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Abstract— Multispectral light detection and ranging (LiDAR)
technology was recently invented to improve the capability of
thematic mapping through incorporating visible/infrared spectral
information. Similar to image processing, point cloud clas-
sification usually considers contextual features derived from
surrounding points to improve the model accuracy. Some of the
existing methods construct contextual features of point clouds by
querying a fixed scale/number of neighbor points or selecting a
variable size neighborhood based on some optimality criterion.
Although these methods are able to collect neighbor points
to derive contextual features, they may also in turn introduce
heterogeneity from the local neighborhood or select insufficient
neighbor points, hindering the performance of classification.
Therefore, we propose an optimal neighbor selection method
based on the maximum entropy (MaxEnt) principle. More
specifically, the proposed method determines the homogeneity of
local neighborhood of each point and constructs geometric and
radiometric features based on the use of MaxEnt to determine
optimal points nearby. The constructed contextual features are
then served as input into various machine learning classifiers for
point cloud classification. Extensive experiments are conducted to
compare the performance of MaxEnt against six other neighbor
selection methods. The experimental results demonstrate that
MaxEnt is able to achieve better classification results on mul-
tispectral airborne LiDAR data collected by Optech Titan in
terms of overall accuracy (OA) improvement by 7.3%–19.1%.
Moreover, MaxEnt is proven to be more suitable for land cover
scenarios with imbalanced classes caused by detailed and tiny
objects, e.g., perimeter fencings and power lines, than other
existing neighbor selection methods.

Index Terms— Airborne laser scanning, contextual features,
land cover, maximum entropy (MaxEnt), multispectral light
detection and ranging (LiDAR), optimal neighbor selection, point
cloud classification.

I. INTRODUCTION

AIRBORNE light detection and ranging (LiDAR) systems
demonstrate the capability in collecting 3-D point clouds
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by emitting and receiving laser beams to and from the Earth
surface [1]. Such an active remote sensing technique facili-
tates various applications, including city planning, engineering
surveying, land cover/use mapping, coastal engineering, and
forestry studies [2], [3], [4]. To support these applications,
effective and accurate 3-D point cloud classification and
segmentation become essential and critical. Unless a RGB
camera is equipped on-board, traditional monochromatic air-
borne LiDAR systems only collect point cloud data using a
single wavelength laser that results in a limited radiometric
information [5], [6]. Subsequently, a multispectral airborne
LiDAR system, named Optech Titan, was developed by Tele-
dyne Optech in 2014 with three laser channels, namely,
channel 1 (1550 nm), channel 2 (1064 nm), and channel 3
(532 nm), respectively [7], [8], [9]. Multispectral LiDAR
system can effectively improve the radiometric limitation of
monochromatic LiDAR system and fundamentally overcomes
the drawbacks of RGB-based point cloud classification and
segmentation with single channel information [10].

Despite the outstanding aspects of providing additional
spectral information, laser beams generated by multispectral
LiDAR system with three respective laser channels result in
three non-co-aligned laser datasets [6], [11]. To simultaneously
exploit three sets of point clouds for classification, a core
channel can be first determined and then the point clouds from
the rest of the two channels can be combined with the point
cloud of the selected core channel [11]. As all the data from
three channels share no common position, one can regard the
points from the core channel as core points and search nearest
neighbor points from the other channels based on the nearest
Euclidean distance. Thus, apart from the intensity in each of
the core points, intensity values obtained from the nearest
neighbor points of other laser channels can be regarded as
additional radiometric information.

Individual point possesses unique information, including
3-D coordinates, backscattered intensity, number of returns,
return number, etc. Nevertheless, information embedded in the
data point itself may be inadequate to generate representative
features for accurate point cloud classification. As a result,
neighbor points can be queried to participate in inferring addi-
tional features of each data point. Neighbor selection methods
based on a fixed number of neighbor points, such as cylindrical
neighbor selection method [12], [13], spherical neighbor selec-
tion method [12], [14], and k-nearest neighbor (kNN) selection
method [12], [15], are commonly found in point cloud classi-
fication and semantic segmentation. All these methods have
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their own strategies to construct contextual information by
selecting neighbor points located within a fixed radius of
cylinder or sphere or selecting a fixed number of nearest
neighbor points. However, these methods are indeed empirical
and limited by the particularity of the point cloud data in
specific areas. Besides, relying on a fixed scale of neighbor
points inevitably suffers from information redundancy, which
may also introduce an interference of information representing
contextual features [16], [17]. As a result, several attempts are
found to select only those critical neighbor points to overcome
the drawbacks. An optimal neighbor selection method looks
for an adaptive scale through a heuristic search for a specific
number of neighbor points by sequentially increasing the
neighbor size [18]. An alternative method presented in [19]
was motivated by a principle, which selects a specific size
of neighborhood based on the consistent curvature value.
Furthermore, Weinmann et al. [20] and [21] proposed an
optimal neighbor selection strategy through looking for a
minimal eigenentropy of neighbor points. These methods shed
light on the flexibility of selecting neighbor points, since they
are capable of estimating an optimal scale of neighborhood.
However, the majority of these studies only consider geometric
features as an indicator to select an optimal neighborhood and
the ultimate neighbor size always tends to be small, which
results in information insufficiency and a lack of diversity [12].

To fill the research void, we propose an optimal neighbor
selection method to select sufficient homogeneous neighbor
points to enhance information diversity, reduce information
redundancy, and improve classification accuracy. The proposed
method is built based on the maximum entropy (MaxEnt)
principle to adaptively select homogeneous neighbor points
and ignore heterogeneous neighbor points from a fixed scale
of neighborhood. MaxEnt principle [22], [23], [24] states that
the largest entropy’s summation of probability distribution
within homogeneous and heterogeneous points provide a max-
imum information discrepancy, which implies such kind of
probability distribution best distinguishes homogeneous and
heterogeneous neighbor points. Subsequently, this principle
facilitates the selection of sufficient homogeneous neighbor
points, meanwhile drops the interfering heterogeneous neigh-
bor points from the neighborhood.

After selecting optimal neighbor points in the core channel
in a multispectral airborne LiDAR dataset, contextual feature
vectors can then be derived to represent the characteristics of
each individual point. Geometric feature vectors include height
information, i.e., elevation of point as well as eigenvalue-
based features, i.e., omnivariance, anisotropy, eigenentropy,
summation, local curvature, linearity, planarity, and sphericity
[12], [25]. Radiometric feature vectors can be determined from
three laser channels, i.e., channel 1 (1550 nm), channel 2
(1064 nm), and channel 3 (532 nm) [26]. For the purpose
of point cloud classification, the extracted feature vectors
serve as an input for nine commonly used machine learning
classifiers, including support vector machine (SVM), decision
tree (DT), random forests (RFs), kNNs, Gaussian Naïve Bayes
(GNB), linear discriminant analysis (LDA), quadratic discrim-
inant analysis (QDA), adaptive boost (AB), and multilayer
perceptron (MLP). Most of them have been favorably used

in LiDAR point cloud classification and segmentation [11],
[12], [20]. All these models classify point clouds into seven
self-defined land cover classes, i.e., “Road,” “House,” “Grass,”
“Tree,” “Fence,” “Water,” and “Powerline.” We exploit var-
ious evaluation metrics and conduct comparisons between
our MaxEnt with respect to other existing neighbor selection
algorithms [12], [18], [19], [20] to evaluate the classification
results and effectiveness of our proposed method. The major
contributions of our work are summarized as follows.

