield with x , y, and z components,
λ and µ denote Lamé moduli, ρ denotes the density, and
spatial-domain mathematical operators ∇×, ∇·, and ∇, respec-
tively, represent the curl, divergence, and gradient calculation.
Under the assumption of locally smoothed shear modulus µ as
shown in Appendix A, we can define decoupled elastic-wave
equations as follows:

ρ
∂2Up

∂t2 = ∇
(
λ + 2µ

)
∇ · U (1a)

ρ
∂2Us

∂t2 = −∇ × µ∇ × U (1b)

U = Up
+ Us (1c)

where superscripts denote P- and S-wave modes.
To reduce numerical dispersion caused by low S-wave

velocities, decoupled velocity–stress equations are preferred
[4], [9]. In the 2-D case, the decoupled P-wave equation is
rewritten as

ρ
∂vp

x

∂t
=

∂

∂x

(
λ + 2µ

)
2
(
λ + µ

) (σxx + σzz)

ρ
∂vp

z

∂t
=

∂

∂z

(
λ + 2µ

)
2
(
λ + µ

) (σxx + σzz).

(2a)

Then, we can produce the decoupled S-wave as{
vs

x = vx − vp
x

vs
z = vz − vp

z
(2b)

where σxx and σzz , respectively, represent horizontal and
vertical normal stress, and vx and vz , respectively, represent
horizontal and vertical particle-velocity components.

Another format of the decoupled velocity–stress formula
can be derived by directly splitting constitutive relations,
which is equivalent to (1), as shown in Appendix B.
We develop the VELSRTM method based on these two types
of decoupled velocity–stress equations.

B. VELSRTM for PP and PS Reflectivity Imaging

The VELSRTM method minimizes the L2 misfit f (R)

f (R) =
1
2
∥LR − Dobs∥

2 (3)

where observed data Dobs =

[
Dx

Dz

]
at receiver positions

contain PP and converted PS wave modes in most cases
where P-wave dominant sources are excited, and the modeling
operator L and the reflectivity model R are, respectively,

defined as L = [Lpp Lps
] and R =

[
Rpp
Rps

]
.

The corresponding gradient is written as

g =
∂ f (R)

∂R
= LT(LR − Dobs) (4)

where LT represents the adjoint migration operator. The gra-
dient at the first iteration can be regarded as VERTM for PP
and PS images. For simplicity, a gradient descent algorithm

R(i+1)
= R(i)

− λ
(i) g(i) (5)

is used to represent the iterative procedure to seek the solution
minimizing the misfit function in (3), where i represents the
iteration number and λ represents the step length. In real
applications, we use a preconditioned conjugate algorithm to
achieve better convergence.

To implement the modeling procedure LR at each iteration,
we develop a vector demigration operator extending from
the concept originally used in acoustic imaging as shown
in Appendix C. Extending reflection demigration equations
for acoustic media [25], [26], we compactly describe the
demigration operator for modeling vector PP and PS reflection
waves [27] at each time step as

Vp
r = Mp

(
Rpp

∂

∂t
Vp

0

)
Vs

r = Ms

(
Rps

∂

∂t
Vp

0

) (6)

where Mp and Ms indicate the forward-modeling operators,
and Vp

0, Vp
r , and Vs

r represent the P-wave vector of source
wavefields, the P-wave vector of receiver wavefields, and
the S-wave vector of receiver wavefields, respectively. The
separately modeled PP and PS vector waves can be summed
together to form multicomponent modeled data D mod =[

dx

dz

]
.

Correspondingly, at each iteration, the adjoint imaging con-
dition for gradient [26], [27] can be compactly written as

R̃pp(x) = −

∫ ∫
Vp

0 ·
∂

∂t
Ṽp

r dtdxs

R̃ps(x) = −

∫ ∫
Vp

0 ·
∂

∂t
Ṽs

rdtdxs

(7)

where Ṽp
r and Ṽs

r indicate the receiver P- and S-wavefields,
respectively, and R̃pp(x) and R̃ps(x) indicate the PP and PS
images, respectively. Here, the time-domain operator −∂/(∂t)
corresponds to the operation of −iω in the frequency domain,
as shown in Appendix C.
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Furthermore, in Sections II-C and II-D, we give detailed
velocity–stress equations for demigration and migration
operations.

