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Determination of Groundwater Storage Variation,
Deficit, and Abstraction in Afghanistan and the

Assessment of the Evolution of Vadose
Zone in Kabul City
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Abstract— Groundwater is Afghanistan’s main water supply
resource, but the insufficient information and mismanagement of
the surface and groundwater system have resulted in an alarming
shortage of this precious resource. The monthly groundwater
storage variation (1GWS) has been calculated in millimeter
(mm) with a trend (mm/month) for the time interval of April
2002–October 2021 using the Gravity Recovery and Climate
Experiment (GRACE) dataset for five major river basins of
Afghanistan. A maximum and a minimum deseasonalized 1GWS
are observed at Amu Darya (246 to −253 mm) and Hari Rud
(89 to −102 mm) basins, respectively. Subsequently, the GWS
deficit (GWSD) and GWSD index (GWSDI) were calculated,
and a negative GWSDI value signified the groundwater drought.
Analysis of the GWS abstraction (GWSabs) has also been car-
ried out for the entire country. The estimated GWSabs trend
gives a maximum value of 12.60 mm/year in the northeast
and southwest parts of the country. A spatiotemporal analysis
showed the maximum GWSabs variation up to 23.12 mm in
2021. Two phases of land deformation were determined in
Kabul City using the interferometric synthetic aperture radar
(InSAR) technique. In phase-I (2015–2017), there is a gentle
negative trend [−20.66 mm/year in Upper Kabul (UKBL) and
−18.54 mm/year in Lower Kabul (LKBL)], but in phase-II
(2018–2020), there is a high negative trend (−151.34 mm/year
in UKBL and −145.32 mm/year in LKBL). Overall, the entire
country is experiencing a severe groundwater decline, apparently
from the interplay of hydroclimatic and anthropogenic factors,
which are most dominant in the Southern and Western parts of
Afghanistan.

Index Terms— Gravity Recovery and Climate Experiment
(GRACE), groundwater storage abstraction (GWSabs), GWS
deficit (GWSD), GWS variation (1GWS), interferometric syn-
thetic aperture radar (InSAR), land deformation.

I. INTRODUCTION

GROUNDWATER is the world’s leading freshwater
resource for agriculture, industry, public supply, and

ecosystems [1], [2]. It is the third largest water store after the
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ocean and the cryosphere. However, some areas utilize more
groundwater than is replenished, resulting in the depletion of
groundwater storage (GWS) [3]. GWS depletion has occurred
in numerous parts of the world during the last several decades,
including north China [4], northwest India [5], [6], [7], and the
California Central Valley, USA [8]. Globally, GWS depletion
might only be considered significant for the sea level rise
(mostly apparent), when viewed in completeness with the
location of the terrain (usually the coastal region), the seawater
intrusion, and the resulting interaction between the changing
fluid and the local rock causing zones of weakness and final
subsidence.

Research and reports show that the severe groundwater
shortage in Afghanistan over the last two decades resulted
from global and regional droughts and overexploitation for
irrigation purposes. Deep-drilled wells have been a more
prevalent source of irrigation water in recent years in the
Kabul and Helmand rivers basins. In the absence of actively
operating competent authority for regulating or analyzing
the groundwater situation, it is evident that the future of
sustainable groundwater usage in Afghanistan will be bleak.
The depletion and pollution of groundwater pose significant
challenges when it comes to restricting its use for drinking
water provision. This issue is of utmost concern in water
management principles and strategies due to the paramount
importance of ensuring access to safe drinking water for the
population.

Due to the dry environment and limited surface water
resources in Afghanistan, adequate water supply can only be
obtained by digging wells into aquifers to acquire groundwater
[9]. Historically, the local people relied on Karez systems to
transport water, which uses unconfined aquifers in alluvial
fans recharged by snowfall throughout the spring. The Karez
system, which dates back 3000 years, is a classic subhorizontal
tunnel that uses gravity to bring underground water to the
surface [10], [11].

Currently, groundwater is extracted sporadically throughout
Afghanistan using diesel motors, electrical submersibles, and
solar pumps, mainly for irrigation purposes, with unrestricted
extraction by nongovernmental organizations (NGOs), farm-
ers, opium planters, warlords, and the corporate sector [12].
Recent studies have represented dramatic water stress in Kabul
and the country with short-term droughts [12], [13], [14].
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Minimal studies on Afghanistan related to terrestrial water
storage (TWS) and water resource availability have been
conducted.

Some research on climate change shows that meteorological
droughts are the major causes of water stress [15]. So far,
no research has been done specifically on the variations
of groundwater resources using the Gravity Recovery and
Climate Experiment (GRACE) data in Afghanistan to cover
the entire country. There is GRACE-based research on spa-
tiotemporal TWS availability, sustainability, and reliability
in Afghanistan by Sediqi et al. [16] that indicates a trend
between (−0.43 and 0.00 cm/year) in the southwest region
(Helmand basin) and more sustainability in the eastern part
of the country. However, according to [16], climate change
has caused changes in water availability in locations around
Afghanistan, but anthropogenic factors are also considerably
affecting GWS. Thus, it is the interplay of climate change
and anthropogenic factors that could be attributed to the main
reason for the tensive situation of groundwater in Afghanistan.

Overexploitation of groundwater, which alters the geody-
namic state of the environment, can have negative envi-
ronmental impacts, such as land subsidence and associated
infrastructure damage [17], [18]. Groundwater abstraction can
cause changes in hydraulic head, pore pressure, and effective
stress, which can contribute to ground surface deformation
[19], [20].

Kabul is the country’s capital, with a population of more
than five million population that has been ranked as the fifth
fastest growing city in the world. Groundwater is the primary
water supply resource for multipurpose of Kabul residences.
There are four aquifer systems in Kabul for groundwater sup-
ply, including Upper Kabul (UKBL), Lower Kabul (LKBL),
Paghman (PGHMN), and Logar aquifers. Recently, news has
revealed land subsidence in Kabul, but only research has been
done by Meldebekova et al. [21].

After the GRACE mass concentration blocks called mascon
solutions introduced by the Jet Propulsion Laboratory (JPL)
of National Aeronautics and Space Administration (NASA)
and Center for Space Research (CSR), University of Texas,
under the RL06 data product with high spatial resolution and
different processing steps [22], [23], the RL-06 CSR-Mascon
data product has not required postprocessing [24]. Throughout
the last decade, the research based on GRACE TWS data has
focused on the discussion of groundwater stress worldwide.
Therefore, the present study quantifies GWS changes and
groundwater deficit along with groundwater mass abstraction
over the major river basins of Afghanistan using GRACE data.
Simultaneously, we determined that groundwater overexploita-
tion caused land deformation in Kabul using synthetic aperture
radar (SAR) data between 2015 and 2020.

SAR is a microwave remote sensing technology in which
microwave beams are delivered from the antenna to the Earth’s
surface. Backscattered energy is measured using the radar prin-
ciple to create a picture. The amplitude of the reflected wave
may be used to determine the target’s surface composition and
size. The two-way travel time is used to calculate the distance
between the satellite and the ground surface. The narrower the
beam and the higher the resolution in the direction of the flight

track, the larger the antenna [25]. Large antennas, on the other
hand, are not possible. As a result, the Doppler principle is
used in SAR technology. By broadcasting and receiving radio
waves during flight, SAR creates a virtual antenna with a large
aperture size. The pulsewidth of a transmitting wave should
be as small as feasible to increase range resolution. A small
pulsewidth, on the other hand, has a more significant likelihood
of being interfered with by noise.