1) To propose an optimal neighbor selection method
based on the MaxEnt principle to enhance information
diversity, reduce information redundancy, and improve
classification accuracy.

2) To maximize the benefits of using multispectral airborne
LiDAR intensity data to infer optimal neighbor points.

3) To compare the proposed MaxEnt method with other
existing neighbor selection methods in terms of point
cloud classification.

4) To assess the impact toward detailed and tiny
objects/land cover categories, such as “Fence” and
“Powerline” that cause imbalanced classes.

The rest of the article is organized as follows. We first
present the proposed algorithm in detail in Section II.
Section III describes the dataset and the entire experimental
setup. We then present the performance of the proposed
method in Section IV and discuss the derived experimental
results in Section V by comparing with other existing methods.
Section VI concludes our findings in this study.

II. METHODOLOGY

A. Overall Workflow

The workflow of the proposed MaxEnt is presented in
Fig. 1. For a given multispectral LiDAR dataset L, a core
channel, Lc, is first selected among all available laser channels,
e.g., L1, L2, and L3. For instance, Lc = L2 if channel 2 is
selected as the core channel. Then, we take an arbitrarily
selected point, say xc = {x, y, z, Ic}, with geometric and
radiometric information from the selected core channel as an
example. The workflow begins by embedding the intensity
values of the two channels to the core channel, resulting
in the xc = {x, y, z, I1, I2, I3}. Then, each xc queries a
fixed number of neighbor points xn in accordance with the
kNN selection method as shown in Fig. 1. The next step
involves searching optimal neighbor points of x′ based on
MaxEnt principle within xn . The selected optimal neighbor
points may vary when exploiting different information, i.e.,
elevation (z), intensity of channel 1 (I1), channel 2 (I2), and
channel 3 (I3) or the combination of all the above features
(see Fig. 1). Feature vectors can then be derived from those
selected optimal neighbor points based on their geometric and
radiometric properties. Finally, the extracted feature vectors
serve as an input into machine learning classifiers and predict
the land cover class � of the core data point xc.

B. MaxEnt Principle

The concept of thermodynamic entropy was first proposed
to describe the distribution of thermal energy in 1850s by
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Fig. 1. Overall workflow of proposed MaxEnt for multispectral airborne LiDAR point cloud classification. (a) Combination of three channels. (b) MaxEnt.
(c) Feature extraction. (d) Classification.

Clausius [27]. Boltzmann [28] later on proposed the thermody-
namic entropy to give the probabilistic interpretation in 1901,
which described the extent about disorder and uncertainty of
information in the field of thermodynamics. Shannon [29]
further developed the thermodynamic entropy proposed by
Boltzmann [28] and extended it as a concept to measure the
statistical uncertainty of the information of a given system.
The entropy value of a variable represents the amount of
information contained in this variable. For a system with n
discrete states, the entropy summation value of the system can
be calculated by the probability distribution of these states

S = −
n∑

i=1

pi log(pi ) (1)

and
n∑

i=1

pi = 1, 0 ≤ pi ≤ 1 (2)

where pi refers to the probability of state i . The larger value of
the entropy’s summation (S) of the variable refers to a greater
uncertainty and greater amount of information retained in the
system.

Based on the advantage of representing the amount of
information in a system, the concept of entropy is also
exploited to other fields and extended to other principles, such
as the MaxEnt principle proposed by Jaynes [22]. MaxEnt
principle proves that the uncertainty reaches to a maximum
when the probability of all the states are equally likely. The
uniform distribution maximizes the entropy and retains the
largest amount of uncertainty and information. The conclusion
is justified by Laplace’s principle of insufficient reason [23],
which implies that the best strategy is to consider all the
states equally distributed to discriminate between two or more
events.

C. MaxEnt for Optimal Neighbor Selection

Similar to image classification, contextual features of
point clouds can significantly influence the classification

performance. The more relevant representation of contextual
features being derived, the higher classification accuracy can
be achieved. As contextual features are extracted at each data
point with respect to the local neighborhood, it is vital to select
representative neighbor points prior to point cloud classifica-
tion. To address the limitations of existing fixed scale neighbor
selection methods and optimal neighbor selection methods,
here we propose to adaptively select optimal neighbor points
and extract representative contextual features for each point
in the Lc of multispectral airborne LiDAR data. Based on
the MaxEnt principle, the proposed algorithm further divides
a fixed scale of local neighborhood into homogeneous and
heterogeneous points. The homogeneous neighbor points are
then regarded as selected optimal neighbor points, which can
well represent the characteristics and improve the information
diversity of derived features, meanwhile avoid introducing
heterogeneous points and redundant feature information.

Let x be the input of the MaxEnt principle, which can be
elevation and/or intensity. Then the nearest k neighbors are
determined for each data point in the core channel. This is
defined as the original neighborhood. The information of each
data point in the core channel is represented as xc, while xn

refers to the information of the corresponding neighbor points.
δ is defined as the absolute information difference |xc − xn|

between the core point and the original neighbor points, i.e.,

δ = |xc − xn|. (3)

Then, k neighbor points are divided into l levels in accordance
with the range of absolute information difference δ. ni is the
number of neighbor points belonging to the i th level, i.e.,

k =
l∑

i=1

ni . (4)

The probability of the i th level can be computed as

pi =
ni

k
, 1 ≤ i ≤ l. (5)

Then, the information entropy of state x can be calculated
using (1). The idea of MaxEnt principle is to look for a
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specific i th level, which can divide the fixed number of
original neighbor points into homogeneous and heterogeneous
neighbor points, when the entropy’s summation of these two
sets of points is maximized.

D. Implementation of MaxEnt on Multispectral LiDAR Point
Cloud Data

For multispectral airborne LiDAR point clouds with three
laser channels, the available features include elevation z,
intensity of channel 1 (I1), channel 2 (I2), and channel 3
(I3), respectively. To exploit intensity information from three
channels simultaneously, we first define, say for instance
channel 2, as the core channel and search for the nearest
neighbor point based on Euclidean distance from channel 1
and channel 3, respectively. Within three times of mean point
spacing of channel 2, the nearest neighbor point of channel 1
and channel 3 are assigned to the core data point of channel 2.
Regarding the elevation, MaxEnt only searches the elevation
of neighbor points from the core channel. Accordingly, the
information of a data point xc can be represented in an array
of {x, y, z, I1, I2, I3}. The pseudo code for the implementation
of MaxEnt for multispectral point cloud data is as follows.

Step 1 (Calculate Information Difference δ): Search a fixed
number of k original nearest neighbor points, say 1000, for
each point in Lc and then calculate and construct the vector
of absolute information difference between the core data point
and its original neighbor points in the three channels. This step
can provide absolute information difference of elevation and
intensity of channel 1, channel 2, and channel 3, which are
referred as δz , δI1 , δI2 , and δI3 , respectively.