C. Vector Demigration for Modeling PP and PS Reflections
With Velocity–Stress Formulas

To numerically implement the vector reflection demigration
formulas in (6), we need to solve the pure P-wave at the source
side and the pure P- and S-waves at the receiver side, which
involves solving three decoupled elastic-wave equations. The
procedure makes the vector demigration very expensive and
the VELSRTM is not computationally practical. Nevertheless,
for smoothed migration velocity models, we can simplify the
velocity–stress formulas in (B-4)–(B-6) to efficiently simulate
the pure P- and S-waves.

On the other hand, we need to establish subsurface virtual
sources as Rpp(x)∂/(∂t)Vp

0 and Rps(x)∂/(∂t)Vp
0 to simulate

PP- and PS-waves based on (6). Comparing (A-3) with (A-
4)–(A-6) indicates that the time derivative can be implicitly
applied to the source term when we solve the velocity–stress
equations. For example, if we employ the virtual source term
of Rpp(x)∂/(∂t)vp

x , the source is set as Rpp(x)vp
x in the first-

order velocity–stress equations. Then, we simulate the vector
PP and converted PS reflection waves by solving the following
equations:

ρ0
∂v

p
0x

∂t
=

∂σ
p
0

∂x

ρ0
∂v

p
0z

∂t
=

∂σ
p
0

∂z
∂σ

p
0

∂t
=

(
λ0 + 2µ0

)(∂v
p
0x

∂x
+

∂v
p
0z

∂z

)
+ f

(8a)



ρ0
∂vp

r x

∂t
=

∂σ
p
r

∂x
+ Rpp(x)v

p
0x

ρ0
∂vp

r z

∂t
=

∂σ
p
r

∂z
+ Rpp(x)v

p
0z

∂σ
p
r

∂t
=

(
λ0 + 2µ0

)(∂vp
r x

∂x
+

∂vp
r z

∂z

) (8b)

and 

ρ0
∂vs

r x

∂t
=

∂σ s
r xx

∂x
+

∂σ s
r xz

∂z
+ Rps(x)v

p
0x

ρ0
∂vs

r z

∂t
=

∂σ s
r xz

∂x
+

∂σ s
r zz

∂z
+ Rps(x)v

p
0z

∂σ s
r xx

∂t
= −2µ0

∂vs
r z

∂z
∂σ s

r zz

∂t
= −2µ0

∂vs
r x

∂x
∂σ s

r xz

∂t
= µ0

(
∂vs

r x

∂z
+

∂vs
r z

∂x

)
(8c)

which generate the downgoing P-wave source wavefield,
reflected P-wave (i.e., PP wave), and converted S-wave (i.e.,
PS wave), respectively, as displayed in Fig. 1. The three vector

waves in (8a)–(8c) are, respectively, denoted as
[

v
p
0x

v
p
0z

]
,
[

vp
r x

vp
r z

]
,

and
[

vs
r x

vs
r z

]
. The subscript of zero indicates that elastic moduli

are converted from smoothed migration velocity models.

The wave equations in (8) are obtained by simplifying (B-
4)–(B-6) under the assumption that P- and S-wave stresses
are only related to their respective particle velocities. This
assumption is valid only when migration velocity models are
sufficiently smoothed and there are no strong conversions of
wave modes during wavefield propagations. Equations (8a)
and (8b) solve standard acoustic-wave equations, which is a
reasonable and stable approximation for P-wave propagation.
Equation (8c) is not stable if migration velocity models are
not sufficiently smoothed as it neglects the contribution of
compressional strain to the shear stress. Therefore, rather than
using (8c), we use the following more stable equations to
simulate the PS-wave mode:

ρ0
∂vr x

∂t
=

∂σr xx

∂x
+

∂σr xz

∂z
+ Rps(x)v

p
0x

ρ0
∂vr z

∂t
=

∂σr xz

∂x
+

∂σr zz

∂z
+ Rps(x)v

p
0z

∂σr xx

∂t
=

(
λ0 + 2µ0

)∂vr x

∂x
+ λ0

∂vr z

∂z
∂σr zz

∂t
= λ0

∂vr x

∂x
+

(
λ0 + 2µ0

)∂vr z

∂z
∂σr xz

∂t
= µ0

(
∂vr x

∂z
+

∂vr z

∂x

)
(9a)

and 

ρ0
∂vp

r x

∂t
=

∂

∂x

(
λ0 + 2µ0

)
2
(
λ0 + µ0

) (σr xx + σr zz)

ρ0
∂vp

r z

∂t
=

∂

∂z

(
λ0 + 2µ0

)
2
(
λ0 + µ0

) (σr xx + σr zz)

vs
r x = vr x − vp

r x

vs
r z = vr z − vp

r z .