The raw data for the SAR image are transformed into the
single-look complex (SLC) format. SLC provides both phase
and amplitude information in the form of complex numbers.
Phase values describe the delay in the time of the received
signal in a coherent system. In contrast, amplitude represents
the fluctuation in brightness that indicates spatial variations in
the physical features of the ground surface [26]. SLC is saved
as a slant range that may be geocoded to the ground range.

The SAR satellite sees in an oblique downward orientation
rather than immediately below. The satellite observes from the
west side in ascending orbit (northward) and from the east side
while in descending orbit (southward). If a satellite watches
the ground moving west in ascending orbit (northward), the
ground gets closer to the satellite. When a satellite observes
from a lowering orbit (toward the south), the ground moves
away from the satellite, which is called line-of-sight (LOS)
displacement.

The estimations from GRACE/GRACE-Following (FO) can
provide a “big picture” of the nation’s GWS variation (1GWS)
on a regional scale. It has the potential to provide essential
information for governmental authorities, policymakers, water
resource managers, and the public. Hence, the present study
aims to estimate GWS variation, abstraction, and deficit over
the five major river basins during the last two decades. The
extensive groundwater pumping in the capital of country has
resulted in an adverse water level decline causing the evolution
of vadose zone. A part of this research focused on revealing
the invisible risk of vadose zone development in the form of
land surface deformation.

II. STUDY AREA

Afghanistan is in the Southwest region of Central Asia, with
geographical coordinates of 29◦35’ N–38◦40’ N latitude and
60◦31’ E–74◦55’ E longitude. Afghanistan is surrounded by
Uzbekistan, Tajikistan, and Turkmenistan from the north; in
the west by Iran; in the south and southeast by Pakistan; and
in the northeast by China. Afghanistan has a total area of
652 000 km2. The country’s geography is strongly undulating,
with mountains covering 75% of the land.

Afghanistan has a subtropical and continental climate, with
hot and sunny summers and cold and wet winters. According
to the Köppen–Geiger climate classification, the nation has five
climatic zones: arid desert, arid steppe, moderate dry summer,
cold and dry summer, and polar tundra. The country’s yearly
average rainfall is 200–400 mm [27]. However, the rainfall
variances are significant and vary according to height and loca-
tion. The lowest mean annual precipitation of around 30 mm
is reported for the Southwest part of the country, while the
highest precipitation is occurring in the Northeast Hindukush
and Pamir mountains’ foothill region around 1000 mm [28],



DAQIQ et al.: DETERMINATION OF GWS VARIATION, DEFICIT, AND ABSTRACTION IN AFGHANISTAN 5219618

Fig. 1. Study area map shows the major rivers of Afghanistan with the blue
line within respective river basins for GWS study. The InSAR observed area
is determined with a yellow rectangle.

[29]. In contrast, the annual evapotranspiration reaches up to
1800 mm due to high temperature in the Southwest region
and relatively low (1000–1300 mm) in the Hindukush region
because of severe and long winter [30]. The South is arid,
primarily desert-covered, and some parts of the Central and
Northeast regions are frigid due to altitude. Even in the sum-
mer, East Asia is wet due to the partial impacts of the Indian
monsoon. This region also has a wide variety of temperature
changes. In January, the average temperature on the plains
is between 0 ◦C and 8 ◦C, with absolute low temperatures
ranging from 20 ◦C to 25 ◦C. In July, typical temperatures
on the plains vary from 24 ◦C to 32 ◦C, with a 45 ◦C
absolute maximum temperature [28]. Five major river basins
drain Afghanistan: Kabul River basin, Amu Darya River basin,
Northern River basin, Hari Rud River basin, and Helmand
River basin (see Fig. 1). The GRACE data analysis is carried
out grid-based over the country, but due to hydroclimatic
variation of river basins in Afghanistan, we calculated the final
results basin wise. Moreover, Afghanistan has basinal water
management sections, so we wanted to stay focused on the
basinal average values to target the community there. In this
study, we generated all the GRACE-related maps using the
kernel interpolation with barriers. This interpolation method
interpolates over the recommended study area, including con-
tamination zones of lakes and other surface water bodies;
therefore, the kernel interpolation method is more accurate
than other considerable methods that do not allow adjusting
the barriers [31].

The Kabul River basin drains by the Kabul River, which
flows to the Indus River in Pakistan. This basin is in the
Eastern part of the country with a catchment area of 72 686
km2. Amu Darya basin is located in the Northeast of the
country with an area of 96 599 km2. The Kunduz and Kukcha
rivers drain this basin through the Amu River, which flows to
the Aural Sea. The Northern basin is located in the North of the
country with a total catchment area of 70 914 km2 and consists
of several watersheds. The basin outflow is discharging to
Turkmenistan through the Murghab, Kushk, and Gulran rivers,

reaching the Amu River. However, other rivers only flow inside
the country, i.e., Balkhab, Samangan, Sar-e Pul, and Sherin
Tagab rivers. Hari Rud river basin is located in west of the
country with a catchment area of 77 596 km2. The Hari Rud
and Farah Rud rivers drain the basin flowing through the
border of Iran. Helmand river basin is located in the Southern
part of the country with an area of 327 801 km2 [32]. The
Helmand River drains this basin, which discharges to the
Hamoon-e Helmand on the border of Iran.

The current study included all the major river basins for the
GRACE study and focused on Kabul for the SAR study.

A. Geological Setting of Study Area

Afghanistan is a junction of different crustal and oceanic
blocks. According to [33], a collection of alien terranes
fused to Eurasia’s southern edge by a sequence of consec-
utive accretionary processes starting in the Paleozoic and
extending to the present [34]. The current structure of the
country was created by Mesozoic (Cimmeride) and Tertiary
(Himalayan) orogenic events, which resulted in the mountain-
ous core (massif) and recent sedimentary deposition in the
surrounding areas. According to [35], several tectonic plate
fragments (microplates) broke away from Gondwanaland’s
southern “supercontinent” during the late Permian. One of
them, the Afghan microplate, collided with the Eurasian
continental plate in the Mesozoic. This orogenic event known
as the “Cimmeride” (sometimes known as the “Hercynian”)
began in the late Triassic and ended in the Jurassic/Early
Cretaceous (200–150 million years ago). The Paropamisus-
Band-e Turkestan mountains, to the south of Faryab, were
formed during the Cimmeride orogeny [35].

The Indian plate separated from Gondwanaland about the
Early Cretaceous. It collided with the Eurasian plate in
the Paleogene (late Paleocene and early Eocene), resulting
in further orogenesis, crustal thickening, and crustal move-
ment (Himalayan orogenic episode). The rest of the Afghan
microplate is called (the Afghan Block) as well has been
pressed southwestward at rates more than 1 cm/year in south
of the Hari Rud fault [36].

Large aquifers are also found in the associated alluvial-filled
extensional basins, limited by normal faults (through trans-
pression) situated at northwest-trending strike-slip systems as
massive thrust-fault stepovers [37]. The right-lateral Sorobi
fault and the left-lateral Chaman–Paghman fault system, which
exist inside the transpressional plate boundary block, are
bordered to the east and west by the exotic crustal Kabul block
while confined to the north by the Herat–Panjshir fault. The
most productive aquifers in Afghanistan are found in these
extensional basins, which are depicted as structural grabens
[37].