Step 2 (Divide Absolute Information Difference δ Into l
Levels): Divide the four absolute information differences, i.e.,
δz , δI1 , δI2 , and δI3 into l levels. Calculate pi ; ∀i ∈ [1, l] for the
δ according to (5). The way how the l being chosen can refer to
the elevation difference. For instance, if the elevation within
the 1000 nearest neighbor points ranges from 0 to 100 m,
we can divide the dataset into 20 levels with a 5-m range, i.e.,
l = 20.

Step 3 (Set an Initial Threshold Level T ): Assign the
first level of l as an initial threshold level, which means
threshold level t is equal to 1. Then, the corresponding
information threshold can be computed as T = xc+ (δ/ l) × t
to divide k nearest initial neighbor points xn into initial
homogeneous neighbor points x̃9 and initial heterogeneous
neighbor points x̃ϒ .

Step 4 (Separate Into x̃9 and x̃ϒ ): If the absolute infor-
mation difference δ between xc and xn is smaller than the
information threshold T = xc + (δ/ l) × t; t ∈ [1, l], then
xn is regarded as the initial homogeneous neighbor point
x̃9 , otherwise it can be determined as initial heterogeneous
neighbor point x̃ϒ .

Step 5 (Calculate the Entropy’s Summation S): Calculate
Shannon entropy of the initial homogeneous neighbor points
S9

t and heterogeneous neighbor points Sϒ
t with the specific

threshold level t , respectively. The entropy’s summation is
calculated by S9+ϒ

t = S9
t + Sϒ

t .

Algorithm 1 MaxEnt
Input : L = {L1, L2, L3} with a pre-selected core

channel Lc

Output: Optimal neighbor points x′ for each xc

1 Initialize xc, xn, k, l, δ = {δz, δI1 , δI2 , δI3}

2 k =
∑l

i=1 ni ;

3 pi =
ni
k , 1 ≤ i ≤ l;

4 t ← 1, 1 ≤ t ≤ l;
5 repeat
6 T = xc +

δ
l × t;

7 if δ ≤ T then
8 xn ∈ x̃9 ; // Initial homogeneous

neighbor points

9 else
10 xn ∈ x̃ϒ ; // Initial heterogeneous

neighbor points

11 P9
=

∑t
i=1 pi ; S9

t = −
∑t

i=1
pi

P9 log
( pi

P9

)
;

12 Pϒ
=

∑l
i=t+1 pi ; Sϒ

t = −
∑l

i=t+1
pi

Pϒ log
( pi

Pϒ

)
;

13 S9+ϒ
t = S9

t + Sϒ
t

14 t ← t + 1
15 until t == l;
16 t ′ = arg max

t∈l
(S9+ϒ

t ) ; // Optimal t value

17 T ′ = Xc +
δ
l × t ′;

18 if |xn − xc| ≤ T ′ then
19 x9

= xn ; // Final homogeneous
neighbor points

20 x9
= H(x9) ∩ xn ; // Refinement with

concave hull
21 x′ = x9(z) ∩ x9(I1) ∩ x9(I2) ∩ x9(I3);

22 k ′ = card(x′) ; // Optimal k ′ neighbor
points

23 return x′, k ′

Step 6 (Raise the Threshold Level t by 1): If t is no larger
than l, then repeat steps 4–6 until t is equal to l. After
computing the S9+ϒ

t ; ∀t ∈ l, then the iteration terminates.
Step 7 (Identify the Threshold Level t That Maximizes

the Summation of Entropy): The threshold level which can
maximize the entropy’s summation is regarded as the optimal
threshold level t ′ = arg max

t∈l
(S9+ϒ

t ) to divide original neighbor

points into homogeneous points x9 and heterogeneous points
xϒ . The optimal information threshold is calculated by T ′ =
xc + (δ/ l) × t ′.

Step 8 (Determine x9 and xϒ ): Determine x9 and xϒ by
comparing the absolute information difference between xc and
xn with the value of T ′. If the absolute information difference
is no larger than T ′, then this neighbor point is selected as x9 ,
otherwise this neighbor point is regarded as xϒ

xn =

{
x9, if |xn − xc| ≤ T ′

xϒ , if |xn − xc| > T ′.
(6)

Step 9 (Refine Homogeneous Neighbor Points With Concave
Hull): As some of the points within the region of x9 may be
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Fig. 2. Illustration of optimal neighbor selection results of seven land cover classes. (1a)–(7a) xn with a red star together with surrounding k number of xc
(say for example k = 6000), while (1b)–(7b) corresponding k′ number of optimal neighbor points (x′) derived by MaxEnt based on z, I1, I2, and I3.

wrongly depicted as xϒ , concave hull H is then constructed
based on the extracted x9 in Step 8. The xϒ determined in
Step 8, which are located within the H, are re-assigned as x9 .
Thus, this process further refines the formation of a final set
of x9 .

As there are four types of information being embedded in L,
i.e., z, I1, I2, and I3, therefore, MaxEnt is able to determine
four optimal neighbor selection results accordingly for each xc.
However, each of these optimal neighbor selection results, i.e.,
x9(z), x9(I1), x9(I2), and x9(I3), are derived with respect to
characteristics of the corresponding feature. For example, if the
xc belongs to “Road,” MaxEnt likely exploits the elevation
feature that can only discriminate xn if it belongs to either a
“Tree” or “House” since they are located in a higher elevation
than “Road” in general. On the other hand, if xn belongs to
“Grass,” the use of elevation is unable to maximize the entropy
summation in order to distinguish xn , i.e., “Grass,” from the xc,
i.e., “Road.” In this case, the use of intensity features, i.e., I1,
I2, and I3, can thus aid in identifying x9 , which means those
xn mostly belonging to “Road.” Hence, the final x′ should be
the intersection of four independent optimal neighbor selection
results with k ′ cardinality, which implies that the selected
x9 are based on four types of information simultaneously.
A graphical illustration of optimal neighbor selection results
derived by MaxEnt is depicted in Fig. 2, which shows seven
types of core data points including “Road,” “House,” “Fence,”
“Tree,” “Grass,” “Water,” and “Powerline.”

E. Feature Extraction

Feature vectors of point clouds are extracted and derived
from the optimal neighbor points. The feature vectors,
as shown in Table I, are basically divided into two main
categories: 1) geometric features that are derived from the
3-D coordinates and 2) radiometric features derived from the
intensity of three laser channels.