(9b)

D. VERTM for Gradient

We numerically implement the adjoint migration operator
with the decoupled velocity–stress equations. In the first step,
we propagate the source wavefieds by solving the following
equations in the forward time:



ρ0
∂v0x

∂t
=

∂σ0xx

∂x
+

∂σ0xz

∂z
ρ0

∂v0z

∂t
=

∂σ0xz

∂x
+

∂σ0zz

∂z
∂σ0xx

∂t
=

(
λ0 + 2µ0

)∂v0x

∂x
+ λ0

∂v0z

∂z
+ f

∂σ0zz

∂t
= λ0

∂v0x

∂x
+

(
λ0 + 2µ0

)∂v0z

∂z
+ f

∂σ0xz

∂t
= µ0

(
∂v0x

∂z
+

∂v0z

∂x

)
(10a)

where f represents the explosive source, and subscript “0”
indicates wavefields propagating in smoothed background
models. Then, we obtain the separated P-wave vector Vp

0 =[
v

p
0x

v
p
0z

]
using the decoupled formula in (2) at each time step.
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Fig. 2. (a) True and (b) smoothed P-wave velocity model. (c) True and
(d) smoothed S-wave velocity model. (e) True and (f) smoothed density model.

In the second step, we solve the following equations in the
reverse time to backward propagate the adjoint source:

ρ0
∂ṽr x

∂t
=

∂σ̃ r xx

∂x
+

∂σ̃ r xz

∂z
+ (dx − Dx )

ρ0
∂ṽr z

∂t
=

∂σ̃ r xz

∂x
+

∂σ̃ r zz

∂z
+ (dz − Dz)

∂σ̃ r xx

∂t
=

(
λ0 + 2µ0

)∂ṽr x

∂x
+ λ0

∂ṽr z

∂z
∂σ̃ r zz

∂t
= λ0

∂ṽr x

∂x
+

(
λ0 + 2µ0

)∂ṽr z

∂z
∂σ̃ r xz

∂t
= µ0

(
∂ṽr x

∂z
+

∂ṽr z

∂x

)
.

(10b)

At each time step, we decouple the total receiver vector

wavefield
[

ṽr x

ṽr z

]
into the P-wave vector Ṽp

r =

[
ṽp

r x
ṽp

r z

]
and

the S-wave vector Ṽs
r =

[
ṽs

r x
ṽs

r z

]
using (2).

In the third step, we produce a gradient with the imaging
condition 

R̃pp(x) =

∫ ∫
Vp

0 · Ṽp
r dtdxs

R̃ps(x) =

∫ ∫
Vp

0 · Ṽs
rdtdxs

(10c)

which is different from (7), as solving velocity–stress formulas
of (10b) in the reverse time order has implicitly imposed the
operation of −∂/(∂t) on the adjoint sources in advance.

III. NUMERICAL EXAMPLES

In our synthetic examples, we generate synthetic “observed
data” using the true (original, unsmoothed) P-wave velocity,
S-wave velocity, and density models, whereas we use only
smoothed velocity models (unknown density) [29] for our
VELSRTM method to produce PP and PS images.

A. Layer Model

We first validate our VELSRTM method using a layered
model with P-wave, S-wave, and density models shown in
Fig. 2. The models are defined on 1001 × 401 grids with a

Fig. 3. (a) Theoretical P-impedance perturbations and PP reflection
coefficients. (b) Theoretical S-impedance perturbations and PS reflection
coefficients.

Fig. 4. (a) PP reflectivity model. (b) VERTM and (c) VELSRTM images
of PP reflections. (d) PS reflectivity model. (e) VERTM and (f) VELSRTM
images of PS reflections.

5-m grid spacing. We generate a total of 41 shot gathers of
synthetic data with the true models and a 15-Hz Ricker source
wavelet excited at the surface between 1.5 and 3.5 km with
a 50-m shot interval. Each shot contains 301 receivers with a
split-spread geometry and a 10-m receiver interval.

We calculate theoretical PP and PS reflection coefficients
along depth in this model using the method of Aki and
Richards [30], as shown in Fig. 3. These results provide
a reference for our VELSRTM PP and PS images. Fig. 3
also displays the impedance perturbations for comparison. The
P-wave velocity, S-wave velocity, and density variations with
depth all contribute to PP reflections, while only the S-wave
velocity and density variations with depth contribute to the PS
reflections, as suggested by the scattering radiation patterns of
elastic waves [31].