The Kabul basin was formed during the Late Paleocene due
to plate movements (Tertiary). It is bordered by metamorphic
rocks, which are mostly underlain. The Herat–Panjsher main
fault in the west, the Sorobi fault in the east, and the Chaman
fault system in the southeast intersect these rocks, which are
part of the Kabul block. They are shattered along the fracture
and shear lines and tightly folded—even imbricated in some
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Fig. 2. Geological map of Kabul (inside the red box) and the surrounding
area indicates the unconsolidated sediments in the aquifer system.

places. Precambrian metamorphic basement (gneisses, granitic
gneisses, amphibolite, mica schist, quartzite, and marbles)
surrounds and underpins the Kabul basin, with some newer
(upper Paleozoic–Mesozoic) limestone and marl on the south
and east margins.

The basin is filled with consolidated and unconsolidated
upper tertiary (Neogene) and quaternary clastic and alluvial
deposits, mostly clay, sand, gravel, pebble, and conglomer-
ate (see Fig. 2). The Kabul basin is filled with a mixture
of terrestrial and lacustrine sediments, most of which are
Neogene in age. Sand and gravel make up most of these
deposits. Geophysical surveys found the overall thickness of
the sediments to be up to 600 m [38].

III. MATERIALS AND METHODS

The following spaceborne and ground-based datasets and
different platforms have been used (see Tables I and II and
Fig. 3). The exact address to access the data is provided
under the section of data availability. The below datasets are
used based on their availability, reliability, and accuracy. The
following explanation justifies the use of the main datasets for
this research.

GRACE (CSR-Mascon): This dataset is freely available.
Moreover, based on the previous studies [5], [39], it has
been shown that a high degree of correlation exists between
CSR-Mascon and the other two free datasets, the JPL-Mascon
and the Spherical Harmonic (SH), derived TWS change
and GWS change with the rank correlation coefficient
mostly > 0.9 [24]. In addition, among the GRACE solu-
tions, the CSR-Mascon has the highest spatial resolution
(0.25◦

× 0.25◦). Therefore, it was the obvious choice to
stick with CSR-Mascon dataset to carry out the basinal scale
analysis.

GLDAS Data (Hydrological Fluxes): Global Land Data
Assimilation System (GLDAS) surface model dataset has been
recommended in [3] as the most suitable auxiliary data of
GRACE, which has the same spatial resolution as CSR-
Mascon. Also, “GRACE-FO Level 3 user handbook” specifies
using GLDAS surface model data for soil moisture (SM),

Fig. 3. Illustration of data processing and workflow.

surface water storage (SWS), plant canopy water (PC), and
snow-melted equivalent water (SMEW) to estimate GWS from
GRACE TWS data [40].

Sentinel-1A (SAR Data): Due to the minimal vegetation
coverage of Kabul, the limitation of the penetration depth
of the C-band pulse through the vegetation has not been
considered. Therefore, Sentinel-1 (C-band) can effectively
detect land subsidence in less vegetated area like Kabul [41].

A. GRACE-Derived GWS Change

This study conducted remote sensing and ground-based inte-
grated observation to quantify the 1GWS over the country and
the resulting land deformation in Kabul. The monthly TWS
is provided by NASA and processed at the CSR, University
of Texas. CSR RL06 GRACE/GRACE-FO Mascon solutions
version 02, level 3 with a spatial resolution of 0.25◦

× 0.25◦

(25 × 25 km), is used for calculating the anomaly based on a
time mean baseline from 2004 to 2009 covering all the months
[3]. Due to repeated harsh weather conditions over multiple
years, the GRACE solutions include seasonal and interseasonal
cycles lasting more than one month. Furthermore, using an
average monthly time mean baseline rather than a monthly
variable baseline (interannual average as the average of each
calendar month over multiple years) helps examine the cli-
matology impact on 1GWS over the research area for the
considered time interval. The current study focuses on grid-
wise 1GWS rather than basin average to identify groundwater
stress areas with human exploration and climate change as
regulating factors. For determining monthly 1GWS in each
grid, the GRACE solution TWS anomaly (1TWS) is sub-
tracted from the total monthly anomaly of all other effective
hydrological fluxes using (1). The involved hydrological fluxes
include SM, SWS, PC, and SMEW given by the GLDAS with
25 × 25 km spatial and monthly temporal resolution [42],
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TABLE I
PRIMARY HYDROCLIMATIC AND DEMOGRAPHIC DATASETS HAVE BEEN

USED FOR THE CURRENT STUDY

[43], [44]

1GWS = 1TWS − (1SMEW +1SWS +1PC +1SM).
(1)

B. SPI and Seasonal GWS Anomalies

A time scale-independent probability of precipitation serves
as the foundation for the standardized precipitation index
(SPI). The observed precipitation probability is then converted
into an index. More than 70 nations use it for operational
or scientific purposes [45]. This study employed the SPI
function in the standardized precipitation evapotranspiration
index (SPEI) package with R studio to calculate the SPI values
using (2).

The data collection of Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS) was used to compute

TABLE II
SAR DATA FOR LAND DEFORMATION STUDY

pixel-based SPI values. The CHIRPS dataset was created
using previous attempts at “Smart” interpolation method-
ologies, long-term rainfall records monitored with infrared
cloud covering the duration, and rain gauge measurements
with 0.05◦

× 0.05◦ spatial resolution and daily, pentad, and
monthly temporal resolution [46].

The current study used 12-month SPI values to target
GWS sensitivity with extreme weather conditions such as
high-level rainfall in short periods and short-term (seasonal)
droughts, both driven by climate change, and to understand
the human influence on the groundwater system and hydro
climatology breakdown consequences. The 12-month SPI is
calculated by comparing the current month’s precipitation to
the same 12-month period in the historical data. For example,
in previous records, the 12-month SPI number at the end of
December corresponds to all total precipitation from January
to December. Thus, 12-month SPI values more accurately
reflect rainfall-related seasonal and interseasonal variations
and extreme conditions [45]

t
gridSPI =

X − X t

σ
(2)

t is the probability distribution’s time scale (12 months),
X t represents the mean value for the 12 months, and σ

is the standardized deviation of the t month’s probability
distribution.

As a result, each drought event has a duration specified by
its start and end dates and intensity for each month the event
lasts. The “magnitude” of drought defines the positive total of
the SPI for all months during a drought episode.

SPI values range from −2 to +2, and the drought category
may be determined based on the SPI value of each pixel in
each month. The nondeseasonalized (seasonal) 1GWS time
series has been reconciled with the SPI time series and series
of drought area change to understand better the impact of
seasonal and interseasonal droughts or wettest circumstances.
The drought intensities based on the SPI using the catego-
rization scheme presented in the SPI value (see Table III)
have been classified in [47]. They also established the criteria
for a drought occurrence across all periods. When the SPI
is continually negative and reaches an intensity of −1.0 or
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TABLE III
SPI CLASSIFICATION AND DROUGHT INTENSITY

less, it is considered a drought event. When the SPI reaches
positive, the drought event is over.

C. GWS Anomalies Decomposition

The original 1GWS time series derived from TWS includes
a monthly related seasonal component. Due to irrigation inten-
sities, land cover patterns and the location and morphology of
river basins have a variety of weather patterns, particularly in
terms of evapotranspiration and precipitation. As a result, the
current research focuses on deconstructing grid-based seasonal
patterns for each basin using the following equation [5]:

t
grid1GWStotal =

t
grid1GWSlong−term +

t
grid1GWSannual

+
t
grid1GWSsemi−annual +

t
grid1GWSresidual.