1) Geometric Features: Geometric features basically
include elevation-based feature vectors, i.e., mean of elevation
z̄ and standard deviation of elevation σz computed between
the core data point xc and k ′ number of optimal neighbor
points x′. Apart from elevation-based geometric features, 3-D

spatial geometric features of neighbor points are also exploited
to represent the feature of xc. These 3-D shape features are
related to three eigenvalues λi , i ∈ {1, 2, 3} derived from
the covariance matrix constructed by the 3-D coordinates
of the k ′ number of optimal neighbor points x′. Based on
three eigenvalues λ1, λ2, and λ3, the geometric features can
be represented by eight components, including linearity Lλ,
planarity Pλ, sphericity Sλ, omnivariance Oλ, anisotropy Aλ,
eigenentropy Eλ, sum of eigenvalues

∑
λ, and change of

curvature Cλ. Among these features, some of them require
to first normalize the eigenvalues λi as λ̃i = λi/

∑
λi and

subsequently derive the features [25] as shown in Table I.
2) Radiometric Features: Similar to elevation-based geo-

metric features, radiometric features can be constructed by
calculating the mean value and standard deviation of k ′ number
of optimal neighbor points x′. In Table I, Ī j refers to the mean
intensity derived from x′ with respect to the laser channel
j ∈ {1, 2, 3}. σI j refers to the standard deviation of intensity
derived from x′ from channel j ∈ {1, 2, 3}. As mentioned
above, the use of radiometric features can further aid in
delineating classes having similar elevation but with different
spectral reflectance.

F. Machine Learning Classifiers

The purpose of point cloud classification is to estimate and
assign a label of self-defined land cover class � for each data
point xc by extracting the above-mentioned features and train-
ing machine learning classifiers. In our experimental work,
nine commonly used machine learning classifiers are exploited
to classify the multispectral airborne LiDAR point clouds,
and some of them have been adopted in previous studies
[11], [12], [20]. These include SVM, RFs, kNN, DT, GNB,
LDA, QDA, AB, and MLP. Furthermore, we conduct exper-
iments by exploiting a classic deep learning-based method,
i.e., Pointnet++ [30] and make comparisons of classification
results between our proposed method and Pointnet++.

III. EXPERIMENTS

The performance of MaxEnt for multispectral airborne
LiDAR point cloud classification is evaluated by comparing
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TABLE I
SUMMARY OF GEOMETRIC AND RADIOMETRIC FEATURES FOR POINT CLOUD CLASSIFICATION

with two categories of neighbor selection methods. The first
type includes the use of a fixed scale of cylindrical, spherical,
and a fixed number of kNN query [12]. The second category
is indeed an optimal neighbor selection method that relies
on assessing the change of curvature [18], consistency of
curvature level [19], and minimum of eigenentropy [20]. All
these neighbor selection methods together with the proposed
MaxEnt are examined using an identical multispectral airborne
LiDAR dataset.

A. Dataset

The multispectral airborne LiDAR dataset covers a resi-
dential sub-urban area located in Scarborough, ON, Canada.
Fig. 3(a) shows an aerial image and the spatial extent of
study area, which is enclosed by a parallelogram. The detailed
information of the dataset is listed in Table II. The dataset was
collected by Optech Titan system that was flown at an altitude
of 430 m. The LiDAR system also simultaneously transmitted
three laser beams on September 3, 2014. As a result of the
flight survey, the airborne LiDAR system generated three strips
of 3-D point clouds in las data format with fields including
xyz coordinates, backscattered intensity, number of returns,
return number, GPS time, scan angle, etc. The numbers of
generated points of channels 1–3 are 3 724 889, 4 391 470, and
5 030 194, respectively. The mean point spacing of points from
three channels are calculated by considering all returns of the
entire region. We extract part of the dataset from the study area
with a size of 1046 × 208 m since the flight survey covered a
large off-shore region at the east side that were trimmed from
our experimental work. Finally, the number of points from the
intercepted dataset of channels 1–3 are 3 146 762, 3 532 946,

TABLE II
SUMMARY OF THE MULTISPECTRAL AIRBORNE LIDAR DATASET

and 3 731 276, respectively. The study area includes various
land cover classes, which are predefined and manually labeled
into seven categories [see Fig. 3(c)], i.e., “Road,” “House,”
“Tree,” “Grass,” “Fence,” “Powerline,” and “Water.” Some of
the data points that cannot be classified into any predefined
categories are labeled as “Others,” and they are mainly located
nearby the shore region at the east side. The 3-D point clouds
displayed in terms of combined intensity from three channels
and manually labeled land cover classes are shown in Fig. 3(b)
and (c). Fig. 4 illustrates the example of each land cover class
in 3-D point clouds.

Since land cover categories, including “Fence” and “Power-
line,” mainly locate in the west side of the study area as shown
in Fig. 5, we thus conduct experiments independently on this
specific part of study area to validate the performance of the
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Fig. 3. (a) Aerial image and the spatial extent of study area. (b) Multispectral LiDAR intensity data shown on the 3-D point clouds. (c) 2-D view showing
the manually labeled point clouds with predefined land cover classes.

Fig. 4. 3-D illustrations of seven self-defined land cover classes.

methods, especially toward these tiny objects. In the subse-
quent experiments, the west side of study area is named as
detailed study area dataset (DSA-Dataset) with approximately
180 000 points as shown in Fig. 5(b), whereas the entire study
area dataset (ESA-Dataset) includes 3 532 946 points, which
is shown in Fig. 5(a).

B. Data Preprocessing

As the study area is located on a moderate, undulating
terrain with ground elevation difference ranging from 38.63 to
92.79 m; therefore the use of absolute elevation value as a
feature may induce inaccurate interpretation and affect the

model performance to distinguish different land cover classes.
For example, in Fig. 6(a), the elevation of “Road” or “Grass”
in the dotted region is larger than that of “House” and even
“Tree” in the west side of the study area. As a result, the
point cloud dataset undergoes a ground filtering process, which
is capable of separating elevated objects (off-ground points)
from the terrain (ground points) prior to classification. Our
experiments adopt the use of cloth simulation to achieve the
ground filtering [31], [32], since it is an efficient algorithm
that works well on relatively flat terrain. The filtering process
basically turn the point cloud dataset upside down and then
map a soft cloth dropping from the top to the inverted surface.
Intersection between point clouds and the covered cloth is
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Fig. 5. 3-D maps of (a) ESA-Dataset and (b) DSA-Dataset.

Fig. 6. (a) Original LiDAR point cloud and (b) point cloud after height normalization using cloth simulation.

regarded as a base to distinguish between ground points and
off-ground points. After ground filtering, height normalization
is applied to the entire point cloud of the study area as shown
in Fig. 6(b). One can clearly notice that, after ground filtering
and height normalization, the elevation of “Road” and “Grass”
is close to those located in the west side of the study area.

C. Evaluation Metrics

As a commonly used evaluation metric of airborne laser
scanning point cloud classification, the overall accuracy (OA)
is exploited to evaluate the classification results derived from
MaxEnt and six existing neighbor selection methods. The OA
is defined as

OA =
TP+ TN

TP+ FP+ TN+ FN
(7)

where true positive (TP) refers to the points belong to land
cover � and are correctly classified into � and true negative
(TN) implies the classifier correctly predicts the negative class.
False negative (FN) represents the points belong to land cover
�, but recognized as any other land cover. In terms of false
positive (FP), it means that the points annotated as other land
covers, but misclassified as land cover �. In general, larger

value of OA corresponds to higher classification accuracy and
better performance of the method.