With smoothed migration velocity models, we generate the
VERTM and VELSRTM images of PP and PS reflections,
as displayed in Fig. 4. Both PP and PS images contain
consistent layer positions with theoretical reflectivity models.
We find that our VELSRTM method improves PP and PS
images with more balanced amplitudes and higher resolution
compared with those of the conventional VERTM images.

We show snapshots at the one-second time step in Fig. 5.
Comparing four figures in the left column, we find that
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Fig. 5. (a) and (b) Horizontal and vertical wavefield components obtained
using elastic forward modeling in the true models, respectively, where the
standard wavefields and the decoupled P- and S-wave modes are displayed in
the left, middle, and right columns, respectively. (c) and (d) Horizontal and
vertical components obtained using demigration in the smoothed migration
velocity models, where the downgoing wavefields and the PP and PS wave-
fields are, respectively, depicted in the left, middle, and right columns.

Fig. 6. (a) Horizontal and (b) vertical components of seismic data, where
the observed data and the demigration data at the first and fifth iterations are,
respectively, shown in the left, middle, and right columns. The demigration
data become much closer to the observed data after five iterations.

most reflected and converted wavefields vanish on smoothed
velocity models. Demigration wavefields in Fig. 5(c) and (d)
are reflected by initial stacked VERTM images and contain
low-resolution seismic events. As indicated by the arrowed
lines, we observe that the demigration waves have stronger
amplitudes at far offsets compared with those in Figs. 5(a)
and 6(b). The reason is that the demigration procedure with
stacked images annihilates the angle information and loses
some accuracy to save computational cost as discussed in

Fig. 7. (a) P-wave impedance (PI) perturbations and ELSRTM images of PI
perturbations: (b) without and (c) with elastic-wave decoupling. (d) S-wave
impedance (SI) perturbations and ELSRTM images of SI perturbations:
(e) without and (f) with elastic-wave decoupling.

Fig. 8. (a) True and (b) smoothed P-wave velocity models of a modified
Marmousi2 model. The corresponding (c) true and (d) smoothed S-wave
velocity models.

Appendix C. Furthermore, we compare the horizontal and ver-
tical components of demigration data with those of observed
data in Fig. 6(a) and (b), respectively. The demigration data



5922510 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 9. (a) VERTM and (b) VELSRTM PP images and (c) VERTM and
(d) VELSRTM PS images for the modified Marmousi2 model. VELSRTM
improves reflectivity images by increasing the image resolution as indicated
by the arrows and balancing the image amplitudes.

show more focused events and match better with the observed
data after five iterations.

For reference, we also produce P- and S-impedance per-
turbation images without and with decoupled elastic wave
equations [32], as shown in Fig. 7. The results obtained using
decoupled wave equations mitigate most of the interparameter
cross-talks and produce imaging events consistent with theo-
retical impedance perturbation models. Comparing with Fig. 4,
we observe that PP reflectivity image contains contributions
from S-wave velocity perturbations while P-impedance per-
turbation image does not, and that perturbation images have a
phase rotation relative to zero phase reflectivity images.

B. Marmousi2 Model

We modify the top-right region of the Marmousi2 models
for our next numerical example. Fig. 8 displays the true
models and the smoothed migration velocity models defined

Fig. 10. (a) True and (b) smoothed P-wave velocity models of an
SEG Advanced Modeling (SEAM) model. The corresponding (c) true and
(d) smoothed S-wave velocity models.

on 1401 × 401 grids with a 5-m grid spacing. We generate a
total of 141 synthetic shot gathers using the true models and
a 15-Hz Ricker source wavelet excited at the surface between
0.7 and 6.3 km with a 40-m shot interval. Each shot contains
281 receivers with a split-spread geometry and a 10-m receiver
interval.