(3)

The long-term trend component is combined with the
long-term processes to form mid-to-long-term climatic oscil-
lations that operate across the time series period. Temporal
scaling and rapid system-related changes, such as aquifer
nature, are required to deconstruct the long-term trend. Annual
and semiannual phases make up the seasonal component. The
annual changes in the groundwater system caused by recharge
seasons are a cyclical process with a seasonal or recurring
component. Groundwater dynamics, such as the seven-year El
Nino impact, can also be cyclic overextended periods.

On the other hand, long-period cyclic processes are more
likely to be detected by the trend component. Residuals
or remainders are likely to indicate local mechanisms that
produce variability across cycles and can thus be linked to
short-term events or groundwater system consequences. These
can be derived by subtracting the original signal’s long-term
trend and seasonal components.

We employed the seasonal trend decomposition using
LOESS (SLT) for this investigation, as stated by Scanlon et
al. [48]. The benefit of SLT decomposition is a flexible, robust
approach that produces phase harmonics outputs comparable
to the original after decomposition. The amplitude smoothing
based on local regression (LOESS) is a critical process in SLT
decomposition.

This study employed a 12-month moving time frame.
According to earlier studies, a 12-month time range is an
alternate way for detrending all small-scale disturbances,
such as short-term trends and noises [49]. Identifying the
long-term pattern of groundwater variability is the primary
goal of eliminating the seasonal component. Groundwater has
picked up long-term climatic oscillations as a measure for

climatology changes due to the GWS-associated long-term
climatic oscillations.

D. Sen’s Slope and Mann Kendall Trend Statistic
Calculation for Groundwater Trend Test

The Mann–Kendall test is a nonparametric test for detecting
patterns in time series data. Rather than comparing the data
values directly, the test evaluates the relative magnitudes of
sample data [50]. One advantage of this test is that the data
do not have to fit into any particular distribution. Furthermore,
nondetect data include giving them a typical value less than the
dataset’s smallest measured value. The approach described in
the following paragraphs assumes that each time series period
has only one data value. The median value is utilized when
there are many data points for a particular time interval. The
Mann–Kendall statistic (S) compares each data value to the
values after it. S has a zero value at the start (e.g., no trend).
S increases by one if a data value from a later time series
period is higher than a data value from an earlier time series
period. Inversely, S decreases by one value if the data value
is lower than the one collected earlier. The final value of S is
the sum of all such increments and decrements. Considering
x1, x2, . . . , xn which, n is the number of data points where
x j is the data point at the time ( j). Then, S is given [51] in
below equation:

S =

n−1∑
k=1

n∑
j=k+1

sign(x j − xk) (4)

where

sign
(
x j − xk

)
= 1 if x j − xk > 0

sign
(
x j − xk

)
= o if x j − xk = 0

sign
(
x j − xk

)
= −1 if x j − xk < 0.

A very high positive value of S implies an upward trend,
whereas a lower negative value indicates a downward trend.
To statistically assess the importance of the trend, however,
the probability associated with S and the sample size, n, must
be computed. Furthermore, we applied a simple nonparametric
approach to determining the size of a time series trend as per
(5). The trend is determined by [52]

β = Median
(

x j − xi

j − i

)
, j > i (5)

β stands for Sen’s slope estimate. β > 0 shows a positive
(upward) trend in a time series, and contrary, β < 0 indicates
a negative (downward) trend over a time series.

The current study used the R Studio for 1GWS SLT decom-
position, SPI calculation, Mann–Kendall trend, and Sen’s slope
tests.

E. GRACE-Derived GWSD

The hydrological features are shown by the monthly GWS
deficit (GWSD) using the following equation [53]:

GWSDi, j = 1GWSi, j −1GWS j (6)
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where GWSDi, j and 1GWSi, j are GWSD and 1GWS for
the j th month in the year i , respectively, and 1GWS j is the
long-term mean of 1GWS for the j th month. GWS is less
than the normal value if the GWSD is negative. The GWSD
index (GWSDI) is the normalized GWSD calculated using the
zero mean normalization approach, as stated in the following:

GWSDI =
GWSD − µ

σ
. (7)

The mean and standard deviation of the GWSD time series,
respectively, are µ and σ .

The current study calculated and plotted the monthly time
series analysis of GWSD and GWSDI derived from GRACE
deseasonalized 1GWS from April 2002 to October 2021 over
the five major river basins of Afghanistan with unit millimeter
(mm).

F. Groundwater Storage Abstraction

Variations in GWS (1GWS) are assumed to be equal to
the difference between recharge (R) and GWS abstractions
(GWSabs) at a regional scale as follows [39]:

1GWS = R − GWSabs. (8)

The involved factors for groundwater recharge are precipita-
tion (P), actual evapotranspiration (AET), SWS, and 1SM
through the water budget equation (9) [54].

While the case of groundwater recharge in Eastern and
Central highland Afghanistan is influenced by snow-melted
water and precipitation, the Western and Southern Afghanistan
groundwater recharge can be strongly influenced by percola-
tion in irrigated areas. As agriculture plays a significant role
in the country’s economy, estimating groundwater recharge
efficiency in irrigated areas is a practical approach and a
significant “food for thinking” to be taken up in detail by
future studies

R = P − AET − SWS −1SM. (9)

GWSabs was calculated by using the following equation as
applied by [54]:

GWSabs = P − (AET + SWS +1SM +1GWS). (10)

In this study, we calculated the spatial distribution of
recharge value for the entire country by subtracting the AET,
SWS, and change in SM (1SM) from total precipitation
provided by CHIRPS. Furthermore, the abstracted GWS has
been calculated in a unit (km) and multiplied by the pixel area
(25 × 25 km) to estimate the abstracted GWS volume in cubic
kilometers. The GWSabs rate has been calculated by dividing
the total abstracted volume by the number of years with
unit km3/year. The positive value indicates decreasing GWS;
conversely, the negative value indicates a positive recharge
balance.

G. Land Deformation Detection by InSAR

The current study used the Sentinel-1 data (C-band) to
detect the land deformation in Kabul using the Generic

Mapping Tools Interferometric SAR (InSAR) Processing Sys-
tem (GMTSAR), Sentinel Application Platform (SNAP), and
Statistical-cost Network-flow Algorithm for Phase Unwrap-
ping (SNAPHU) tools. We considered 28 scenes of descending
orbit for time series analysis by GMTSAR from 2015 to 2020.
Parallelly, four scenes (two ascending and two descending)
were used for decomposing to vertical and horizontal displace-
ments by SNAP and SNAPHU.

Two complicated SAR images are combined to form an
interferogram. An InSAR interferogram (γ ) is a picture cre-
ated by subtracting two co-registered SAR phase images of the
same region using (11). It is defined as the normalized complex
correlation coefficient of the complex electromagnetic fields S1
and S2 backscattered by the lit elements at positions ρ1 and
ρ2 [55]

γ =
⟨S1S2∗⟩

⟨S1S1∗⟩⟨S2S2∗⟩
. (11)

Here, the bracket ⟨S⟩ is the average of S, and S∗ is the complex
conjugate of S.

The path difference is measured using the interferometric
phase difference using the following equation:

ϕ = ϕ1 − ϕ2 =
4π
λ

[ρ1 − ρ2]. (12)

Here, ϕ1 and ϕ2 are phases of the first and second SAR images,
respectively, and ϕ is the interferometric phase. ρ1 is the first
acquisition’s distance from the SAR sensor to the scatterer; ρ2
is the second acquisition’s distance, and λ is the wavelength.