Apart from that, F1 score assesses the classification perfor-
mance for each land cover category, which is more suitable
than OA for the number of the points in each land cover
varying greatly. F1 score is calculated based on precision and
recall, which are defined as follows:

precision =
TP

TP+ FP
(8)

recall =
TP

TP+ FN
. (9)

Then we can calculate the F1 score of land cover � by

F1 = 2×
precision× recall
precision+ recall

. (10)

Fainlly, an average F1 score among all land cover classes can
be computed as

mF1 =
1
N
×

N∑
i=1

F1 (11)

where N refers to the number of land cover categories.
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To provide sufficient critical insights, we further consider
intersection-over-union (IoU) as the metric to quantitatively
assess the classification performance of our proposed method
and other existing methods. The IoU of each land cover
category is calculated by

IoU =
TP

TP+ FP+ FN
. (12)

The overall mean IoU (mIoU) is ultimately generated by
calculating the average value of IoUs across all the land covers
as

mIoU =
1
N
×

N∑
i=1

IoU (13)

where N refers to the number of land cover categories. The
larger values of mF1 and mIoU imply that the corresponding
method demonstrates a higher capability in terms of classifi-
cation performance.

D. Experimental Settings

In the subsequent experiments, we select channel 2 as the
core channel because laser wavelength in 1064 nm offers
the best separability of different land covers [11]. We then
embed the intensity value from channel 1 and 3 in the core
channel. Since querying neighbor points for the entire study
area based on kNN selection method or k-dimensional tree
method causes high computational burden, we then divide the
study area into 20 portions to speed up the process. In this
case, searching neighbor points from the corresponding section
of study area can help improve the computational efficiency.
With the manually labeled training data as shown in Fig. 5,
we randomly select 1% of total number of data points as
training data for the nine machine learning classifiers.

Regarding the number of neighbor points k, it is critical to
apply the same number to compare the classification perfor-
mance of the proposed MaxEnt with other neighbor selection
methods. We thus set k = 1000 due to the prolific memory
of the computational platform. To be consistent with the
searching range of MaxEnt, the number of searched neighbor
points for fixed scale of neighbor selection methods and the
number of original given neighbor points for optimal neighbor
selection methods are all close to 1000. The workflow of
other existing neighbor selection methods is shown in Fig. 7,
which includes the corresponding examples of neighbor selec-
tion results. The following paragraphs briefly introduce six
neighbor selection methods to compare against the proposed
MaxEnt.

1) Fixed Scale of Cylindrical Neighbor Selection Method
(Cylinder): Thomas et al. [12] proposed to select neighbor
points located within a fixed radius of cylinder. To determine
the radius of cylinder, we refer to the benchmark scale of
neighbor points in MaxEnt. As a result, we define the radius
of cylinder as eight times of mean point spacing, which is
closest to the benchmark scale of 1000 neighbor points in
MaxEnt.

2) Fixed Scale of Spherical Neighbor Selection Method
(Sphere): The mechanism is similar to the fixed scale of
cylindrical neighbor selection method [12]. The only differ-
ence is that Sphere method selects neighbor points located
within a fixed radius of sphere rather than a cylinder. In this
experiment, we define the radius of sphere as ten times of
mean point spacing (1058 neighbor points), which is closest
to the benchmark scale of 1000 neighbor points in MaxEnt.

3) Fixed Scale of kNN Selection Method (kNN): As a fixed
scale of neighbor selection, it selects kNN points instead
of relying on a certain geometry for neighbor selection.
Therefore, we set the parameter k to 1000 accordingly in the
subsequent experiment.

4) Change of Curvature Based Optimal Neighbor Selection
Method (SurVar): SurVar is first introduced in [18] for mul-
tiscale feature selection on point cloud. Given a fixed number
of neighbor points, i.e., 1000, the 3-D covariance matrix of the
neighbor points can be constructed to represent the geometric
feature. The surface variation of the neighbor points can be
calculated by

Cλ =
λ3

λ1 + λ2 + λ3
(14)

where λ1 ≥ λ2 ≥ λ2 ≥ 0 are the eigenvalues of 3-D
covariance matrix of neighbor points. The principle of this
method is based on the change of curvature Cλ. With the
increase of the scale of neighbor points, the method is to search
the location with significant increase of Cλ which means to
find the specific neighbor size and the corresponding value
of k. This algorithm is inspired by the fact that the sudden
jumps of surface variation refer to significant deviation in the
normal direction of the surface.

5) Consistent Curvature Level Based Optimal Neighbor
Selection Method (ConCur): Belton and Lichti [19] proposed
to select a critical scale of neighbor points that has a consistent
curvature level from kNN points. The mechanism thus implies
the variance of the curvature should be nominally zero. As a
result, the variance of curvature can be computed as

var(κ) = E(κ2)− E(κ)2
=

1
k

k∑
i=1

(κi − κ)2 (15)

where κ is the surface variance. If data points are located close
to an edge, their corresponding neighbor points should have a
range of curvature values gradually increasing.

6) Minimum of Eigenentropy Based Optimal Neighbor
Selection Method (MinEig): As proposed in [20], the MinEng
optimal neighbor selection strategy is built upon the principle
via searching the minimum value of eigenentropy derived from
a range of neighbor points (e.g., 10–1000) in accordance with
the benchmark scale of neighbor points. The eigenentropy of
the neighbor points can be calculated as follows:

Eλ = −λ̃1 log(λ̃1)− λ̃2 log(λ̃2)− λ̃3 log(λ̃3) (16)

where λ̃i = λi/
∑

λ, i ∈ 1, 2, 3 refers to the normalized
eigenvalue with a sum equal to one. According to [20], the
MinEng aims to select the critical number k of neighbor
points that can minimize the value of eigenentropy Eλ by
sequentially increasing the value of k.
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Fig. 7. Illustration of results derived from six existing neighbor selection methods. (1a)–(6a) xn with a red star together with surrounding k number of xc
(say for example k = 6000), while (1b)–(6b) corresponding k′ number of optimal neighbor points derived.

E. Determination of an Optimal l Value

As we set an initial scale of neighbor points to a specific
number, i.e., 1000, such a range is capable of covering all land
cover types according to the empiric knowledge on the study
area. To implement the proposed MaxEnt, we first divide the
range of the information into l parts, which should be manually
set. Thus, we conduct an initial experiment to explore the
impact of the value of parameter l on the classification
performance based on MaxEnt. We thus set the value of
l ranging from 10 to 150 and then validate the method’s
performance on DSA-Dataset by sequentially increasing the
value of l by 10. As shown in Fig. 8, the classification accuracy
gradually increases starting with l = 10 and reaches the peak
when l is equal to 90. The classification accuracy slightly goes
up and down afterward, i.e., l ranges from 90 to 150. Whereas,
the time cost of computation appears to gradually increase
with the rise of l and dramatically increases when l is greater
than 130. Accordingly, we set l to 90, which provides the best
classification performance and consumes relatively low cost
of time to accomplish the task. Subsequently, in accordance
with algorithm 1, we adopt the use of l to determine the
information threshold T . The neighbor points with information
difference δ smaller than the threshold T are then selected
as initial homogeneous neighbor points x̃9 , while the rest of
points are regarded as initial heterogeneous neighbor points
x̃ϒ accordingly.