We use the smoothed P-wave and S-wave migration velocity
models, as shown in Fig. 8(b) and (d), respectively, for
migration. We display VERTM and our VELSRTM PP images
in Fig. 9(a) and (b), respectively. We show the corresponding
PS images in Fig. 9(c) and (d). Our VELSRTM improves the
imaging resolution and balances the image amplitudes. For
instance, as indicated by the arrows in Fig. 9(a) and (b), a weak
event that is blurred in the VERTM PP image is clearly imaged
in our VELSRTM PP image. In general, PS images have
higher resolution than corresponding PP images, and the sand
structures with zero P-impedance [33] can only be detected by
PS images in this numerical example. Our VELSRTM method
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Fig. 11. (a) VERTM and (b) VELSRTM PP images and (c) VERTM and
(d) VELSRTM PS images for the SEAM model. VELSRTM enhances the
imaging resolution with better focused events as indicated by the arrows and
balances image amplitudes as indicated by the ellipses.

further increases the imaging resolution of the PS image.
As indicated by the arrows in Fig. 9(c) and (d), two interfaces,
corresponding to a small layer inside the high-velocity body
in the true models, can be more clearly imaged using our
VELSRTM method. Our method does not have the crosstalk
issue. We use only seven iterations to significantly improve the
image quality. Additional iterations do not provide meaningful
image improvement while increasing computational cost.

C. SEAM Salt Model

We also test our VELSRTM method using the SEAM
model. Fig. 10 shows the true and smoothed velocity models

Fig. 12. (a) VERTM and (b) VELSRTM PP images and (c) VERTM and
(d) VELSRTM PS images, where source and receiver positions are indicated
by the white dashed line and the black dotted line, respectively. Image
improvements are indicated by the red arrows.

discretized on 1751 × 601 grids with a 10-m grid spacing.
We generate a total of 281 synthetic shot gathers using the
true models and a 15-Hz Ricker source wavelet excited at the
surface between 2 and 16 km with a 50-m shot interval. Each
shot contains 801 receivers with a split-spread geometry and
a 10-m receiver interval.

Using the smoothed migration velocity models, we obtain
the VERTM and VELSRTM PP images in Fig. 11(a) and (b),
respectively, and the corresponding PS images in Fig. 11(c)
and (d), respectively. Our VELSRTM method with seven itera-
tions improves the image resolution with better focused events
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Fig. 13. Observed data and the demigration data at the first and fifth iterations
are, respectively, shown in the left, middle, and right columns. We use the
preprocessed PP data as the vertical-component observed data.

as indicated by the arrows and balances image amplitudes as
indicated by the ellipses. As shown within the area enclosed
by the ellipses, PS images can better delineate subsalt structure
than PP images, similar to observations by Stewart et al. [2].
The reason is that the limited-aperture receiver array cannot
record subsalt PP waves with large reflection angles while it
can record PS waves with relatively smaller reflection angles,
as depicted in Fig. 1.

D. Volve OBC Data

We verified our VELSRTM method using the Volve Ocean
Bottom Cable (OBC) field dataset. The source and receiver
positions are indicated with the white dashed line and the
black dotted line in Fig. 12, respectively. We follow Duan et al.
[20] to set the preprocessed PP data as the vertical component
except using a higher maximum frequency of 30 Hz. Duan
et al. [20] produced images of P- and S-wave velocity pertur-
bations, whereas our VELSRTM mainly outputs PP images.
As shown in Fig. 12, our method successfully improves the
image resolution with more focused reflectors, as indicated by
the red arrows, balances the image amplitudes, and suppresses
image noise. We also produce PS images but they show low
amplitude and low quality, which might result from some
secondary elastic-wave conversions in the deep subsurface.
The modeled data iteratively become closer to the observed
data, as shown in Fig. 13. Even though it is not a perfect
example, it demonstrates that our method improves migration
images even using single-component seismic data.

IV. CONCLUSION

We have developed a novel VELSRTM for directly migrat-
ing elastic seismic data to produce PP and PS reflectivity
images. Our VELSRTM method employs a novel vector
reflection demigration operator based on the reflection demi-
gration theory. For numerical implementation, we have solved
the simplified decoupling velocity–stress equations to achieve
the demigration modeling of PP and PS waves. We have
demonstrated using synthetic and field seismic data that our
VELSRTM method improves the imaging quality with higher
resolution and more balanced image amplitudes with only a
few iterations.

APPENDIX A
ELASTIC-WAVE EQUATIONS FOR DISPLACEMENT AND

PARTICLE VELOCITY WITH CURL- AND
DIVERGENCE-FREE TERMS

The equation of motion in isotropic media can be fully
represented with displacements after replacing stresses with
strains based on the constitutive equation. Taking x-direction
as an example, it is written as
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If the shear modulus µ is homogeneous or at least locally
smooth, we can rewrite (A-1) as
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Considering all wavefield components and inserting an exter-
nal source, the elastic-wave equation can be compactly written
as

ρ
∂2U
∂t2 = ∇

(
λ + 2µ

)
∇ · U − ∇ × µ∇ × U + F (A-3)

where U and F represent the displacement vector and the
source term, respectively. The right-hand side of (A-3) con-
tains a curl-free term and a divergence-free term.