Differential interferometry (D-InSAR) offers information on
changes in the range distance between the sensor and the
ground target due to the ground target’s displacement [56],
[57]. The objective of D-InSAR is to measure ground defor-
mation through repeat-pass interferometry. In this method,
LOS displacements directly contribute to the interferogram,
irrespective of the baseline, allowing for measurements in
terms of a fraction of the wavelength. From distances spanning
hundreds of kilometers, the D-InSAR has the capability to
detect subtle ground deformations with a precision of several
millimeters [58], [59]. The fundamental D-InSAR approach
involves removing the phase of topographic displacements,
which may be accomplished with an external digital elevation
model (DEM) [60]. The DEM is then used to create a
synthetic interferogram [61], as shown in (13). Furthermore,
atmospheric artifacts can significantly impact differential inter-
ferograms [56]

1ψ intf = 1ψflat +1ψ topo +1ψmov +1ψatmos +1ψnoise

±n ∗ 2π =
4π · B⊥ · r
λ · ρ · tgθ

+
4π · B⊥ · h
λ · ρ · sin θ

+
4π ·1ρ

λ
+1ψatmos

+1ψnoise ± n ∗ 2π. (13)

Here, 1ψflat represents the flat Earth component related
to range distance, 1ψ topo represents the topographic phase,
1ψmov represents the component due to terrain displacement
in the slant-range direction or LOS between two SAR acqui-
sitions, 1ψatmos represents the phase related to atmospheric
artifacts, and 1ψnoise represents degradation factors such as
spatial and temporal decorrelation. n∗2π represents phase
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ambiguity where n is a whole number, such as 1, 2, 3,
. . ., including zero. Here, λ , B⊥, r , h, and 1ρ are radar
wavelength, look angle, slant-range distance of the master
image, normal spatial baseline component of the data pair
due to orbital separation, and the topographic height of the
given point and ground displacement parallel to the radar LOS,
respectively.

Decreasing the interferogram’s noise component requires
a filter, but it does not enhance or recover the signal [62].
Goldstein filtering is a Goldstein technique modification that
increases fringe visibility and lowers noise caused by temporal
or baseline-related decorrelation. In Goldstein filtering, alpha
is crucial for fine-tuning the filter strength. Alpha is an
arbitrary number between zero and one that has the most
significant influence on filter performance. The greater the
filtration, the higher the alpha value.

When extreme values of –π or π are achieved, the extracted
phase appears to stop, i.e., the phase jumps to the opposite
end. The phase of the radar echoes can only be measured up
to 2π , but altitudes require the whole phase at each location
in the picture. This 2π uncertainty is resolved by phase
unwrapping. Different phase unwrapping technologies have
been utilized, such as region expansion, lowest cost flow, and
phase decomposition. However, none of them is ideal. Even
if the heights are enormous, slow-altering topography is not
an issue. If elevations are confined, rough topography is not a
concern.

H. Displacement Mapping

Point-based approaches are costly and ineffective for mon-
itoring vast deformation regions [63]. As a result, D-InSAR
is a crucial approach for accurately measuring displacement.
Moving half of a wavelength for the pixel and a round-trip
distance wavelength for the radar signal generates one fringe,
or a 2π phase difference, in the range direction. As a result,
one entire phase cycle or fringe in a D-InSAR Interferogram
indicates a radar LOS ground displacement of λ /2, where λ

is the wavelength of the radar microwave pulse employed.
Sentinel-1 (C-band) radar data (5.6 cm wavelength) were
employed in this study, which indicates that each displacement
fringe represents a minimum displacement of 36.11 mm,
as determined for the C-band European Remote Sensing (ERS)
SAR satellite, equal to 30.42 mm by [64] using the following
equation:

λ

2

Cosθ
=

56mm
2

Cos(39.16◦)
= 36.11mm. (14)

If a region on the ground is displaced by 1r in the LOS
direction of the radar, the path difference between the two
acquisitions, 21r , phase of 18 given by the following:

18 =

(
4π
λ

)
1r. (15)

We need to find the displacement direction to understand
the nature of the movement. Therefore, we decomposed the
LOS displacement into vertical and horizontal displacement.
The interferometric observation can naturally see the only
motion in the SAR LOS direction, but there may be some

ambiguities in LOS measurements. To measure the 3-D dis-
placement, we require at least three independent LOS. Since
the global navigation satellite system (GNSS) is not available
for this study area, we processed two independent radar
LOSs (ascending and descending passes) over the same spatial
and temporal extent. We note that both the ascending and
descending directions are at highly steep angles in the case
of Sentinel-1 dataset (i.e., swath 1) (∼34◦ from the normal).
We can quantify horizontal motion only along the east–west
axis precisely since the north component is insensitive in SAR
measurement [65]. The vertical and east–west decomposition
is derived based on the simple geometric principle [66], [67]
using the following equations:

dEAST ≈
(dLOS_Desc − dLOSAsc)/2

sin (θ)
(16)

dZ ≈
(dLOS_Desc + dLOSAsc)/2

cos (θ)
(17)

where d is displacement along the respective components and
θ is the incident angle.

To retrieve the east–west and vertical displacement, we used
the ascending and descending orbits SAR images from June
2016 to August 2020. We used SNAP along with SNAPHU
plugin to process the vertical and horizontal displacement
decomposition.

The whole workflow process and methodology are shown
in Fig. 3.

IV. RESULTS AND DISCUSSION

A. SPI-Based Drought Analysis and Seasonal GWS Change

The SPI was calculated from CHIRPS monthly rainfall data
over five river basins from 2003 to 2021. The SPI analysis
result is presented in Fig. 4. The drought intensity has been
determined according to [47], which is classified in Table III
and compared with the seasonal GWS variation.

The result shows positive values in 2003 for all river basins,
excluding the Kabul basin. However, the values are almost
between (+1.5 and −1), indicating a moderately wet to near-
normal condition. In 2004, the whole country was affected by
a drought. Kabul, Northern, and Helmand basins are facing
an arid period, but the Amu Darya and Hari Rud basins faced
severe drought in 2004. This drought has affected GWS that is
visible in seasonal GWS change and SPI time series analysis
(see Fig. 4). The result does not show any significant drought
between 2005 and 2007 over all the basins. Though the Kabul
basin faced a moderate drought in 2006, other basins faced
near-normal conditions. During 2008, all five basins showed
negative SPI with severe drought conditions, which is more
visible for Hari Rud and Helmand basins than the other three
basins. The SPI is showing an improvement between 2009 and
2010 compared to adjacent years. From 2011 to 2014, a con-
tinuous drought was recorded that accelerated the negative
trend of GWS change in Kabul, Amu Darya, and Northern
basins. In contrast, the two other basins show this negative
acceleration from the end of 2007 to 2008. The SPI shows
more or less near-normal conditions over the whole country
from 2015 to 2017, but at the end of 2017 and 2018, there
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Fig. 4. (Left side) SPI time series analysis shows the drought occur-
rence and (right side) 1GWS with the trend line for the five river basins
from 2003 to 2021.

was moderate drought with high intensity in the south and
southwest parts of the country. During 2019 and 2020, the
SPI increased due to sufficient rainfall over the whole country,
excluding the northern part (Amu Darya and Northern basins),
where it showed normal conditions in 2020. From the end
of 2020 to 2021, the country is going through moderate to
extreme drought with maximum intensity in the south and
west parts (Hari Rud and Helmand basins).