IV. QUANTITATIVE AND QUALITATIVE RESULTS

In this section, we present the quantitative and qualitative
experimental results of DSA-Dataset in Section IV-A and
ESA-Dataset in Section IV-B with respect to the classifica-
tion performance of MaxEnt and those six existing neighbor
selection methods.

A. DSA-Dataset

DSA-Dataset mainly covers the west side of the study area.
Since those detailed, tiny classes, such as “Fence” and “Pow-
erline,” only appear in this region, this area is intentionally

Fig. 8. Classification performance of different l values.

selected to examine the impact of MaxEnt on imbalanced
classes. Table III shows the classification accuracy of differ-
ent neighbor selection algorithms based on nine commonly
used machine learning classifiers. Among all classifiers, the
proposed MaxEnt generates the best classification results in
most of the cases. Aside from GNB in which the use of
MaxEnt on channel 3’s intensity generates the best result, i.e.,
0.815, MaxEnt applying to the elevation and intensity values
yields the best classification results. The accuracy achieved by
MaxEnt(All) ranges in between the lowest value by QDA, i.e.,
0.641, and the highest by AB, i.e., 0.953.

In terms of classifiers, QDA achieves the worst performance.
For those six neighbor selection methods, QDA results in
an OA in between 0.405 and 0.443. MaxEnt-based methods
boost the accuracy by 0.1–0.2, leading to an accuracy in
between 0.525 and 0.641. The second worst performance
can be found in kNN classifier. Those six neighbor selection
methods produce classification results in between 0.532 and
0.679, while the accuracy of MaxEnt-based methods produce
a slightly better result with accuracy found from 0.608 to
0.730. Classifiers, i.e., SVM, LDA, and DT, present a similar
range of OA regardless of the neighbor selection methods.
The OA is above 0.8 in most of the cases, except the
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TABLE III
OA OF NINE CLASSIFIERS WITH RESPECT TO CORRESPONDING NEIGHBOR SELECTION METHODS ON THE DSA-DATASET

Cylinder-based method, producing an OA of 0.679, 0.733, and
0.740 with the three respective classifiers. The corresponding
best performance can be found in MaxEnt(All) with an OA in
between 0.877 and 0.921. On the other hand, the OA found in
GNB is mostly found in between 0.7 and 0.8, with Cylinder
and ConCur generating the worst results with accuracy of
0.619 and 0.642, respectively.

Although the best classification results of MLP occur when
using MaxEnt-based methods, the other six neighbor selection
methods, unlike the above-mentioned scenarios, occasionally
outperform MaxEnt. Neighbor selection methods, such as
SurVar and ConCur, produce an OA with 0.731 and 0.795,
respectively. These results are significantly better than all the
MaxEnt-based methods (0.598–0.693), except MaxEnt(All)
with an OA of 0.814. RF and AB both achieve the highest
classification accuracy among the nine classifiers. Both of
them yield an OA higher than 0.95 when using MaxEnt(All).
The use of other MaxEnt-based methods also comes with a
satisfied classification performance with an OA over 0.9. The
classification results of those six neighbor selection methods
are also comparable. Except Cylinder-based method gener-
ating an accuracy slightly over 0.83, both Sphere and kNN
come with an accuracy better than 0.88. The remaining three
methods, i.e., SurVar, ConCur and MinEig, all generate an OA
ranging from 0.893 to 0.923.

Specifically, the classification results derived by AB are
extracted in Table IV due to its prolific performance among all
classifiers. In Table IV, it shows the AB-derived classification
results of each land cover class with respect to the neighbor
selection methods. Similar to the OA, the derived mF1 of
all MaxEnt-based methods produce the best results, ranging
from 0.793 to 0.860, with MaxEnt(All)’s result yielding the
highest. Those six existing neighbor selection methods gener-
ate a slightly smaller value of mF1 that is found in between
0.675 and 0.729. Fig. 9 presents the corresponding confusion
matrix generated by the MaxEnt(All) with an AB classifier
applying to the DSA-Dataset. The corresponding classification
results of DSA-Dataset based on different neighbor selection
methods are also shown in Fig. 10.

In terms of land cover class “Road,” MaxEnt-based meth-
ods slightly outperform all other existing neighbor selection
methods, except ConCur, i.e., F1 score = 0.892. When all
radiometric and geometric features are adopted in MaxEnt,

Fig. 9. Confusion matrix generated by MaxEnt(All) based on AB classifier
on the DSA-Dataset.

the F1 score reaches to the best performance, i.e., 0.910,
and it is higher than the use of elevation or intensity from
specific channel only by 1.2%–3.6%. Similarly, MaxEnt-based
methods derive the highest F1 score in “Tree” and “Grass.”
Both of which the corresponding accuracy is found larger than
0.9 and incorporating all the elevation and intensity features
drive the F1 score to the maximum, i.e., 0.986 in “Tree” and
0.960 in “Grass.” Despite that, the performance of other six
neighbor selection methods compare favorably with MaxEnt,
where the worst performance can be found in Cylinder method
with a F1 score equal to 0.883 in “Tree” and 0.794 in “Grass.”

Although MaxEnt also presents the best classification
results for class “House” and “Fence,” both of them are
found with the best results when MaxEnt is applied, i.e.,
F1 score = 0.955 and 0.588, comparing to the use of MaxEnt
on all features, i.e., 0.940 and 0.501. Another notable issue
is the performance of imbalanced classes, i.e., “Fence” and
“Powerline.” These classes are indeed tiny objects appeared
in the study scene and occupy less than 1.3% (“Fence”:
549, 0.305%; “Powerline”: 2189, 1.216%) of data points
in the DSA-Dataset. Those six neighbor selection methods
produce a poor performance with a F1 score between 0.044
(SurVar) and 0.266 (kNN) in “Fence” and 0.198 (SurVar) and
0.418 (Cylinder) in “Powerline.” On the other hand, MaxEnt
improves the performance on these detailed, tiny objects via
incorporating optimal contextual features. This thus leads to
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TABLE IV
F1 SCORE OF INDIVIDUAL LAND COVER CLASS, OA, MF1, AND MIOU USING AB ON THE DSA-DATASET

Fig. 10. AB-derived classification results of DSA-Dataset based on different neighbor selection methods. (a) Ground truth. (b) MaxEnt(All). (c) Max-
Ent(Elevation). (d) MaxEnt(Channel 1). (e) MaxEnt(Channel 2). (f) MaxEnt(Channel 3). (g) Cylinder. (h) Sphere. (i) kNN. (j) SurVar. (k) ConCur. (l) MinEig.
Areas highlighted in the ellipses indicate regions with significant incorrect classification.

an improved F1 score ranging from 0.297 to 0.588 in “Fence”
and 0.609 to 0.733 in “Powerline.”