Equation (A-3) can be written for particle velocity by
applying a time derivative

ρ
∂2V
∂t2 = ∇

(
λ + 2µ

)
∇ · V − ∇ × µ∇ × V +

∂F
∂t

(A-4)

where V represents the particle-velocity vector.
On the other hand, equivalent to (A-4), the velocity–stress

formulas [28] are written as

∂σ

∂t
= CHV (A-5)

ρ
∂V
∂t

= HTσ + F (A-6)

where σ , C, and H compactly represent the stress tensor,
the stiffness matrix, and the matrix of differential operators,
respectively. Relative to (A-4), solving (A-5) and (A-6) implic-
itly applies a first-order time-derivative operation to the source
term.

APPENDIX B
DECOMPOSING CONSTITUTIVE RELATIONS FOR

DECOUPLED P- AND S-WAVE

We can directly split standard velocity–stress equations [28]
to obtain decoupled P- and S-wave equations by decomposing
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the constitutive relations. In the 2-D space, we first write the
expressions of stresses as
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and then directly decompose them into P- and S-wave parts
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and 
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where the first part is for propagation of the P-wave wavefield
and the second part is propagation of the S-wave wavefield.

Therefore, the complete separated velocity–stress formulas
for P- and S-waves are written as
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and {
vx = vp

x + vs
x
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z + vs

z .
(B-6)

We can further rewrite (B-4)–(B-6) to connect with (1)
based on the Helmholtz decomposition. We first rewrite (B-4)
by replacing stresses in its first and second formulas with its
third formula as
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Similarly, we can rewrite (B-5) as
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Furthermore, by assuming the shear modulus is homogeneous
or at least locally smooth, we simplify (B-8) as
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In the 2-D space, the time integral of (B-7) and that of (B-9)
are equivalent to (1a) and (1b), respectively.

APPENDIX C
REFLECTION DEMIGRATION FORMULAS IN THE

FREQUENCY DOMAIN

Starting from acoustic media, the incident wavefield P0 and
the scattered/reflected wavefield Pr can be related using an
angle-dependent reflectivity function [25]

R(x, θ) =
Pr(x, ω; xs)

P0(x, ω; xs)
(C-1)

∂ Pr(x, ω; xs)

∂n
= −R(x, θ)

∂ P0(x, ω; xs)

∂n
(C-2)

where θ represents the incident angle, ω represents the circular
frequency, and n represents the upward normal vector at
the local reflector position of x, as illustrated in Fig. 1.
By expanding wavefields in (C-1) and (C-2) with Green’s
functions, the recorded reflection data dR(xr, ω; xs) can be
represented with the integral formula [25]

dR(xr, ω; xs)

=

∫
R(x, θ)

 G0(x, ω; xs)
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∂n

 f (ω; xs)dx

(C-3)

where f (ω; xs) represents the source function, and G0 denotes
Green’s functions in a smoothed background model. The
formula is first accurately established for the single-reflector
case and is further approximately extended to the general
subsurface with the assumption of single primary reflections.

After replacing normal gradients with high-frequency
asymptotic solutions [25], (C-3) can be approximately sim-
plified as

dR(xr, ω; xs)

= iω f (ω; xs)

×

∫
2 cos(θ)

Vp(x)
G0(xr, ω; x)R(x, θ)G0(x, ω; xs)dx (C-4)

where Vp denotes the P-wave velocity, and θ represents the
incident angle at any subsurface point.

Neglecting angle-dependent information, (C-4) can be sim-
plified for more efficient computation as follows:

dR(xr, ω; xs)

≈ iω
∫

G0(xr, ω; x)R(x)G0(x, ω; xs) f (xs, ω)dx (C-5)
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where R(x) represents a stacked reflectivity model. Its adjoint
operator denotes a standard migration operator, which pro-
duces a stacked image R̃(x)

R̃(x) =

∫ ∫ ∫
dωdxrdxs

× − iω(G0(x, ω; xs) f (xs, ω))∗G∗

0(xr, ω; x)dR

× (xr, ω; xs).

(C-6)
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