B. Groundwater Trend Analysis

To understand the groundwater trend, the Mann–Kendall
trend test (M–K test) and Sen’s slope test have been applied to
a dataset of 225 months (the entire time interval of the study)
using the R studio software. The mathematical explanation
is given in (4) and (5). The result shows a negative value
(decreasing trend) for both tests (M–K and Sen’s slope) for all
the river basins. It indicates that the country is going through
a shortage of GWS. All the negative signs of Kendall’s Tau
and Sen’s slope test prove a decreasing trend. The likelihood
of getting the observed results, given that the null hypothesis
is true, is measured by a p-value. The statistical significance
of the observed difference increases as the p-value decreases.
Statistical significance is commonly defined as a p-value
of 0.05 or less. The p-value < 0.05 indicates the trend is
monotonic (it signifies that the variable continuously rises
(down) with time, although the trend is not always linear),
as shown for the Kabul and Amu Darya basins. On the
contrary, the p-value > 0.05 indicates that the trend is away
from monotonic, as shown for the Northern, Hari Rud, and
Helmand basins, but it is still decreasing according to Sen’s
slope value. The details are given in Table IV.

The regional GWS time series range amplitude has been
reduced by removing the seasonal effects after decomposi-
tion. Thus, seasonal effects can be determined by subtracting

TABLE IV
MANN KENDALL TREND AND SEN’S SLOPE TESTS INDICATE A DECREAS-

ING TREND OVER THE FIVE BASINS FROM 2002 TO 2021

TABLE V
DECOMPOSED GWS CHANGE TRENDS COMPARED TO THE SEASONAL

TREND OVER THE FIVE BASINS

the deseasonalized and original trends for each basin (see
Table V).
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Fig. 5. Deseasonalized groundwater storage change with GRACE uncertainty,
GWSD, and GWSDI time series over five river basins from 2002 to 2021.
(a) Kabul basin. (b) Amu Darya basin. (c) Northern basin. (d) Hari Rud basin.
(e) Helmand basin.

The GWS change trend in flux has been calculated for both
short term (mm/month) and long term (mm/year), as shown
in Table V. In addition, we have calculated the GWS trend in
mass in both long term (km3/year) and short term (km3/month)
for all the basins. The maximum long-term decreasing trend
has been identified for the Helmand basin, primarily arid desert
areas. According to previous research and reports, the dramatic
depletion of groundwater in the southern region of Afghanistan
is affected by recent regional and global climate change,
temperature increases, and excessive groundwater abstraction
for irrigation purposes. The GWS change time series analysis
shows that all the basins are going through a declining
phase with maximum trend value for the Amu Darya and
Helmand basins, followed by Hari Rud, Kabul, and Northern
basins. Overall, the turning point of groundwater decline in
Afghanistan was observed in 2008, which is significantly
raised in the northern part of the country. The south part
reached the turning point earlier in 2005–2006. The GWS
change that ranges from 2002 to 2021 for each basin is Kabul
(177 to −163 mm), Amu Darya (246 to −253 mm), Northern
(129 to −130 mm), Hari Rud (89 to −102 mm), and Helmand
(89 to −146 mm).

Fig. 6. Long-term trend map of GWS Anomaly in Afghanistan between
2002 and 2021.

C. GWS Deficit

The GWSD and GWSDI have been calculated for all five
river basins. The negative index signifies a shortage of GWS
(less than the normal value). Fig. 5 shows a higher negative
GWSDI for Kabul and the Amu Darya basins after 2018.
In contrast, the other three basins consistently go through
a similar higher negative GWSDI from 2011 to 2021. The
result reveals a significant groundwater drought in the Kabul
and Amu Darya basins after 2018, whereas the other three
river basins faced groundwater drought for over a decade since
2011. The reasons for the spread of the drought are mainly due
to the poor recharging of the groundwater reservoirs from the
available surface water and precipitation because the rainfall
fluctuations are not significant over the same period. Although
the GRACE data account for the TWS due to the melted water,
including glaciers, it was not consistent over the five river
basins. Therefore, we only attributed the reasons for drought to
the surface water from rainfall and snow-melted water. Hence,
the reasons for the observed drought concerning 1GWS (see
Fig. 4) in the area can be safely attributed to anthropogenic
factors.

We also noticed some other short-period deficits while
performing the time series analysis of GWSD data, but it is
primarily inconsistent and insignificant. The monthly desea-
sonalized 1GWS trend in flux is represented along with
GWSD and GWSDI for all river basins in Fig. 5.

The long-term spatial trend of 1GWS is calculated for the
entire country, which eases to identify the regions with less
sustainability (see Fig. 6).

D. Groundwater Abstraction and Mass Loss

GWSabs has been driven using a recharge and discharge bal-
ance equation from GRACE, GLDAS, MODIS, and CHIRPS
datasets using (10). This process aims to understand how
much groundwater has been withdrawn from the subsurface.
The GWSabs trend in flux (mm/year) spatial distribution is
represented in Fig. 7. The maximum abstraction has been
determined in the northeast and southwest parts of the country
(12.60 mm/year). GWSabs in Northern basin is less due to
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Fig. 7. GWSabs trend in flux (mm/year) over the entire country
from 2003 to 2021. The positive value indicates groundwater abstraction.

Fig. 8. GWSabs trend in mass (km3/year) and abstracted volume of
groundwater (km3) from 2003 to 2021.

sufficient precipitation and a low drainage system on flat
topography.

The GWSabs trend in mass (km3/year) and the absolute value
for abstracted volume (mass) of GWS in km3 are calculated
by multiplying the area of a pixel (25 × 25 km). The GWSabs
trend in mass is shown by color ramp, and the absolute GWSabs
has been discriminated by light color boundary, as shown in
Fig. 8.

A spatiotemporal analysis for GWSabs change has been done
and shown in Fig. 9, showing the temporal variation of GWSabs
from 2003 to 2021. The maximum positive abstraction rate
was determined in 2021 (up to 23.12 mm toward brown color).
Overall, the considerable amount of GWSabs is determined in
the country’s southwest, southeast, and northeast parts. The
minimum value is for the central part, including the Northern
basin, with the same recharge window. It can be inferred that
a sufficient yearly recharge in the central and northern parts
controls a normal abstraction. However, the result shows that
the other parts of the country receive insufficient precipitation
and lose moisture due to high evapotranspiration with increas-
ing temperature and groundwater demand for irrigation. The

Fig. 9. Spatiotemporal analysis of GWSabs (annual average) over the entire
country from 2003 to 2021.

study shows the high groundwater demand in Kabul, Helmand,
and Hari Rud basins. The extensive GWSabs in the southern
region of the country could be attributed to climate change
and an increase in demand for groundwater due to a decrease
of precipitation and surface water supply. Despite this, there
is no information available on groundwater abstraction rate in
Afghanistan. The output of this study can be justified if we
assess the 1GWS and climatic factors. The spatiotemporal
1GWS and SPI have been assessed in Fig. 4, which show a
negative trend after 2012 in Helmand and Hari Rud basins.
A similar pattern is determined in GWSabs as well. Therefore,
the highly abstracted region in the southern region is mainly
affected due to climate change, which could be accelerated by
the overextraction of groundwater as well.