B. ESA-Dataset

Table V shows the classification results of different neighbor
selection methods based on nine commonly used machine

learning classifiers conducted on the ESA-Dataset. Among
all classifiers, the proposed MaxEnt-based methods achieve
the best classification results with OA in between 0.680 and
0.968. Except for GNB yielding an accuracy of 0.849 by
using Channel 2, all the above-mentioned best scenarios occur
when MaxEnt exploiting all information including elevation
and intensity of Channels 1–3, i.e., MaxEnt(All) is adopted.
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TABLE V
OA OF NINE CLASSIFIERS WITH RESPECT TO CORRESPONDING NEIGHBOR SELECTION METHODS ON THE ESA-DATASET

Fig. 11. Difference maps of point cloud classification results with respect to the ground truth labeling for ESA-Dataset. (a) MaxEnt(All). (b) MaxEnt(Elevation).
(c) MaxEnt(Channel 1). (d) MaxEnt(Channel 2). (e) MaxEnt(Channel 3).

The corresponding difference maps of point cloud classifi-
cation results with respect to the ground truth labeling for
ESA-Dataset based on different MaxEnt methods and six
neighbor selection methods are shown in Figs. 11 and 12,
respectively.

Unlike the results in DSA-Dataset, the best classification
results are produced by RF, instead of AB. Despite that,
the performance of both classifiers are similar. The OA of

MaxEnt-based methods ranges from 0.92 to 0.97. Those six
neighbor selection methods produce comparable results with
accuracy mostly higher than 0.9, except the Cylinder-based
method that produces an accuracy with slightly below 0.9.
In contrast, QDA produces the worst classification results
similar to DSA-Dataset. The MaxEnt-based methods come
up with an accuracy in between 0.524 and 0.680. Those
six neighbor selection methods generate significantly worst
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Fig. 12. Difference maps of point cloud classification results with respect to the ground truth labeling for ESA-Dataset based on (a) cylinder, (b) sphere,
(c) kNN, (d) SurVar, (e) ConCur, and (f) MinEig.

results. The OA of QDA with contextual features derived from
Sphere and MinEig is 0.288 and 0.216, respectively. SurVar
and kNN even result in an OA below 0.2.

The rest of classification results can be categorized into two
scenarios. SVM, DT, and LDA all come with the best classi-
fication results in MaxEnt(All), having an OA ranging from
0.924 to 0.951. The use of respective intensity and elevation
information with MaxEnt all achieves an accuracy in between
0.88 and 0.91. Regarding the six neighbor selection methods,
except the results of DT that come with a slightly better
classification accuracy, both SVM and LDA obviously gener-
ate a slightly worst classification accuracy than MaxEnt-based
methods with an accuracy from 0.77 to 0.86. On the other
hand, though the best results are derived by MaxEnt(All)
with accuracy larger than 0.8, other MaxEnt-based meth-
ods can no longer maintain such a high level of accuracy
when kNN and MLP are adopted. Also, those six neighbor
selection methods generate an OA in between 0.671 and
0.833, which may occasionally outperform the MaxEnt-based
methods.

Similar to DSA-Dataset, we intentionally analyze the
results of each individual land cover class produced by the

best classifier, i.e., RF, as shown in Table VI. Since the
ESA-Dataset covers the entire region of study area, the
east side of region covers the Lake Ontario, resulting in an
additional class “Water” alongside with six other land cover
classes. Again, the best performance of each class can be found
when MaxEnt-based methods are used. Except “House” and
“Fence” are found with the best result by using MaxEnt along
with elevation, the other five classes all come with the highest
accuracy when MaxEnt(All) is used.

“Tree” and “Water” share a common pattern in terms of
the F1 score. Both of them are found with the highest F1
score, i.e., >0.99, produced by MaxEnt-based methods, other
six neighbor selection methods highly comparable results
that are close to the MaxEnt-based methods, i.e., better
than 0.95. In terms of the class “Road,” the performance of
MaxEnt-based methods are equal or slightly better than the
six neighbor selection methods. The best result can be found
in MaxEnt(All) with a F1 score of 0.891, while the existing
methods produce a F1 score ranging from 0.806 to 0.866. For
“House” and “Grass,” though the best results appear in Max-
Ent(Elevation) and MaxEnt(All), respectively, with F1 score
better than 0.92, existing neighbor selection methods may
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TABLE VI
F1 SCORE OF INDIVIDUAL LAND COVER CLASS, OA, MF1, AND MIOU USING RFS ON THE ESA-DATASET

Fig. 13. Confusion matrix generated by MaxEnt(All) based on RFs classifier
on the ESA-Dataset.

occasionally surpass MaxEnt-based methods. For instance,
kNN and MinEig produce a F1 score greater or equal to
0.91, which is higher than most of the MaxEnt-based methods,
except MaxEnt(All), in the scenario of “House.” Sphere, kNN,
ConCur, and MinEig all generate better classification results
in “Grass” comparing to all MaxEnt-based methods, except
the MaxEnt(All).

“Powerline” and “Fence” perform the worst performance
among seven land cover classes, similar to the DSA-Dataset.
MaxEnt-based methods lift up the results of “Powerline”
with F1 score found in between 0.436 and 0.635. Existing
neighbor selection methods perform poorly; all of them, except
Cylinder-based method, produce a F1 score lower than 0.1.
In the scenario of “Fence,” MaxEnt-based methods barely
come up with a F1 score larger than 0.2, except MaxEnt being
applied to the intensity of Channel 2 resulting in a F1 score
of 0.149. Those six neighbor selection methods all generate
a poor classification result on “Fence” with F1 score ranging
from 0.029 to 0.170. For the proposed MaxEnt algorithm, the
classification results of DSA-Dataset are slightly better than
those of ESA-Dataset. The corresponding confusion matrix
generated by the MaxEnt(All) using RFs classifier on the
ESA-Dataset is presented in Fig. 13.

V. DISCUSSION

A. MaxEnt Versus Six Neighbor Selection Methods

MaxEnt consistently outperforms all six neighbor selection
methods by looking for optimal neighbor points before feature
extraction and point cloud classification. In terms of those
neighbor selection methods based on a fixed number of neigh-
bor points, i.e., Cylinder, Sphere, and kNN, MaxEnt achieves
an improved accuracy by 13.0%–19.1%, 10.6%–11.9%, and
11.3%–11.7%, respectively, by taking an average of the results
derived from nine classifiers of both datasets. Such a notable
improvement is also observed by comparing MaxEnt with
the remaining three optimal neighbor selection methods, i.e.,
SurVar, ConCur, and MinEig. The accuracy improvement
in average is found to be 8.8%–11.3%, 7.3%–9.6%, and
10.4%–10.5%, respectively. Regardless of the classifiers, Max-
Ent, particularly MaxEnt(All), produces the best classification
results most of the time. Indeed, these can be explained by the
rationale of each neighbor selection method, which may only
be applicable under certain circumstance.