E. Land Deformation and Vadose Zone Evolution in Kabul

The excessive groundwater exploitation in Kabul leads to
the evolution of the subsurface vadose zone. The geological
setting of Kabul made it suitable for urbanization. The city
is on a graben filled with unconsolidated sediments capable
of groundwater occurrence. Due to the last two decades of
population growth in Kabul, the demand for groundwater has
also increased. The mismanagement of groundwater extraction
has led to a dramatic groundwater level decline in recent years
(up to 3-m/year decline was observed in UKBL aquifer from
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Fig. 10. Average velocity (2015–2020) and seismotectonic map (2000–2022)
of the study area to show the potential seismic area and positive deformation
region along the major faults and no-fault dominant effects in the negative
deformation area.

Fig. 11. Deformation velocity map and factors for displacement include
population density, water consumption rate, and lithology.

in situ groundwater level data that are correlated with land
deformation in Fig. 15). The lithology of Kabul aquifers is
mostly clastic alluvial deposits, including gravel, sand, loess,
and interbedded clay layers. The land deformation has been
determined in Kabul using the D-InSAR technique. An open-
source data (Sentinel-1) has been processed for time series
analysis from 2015 to 2020 in descending orbit.

The result shows a positive land deformation along the
faults, which can be interpreted as tectonic and seismic activ-
ity. For the last two decades, the earthquake epicenter has been
tracked to understand whether there are any major tectonic
events. The map in Fig. 10 shows the most positive defor-
mation along the major faults. The displacement map shows
neither significant positive deformation nor fault extension
inside the study area (the black rectangle is the Kabul area)
in Fig. 10. Therefore, no tectonic activity is involved in this
land deformation phenomenon.

Fig. 11 shows the LOS displacement (positive and negative
in the upper frame and only negative deformation overlying
with population density in the down frame; water consumption

Fig. 12. Time series analysis of LOS displacement in UKBL and LKBL
from 2015 to 2020.

map and geological map on the right side). The positive veloc-
ity indicates the ground surface movement toward the satellite
along the faults. It can be due to seismic activity along the
faults in hard rocks. The Precambrian metamorphic bedrocks
outcrop along the Asmaye and Sher Darwaza mountains does
not show any considerable negative deformation, negligible
with green color. It proves the tectonic stability of the area
and rejects the hypothesis assuming tectonic activity as the
main factor of land deformation in Kabul.

In contrast, negative deformation occurs in unconsolidated
sediments (alluvial and loess) dominant area that is assumed to
be due to vadose zone evolution (rapid groundwater decline).
The spatial distribution of population density and the water
consumption rate per capita is plotted following the land
deformation pattern, and the population density and water
consumption maps indicate that highly populated areas are
more affected, which demand more groundwater. The distri-
bution of ground deformation along the LOS follows the four
aquifer systems, namely, UKBL PGHMN, LKBL, and Logar
aquifers (see Fig. 11). Groundwater is the primary resource
of domestic, farming, irrigation, and even factories in Kabul,
which has been used extensively in recent years. Despite this,
the exact rate of water consumption has not been monitored in
Kabul, but the Japan International Cooperation Agency (JICA)
estimated 50–60 L/day per capita in 2012 and 100–150 L/day
in 2032 [68]. The estimated average water consumption rate
map (see Fig. 10) shows the high rate of water consumption in
urban areas, which is directly linked to the population density.
The spatial distribution and magnitude of land deformation
follow the footprint of water consumption in Kabul. Hence,
this study correlates the determined land deformation because
of vadose zone evolution due to groundwater overpumping and
unconsolidated lithology.

We plotted a time series analysis of LOS displacement
velocity between (2015 and 2020) at two reference points
from UKBL and LKBL within the two phases. The first phase
(2015–2017) shows a gentle trend (−20.66 mm/year in UKBL
and −18.54 mm/year in LKBL), but the second phase (2018–
2020) shows a large trend (−151.34 mm/year in UKBL and
−145.32 mm/year in LKBL), as shown in Fig. 12.

The acceleration of land deformation after 2018 could be a
topic to discuss from many aspects, including frequent occur-
rence of earthquakes in the region that can facilitate on porose
compaction in vadose zone. This scenario has not been proven
yet due to the absence of a successive monitoring system for
aquifer compaction such as extensometer. Hence, this research
found a moderate meteorological drought period with high
intensity over the country in 2018, which is represented in
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Fig. 13. Spatiotemporal analysis of LOS displacement processed by
GMTSAR from 2015 to 2020. The green points feature shows the location
of feature points used for correlation with groundwater level.

Fig. 14. LOS displacement for (left) ascending orbit and (right) descending
orbit with respective cross sections.

Fig. 4. The spatiotemporal analysis of groundwater abstraction
also indicates a high extension of abstraction in Helmand and
Kabul basins after 2018 that could be inferred as increased on
groundwater consumption. The in situ groundwater level data
from the monitoring well show a dramatical decline between
2018 and 2019 (∼6 m) observed in UKBL aquifer, while the
average decline was (3 m/year), as shown in Fig. 16. There-
fore, the authors infer that drastic trend of land deformation
after 2018 could be due to dramatic decline in groundwater
level as a result of interplay impacts of anthropogenic and
climatic factors.

The annual average deformation map does not show con-
siderable displacement before 2018, but from 2018 to 2020,
the deformation patches are developing. The maximum LOS
displacement is recorded at −395 mm up to 2020 in UKBL,
specifically in Darul-Aman and Afshar regions (see Fig. 13).

This study retrieved the vertical and east–west displacement
components by combining the LOS displacement estimated
from Sentinel-1 ascending and descending tracks. The LOS
displacement for ascending and descending orbits has been
drawn between single pairs for each orbit from June 2016 to
August 2020, as shown in Fig. 14. However, the spatial distri-
bution of deformation patches is not the same for ascending
and descending due to the satellite-looking angle direction, but

Fig. 15. Decomposition of LOS displacement to (left) vertical component
and (right) east–west component and their respective cross sections.

Fig. 16. Time series analysis of annual land displacement and GWL
fluctuation for four reference points in LKBL, UKBL, and PGHMN aquifer
system from 2015 to 2020. The GWL data are provided by the Ministry of
Energy and Water (MEW) up to 2019.

the descending LOS displacement processed by SNAP shows
similar patches to that of GMTSAR.

This study focuses on land deformation resulting from
groundwater exploitation and vadose zone evolution, so the
vertical and horizontal displacements are discriminated by
combining two LOS displacements. The result shows up to
a maximum (−202 mm) vertical displacement in UKBL and
LKBL aquifers, the most populated area in Kabul, from June
2016 to August 2020 (see Fig. 15). A cross section (A–B)
indicates the sharpest vertical displacement in Western Kabul.
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Fig. 17. Correlation between land deformation and groundwater mass loss
derived from GRACE.

Fig. 18. GRACE pixel and in situ groundwater wells are plotted over Kabul
and adjacent districts.

The east–west displacement is calculated similar to vertical
displacement. The positive value (blue) indicates an eastward
movement, while the negative value (red) shows the westward
displacement.

F. Data Validation and Correlation

The GWL fluctuation and land displacement are plotted
together in Fig. 16. It is difficult to find the exact pattern for
these two phenomena because different physics and mecha-
nisms govern them. Even if we consider the land deformation
to be driven by groundwater exploitation only, it will still
not follow the same cycle because the GWL decline and
replenishment can easily be a high-frequency phenomenon and
can change value much more rapidly than the observed land
deformations.

Land deformation is not a straightforward understanding
and may have several factors contributing to it. In places,
it could simply be the increasing overburden without much
strength in the subsurface formations to support the same.
In contrast, in other places, it could be the weakening of
the subsurface formation and their arrangement due to some
channels cut or some processing responsible for vadose zone
development, resulting in the weakening of lithology. The
only other reasons for land deformations are the local tec-
tonic activities, but we have comprehensively ruled out such
a situation because our analysis of the tectonic framework
around the city revealed no such major active faults and
lineament along which such a land deformation could have
occurred in the unconsolidated lithological units, particularly

Fig. 19. Graphical representation from Grid 1 to Grid 7 shows the correlation
between the annual average of 1GWS derived from GRACE and GWL from
in situ data provided by USGS and AGS [69] between 2005 and 2012 in
Kabul. The graphs are plotted regarding GRACE water equivalent thickness
(mm) and groundwater SWL (m). The pixels and well locations are shown in
Fig. 18.

when compared to the hard terrain in the surrounding region
that did not also show any significant displacement. On the
other hand, land deformation is a slow process rather than



DAQIQ et al.: DETERMINATION OF GWS VARIATION, DEFICIT, AND ABSTRACTION IN AFGHANISTAN 5219618

Fig. 20. Spatial correlation of GWS with (a) RAINFALL, (b) SMEW, and
(c) SWS.

a GWL drawdown. Therefore, in this case, we can see both
phenomena following a similar pattern showing a relationship
between GWL fluctuation and land deformation, as shown
in Fig. 16. The GWL data are available up to 2019, and
displacement is plotted up to 2020.

The correlation between land deformation and
GRACE-derived groundwater mass loss was plotted.
Though the correlation coefficient is not a higher value, there
is still a positive correlation (see Fig. 17).

Due to the low number of in situ wells data in
Afghanistan, there was only groundwater well data available
from 2005 to 2012, a groundwater monitoring well net-
work that the United States Geological Survey (USGS) and
Afghanistan Geological Survey (AGS) established in 2004.
The spatial distribution of 70 groundwater wells and seven
GRACE pixels is shown in Fig. 18. A sufficient number of

monitoring wells in pixels 1, 2, 4, and 6 show a greater than
0.5 correlation coefficient between GRACE-derived GWS and
in situ SWL. The graph pattern is similar to the rest of the
pixels, but due to the poor distribution of monitoring wells,
the correlation coefficient is less than 0.5, as shown in Fig. 19.

The spatial correlation between hydrological components
and 1GWS has been calculated for the whole dataset (raster
files) using the R studio from 2002 to 2021. The result shows
that SMEW and GWS have a reasonable correlation in the
northeast and central highlands along the Pamir, Hindukush,
and Baba mountains [see Fig. 20(a)]. The rainfall and GWS
moderately correlate in Kabul, Amu Darya, and Northern
basins [see Fig. 20(b)]. The SWS shows a good correlation
with GWS in the north part of the country, which could
be due to the Amu and Kunduz rivers’ gentle topography
and wide-spreading paths having a sufficient contribution to
groundwater recharge [see Fig. 20(c)]. In the south and west
parts of the country (Hari Rud and Helmand basins), there is
no significant correlation with any of the components, which
could be due to not the presence of snowfall in the south region
and also less amount of rainfall.

V. CONCLUSION

Afghanistan is a landlocked country with a semiarid to
arid climate and mostly depends on groundwater for various
purposes in the context of water supply. Unfortunately, due to
the unstable political situation and nonimplementation of the
available technology, there is a limited groundwater monitor-
ing network in major cities with wide data gaps. Therefore, for
understanding the long-term scenario over the whole country,
continuous data recording is critical to indicate and investigate
the key factors for groundwater fluctuation.

Due to past droughts and increased groundwater demand,
most parts of the country suffer from severe groundwater
stress. The SPI value showed a severe drought in 2005,
2008, and 2011 that was also detected in seasonal GWS
time series analysis. However, the SPI value significantly
improved between 2015 and 2020, excluding 2018. A neg-
ative seasonal GWS variation trend has been determined
from 2008 to 2011. The spatial distribution of drought severity
gradually increases over Kabul, Amu Darya, Northern, Hari
Rud to Helmand basins. To understand the long-term trend,
the seasonal components were removed using the LOESS
function. A Mann–Kendall trend and Sen’s slope tests were
applied for deseasonalizing GWS anomalies. The trend analy-
sis reveals the decreasing trend for all the basins with negative
values of Kendall’s tau (T ) and Sen’s slope (β): Kabul (T =

−0.12944 and β = −0.202), Amu Darya (T = −0.18984 and
β = −0.477), Northern (T = −0.07063 and β = −0.082),
Hari Rud (T = −0.45730 and β = −0.392), and Helmand
(T = −0.52683 and β = −0.458).

The GWSabs trend in flux determined for 2003–2021 showed
a maximum value of 12.60 mm/year for the northeast and
southwest parts of the country, whereas the north and central
regions along with the east part of the country mostly showed
comparatively a low rate of GWSabs.

The severe groundwater stress was concentrated in the
country’s southern and western regions. The contributing
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factors could be insufficient precipitation, high temperature,
and increased groundwater demand for irrigation in recent
years. The effects of groundwater decline and the evolution
of the vadose zone on land deformation in Kabul have been
determined using Sentinel-1 data and the InSAR technique
from 2015 to 2020. A considerable vertical land deformation
(maximum to −202 mm subsidence) was observed in UKBL
followed by other zones of PGHMN and LKBL aquifer
systems. Other factors, such as lithology, tectonics, and pop-
ulation, were also evaluated, and it was found that densely
populated and unconsolidated sedimentary areas mostly dom-
inated the rate and spatial distribution of land deformation.
Finally, GRACE 1GWS and InSAR-derived land deforma-
tion have been correlated with in situ wells data. It showed
a strong positive correlation between GWL fluctuation and
1GWS.

DATA AVAILABILITY

Interferometric SAR data have been downloaded
from the ALASKA-NASA Earth Data portal (ASF)
that has been remotely sensed by the Sentinel-1
A satellite (https://search.asf.alaska.edu/#/). GLDAS
Noah Land Surface Model L4 monthly 0.25◦

× 0.25◦

V2.1 (GLDAS_NOAH025_M) downloaded from
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M
_2.1. The “CSR_GRACE_GRACE-FO_RL06_Mascons_all-
corrections_v02” and “CSR_GRACE_GRACE-
FO_RL06_Mascons_v02_LandMask” datasets have been
downloaded from http://www2.csr.utexas.edu/grace. The
monthly precipitation (CHIRPS data) has been downloaded
from https://data.chc.ucsb.edu/products/. The AET dataset
(Processed from MODIS) has been provided by the
United States Geological Survey (USGS) FEWS NET Data
Portal (https://earlywarning.usgs.gov/fews/product/468).
Geological data has been created from the Russia
Geological Survey map that has been digitized by the
USGS (https://certmapper.cr.usgs.gov/data/apps/world-maps/).
The Seismicity data has been downloaded from
https://earthquake.usgs.gov/earthquakes/search/. The Kabul
City population density dataset with 1-km spatial resolution
has been downloaded from the ESRI ArcGIS Online
Server (https://www.arcgis.com/sharing/rest/content/items/
8c9572389dd8476ea541c33f343b3a8f). The in situ
groundwater level data of Kabul for the period of 2015–2019
have been provided by the Ministry of Energy and Water
(MEW), Afghanistan, and from 2005 to 2012, it was provided
by USGS and Afghanistan Geological Survey (AGS).
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