Although all the existing neighbor selection methods are
not comparable with MaxEnt, Cylinder-based method even-
tually performs the worst among all methods. This can be
explained by the mechanism of Cylinder, which selects neigh-
bor points located within the circular cross section along
the z-direction. This may cause heterogeneity of land covers
such as understory grass cover being included as optimal
neighbor of tree canopies. Sphere and kNN methods come
with a fixed number of neighbor points that may also induce
heterogeneity in selecting neighbor points. Regarding the rest
of three optimal neighbor selection methods, SurVar basically
concentrates on detecting and extracting linear-type features
on point-sample surface and selects homogeneous neighbor
points located within the curved boundaries generated by line-
type features. ConCur and MinEig also aim to detect if a data
point located on a linear feature, boundary, edge or within a
surface. Since airborne LiDAR point clouds, if collected on
a terrain with mixture of land covers, always have a lack of
discriminated surface or regular geometry, except roads and
buildings; therefore, these methods are inefficient to look for
surface of optimal neighbor points. MaxEnt, on the other hand,
literally looks for optimal neighbor points by grouping those
having high similarity of intensity values and elevation via
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TABLE VII
F1 SCORE OF INDIVIDUAL LAND COVER CLASS, OA, MF1, AND MIOU USING POINTNET++ [30] ON THE DSA- AND ESA-DATASET

computing the sum of Shannon entropy. The maximum of the
sum thus implies the largest amount of information retained
therein. Therefore, MaxEnt is not limited by specific types of
scene or land cover pattern.

B. Merit of Using Multispectral LiDAR Intensity in Inferring
Optimal Neighbor Points

Existing studies have demonstrated the use of multispectral
LiDAR intensity can improve estimation of forest metrics
and land cover classification [5], [33]. In our experiment,
multispectral LiDAR intensity further improves inferring opti-
mal neighbor points by intersecting the resulting homogeneous
neighbor points that achieve the MaxEnt. By taking an
average of all the classification results, except GNB, Max-
Ent(All) improves the classification accuracy by 3.7%–5.7%,
6.3%–8.2%, 4.0%–6.1%, and 5.5%–7.7%, comparing to the
results derived by MaxEnt individually applying to elevation
and intensity of channels 1–3, respectively.

In terms of land cover classes, MaxEnt(All) produces an
improved classification results than the rest of the MaxEnt
methods in all the classes, except “House” and “Fence” in
which MaxEnt(Elevation) achieve a better result. Specifically,
a significant improvement can be found in the case of “Pow-
erline.” The use of MaxEnt(All) improves the F1 score by
3.8%–5.3%, 12.4%–16.1%, 10.2%–13.8% and 5.5%–19.9%,
comparing to the results derived by MaxEnt being applied
with elevation and the three respective channel. MaxEnt(All)
also provides beneficial effect to the land cover class
“Grass.” MaxEnt(All) lifts up the F1 score by 5.2%–11.6%,
4.4%–14.6%, 4.8%–13.3% and 5.8%–13.2% with respect to
the rest of the four MaxEnt combinations. The F1 score
improvement provided by MaxEnt(All), though is not com-
parable to those of “House” and “Fence,” ranges from 1%
to 6%. There is no notable difference among the results of
five MaxEnt-based methods in “Water” as the F1 score has
already yielded better than 99%. In short, the experimental
work further justifies the merit of having multispectral LiDAR
intensity, which can aid in inferring optimal contextual features
for point cloud classification.

C. Impact of MaxEnt on Imbalanced Classes

Since both “Powerline” and “Fence” occupy less than
1.3% and 0.1% of data points in DSA- and ESA-Dataset,
respectively, these imbalanced classes certainly cause a neg-
ative impact toward the classification results. Nevertheless,
the proposed MaxEnt can help look for optimal neighbor
points of these classes and achieves significantly better results
when comparing those derived by six other neighbor selection
methods. For instance, ConCur achieves the worst classifica-
tion results among the six neighbor selection methods with

an accuracy of 0.014 in “Powerline” and 0.011 in “Fence.”
MaxEnt(All) thus lifts up the F1 score by 31.5%–62.1%
in the case of “Powerline,” while Max(Elevation) achieves
an improved F1 score by 17.1%–54.4% in the scenario of
“Fence.” One can also find a notable difference among the
classification results of these two classes in accordance with
Fig. 10. Therefore, our proposed MaxEnt achieves both high
OA and F1 score, comparing to other existing methods and
handles well with the category-imbalanced problem.

D. Comparison to Deep Learning-Based Method

Apart from the classic machine learning classifiers, we also
employ Pointnet++ [30] as a benchmark deep learning-based
method to compare our proposed approach. We thus extract
48%–65% of data points as training data with all features to
train the Pointnet++ and leave the remaining 35%–52% as
testing data on the DSA- and ESA-Dataset. Table VII shows
the corresponding F1 score of individual land cover class,
OA, mF1, and mIoU of classification results generated by
Pointnet++. The results show that Pointnet++ can produce an
accurate classification results with OA yielding 90%–92.5%,
mF1 score ranging from 0.737 to 0.802, and mIOU roughly in
between 0.6 and 0.7 found on both datasets. However, our pro-
posed MaxEnt(All) still outperforms the deep learning-based
method with higher OA (by 4%–5%), F1 score (by 0.06–
0.1), and mIoU (by 0.085–0.1) (refer to Tables IV and VI).
Although deep learning-based method is effective to classify
LiDAR point clouds, it also requires a large amount of
training data. Compared with deep learning-based method, our
proposed method only requires a small amount of training
data, meanwhile generates better classification results.

VI. CONCLUSION

Multispectral airborne LiDAR data overcome the drawbacks
of existing monochromatic airborne LiDAR system having a
lack of fruitful spectral information. To maximize the benefits
of using multispectral LiDAR intensity data, in this study,
we propose an optimal neighbor selection method (MaxEnt) to
select sufficient homogeneous neighbor points to aid in point
cloud classification. The proposed MaxEnt is built upon the
MaxEnt principle to adaptively select homogeneous neighbor
points and remove heterogeneous neighbor points from a fixed
scale of original neighbor points. As the MaxEnt principle
states that the largest entropy’s summation of the proba-
bility distribution of homogeneous and heterogeneous data
provide a maximum information discrimination; therefore, the
derived probability distribution can aid in avoiding interference
information, reducing information redundancy, and enhancing
information diversity from the neighbor points. As a result,
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MaxEnt can select sufficient homogeneous neighbor points,
meanwhile delineate and remove the interfering heterogeneous
neighbor points. After selecting optimal neighbor points, fea-
ture vectors can be constructed by using the geometric and
radiometric information extracted from these homogeneous
neighbor points. The extracted feature vectors thus serve as
the input for nine commonly used machine learning classifiers
for point cloud classification and individual point is assigned
with a typical land cover category. The experimental results
adequately indicate that MaxEnt outperforms other existing
neighbor selection methods for point cloud classification with
better classification performance and OA by 7.3%–19.1%.
Moreover, multispectral LiDAR intensity together with eleva-
tion can aid in inferring optimal neighbor points. It produces
an improved classification accuracy by 3.7%–8.2% when
comparing to MaxEnt being applied to only the elevation or
intensity. Also, MaxEnt is proven to be more appropriate to
classify point clouds collected on study area with detailed and
tiny objects, such as, “Powerline” and “Fence.” The F1 score
is significantly lifted up by 17.1%–62.1%, when comparing to
the results derived by six existing neighbor selection methods.
In short, MaxEnt achieves a higher accuracy and mF1 score
than other methods, and thus shows a better capability. Future
work will focus on incorporating the mechanism of MaxEnt
in point cloud convolution to embrace the use of deep neural
network for semantic segmentation.
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