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Abstract— The estimation of displacement vectors for (objects
on) the Earth’s surface using satellite InSAR requires geometric
transformations of the observables based on orbital viewing
geometries. Usually, there are insufficient viewing geometries
available for full 3-D reconstruction, leading to nonunique solu-
tions. Currently, there is no standardized approach to deal with
this problem, resulting in products that are based on haphazard
and/or oversimplified assumptions with biased estimates and
reduced interpretability. Here, we show that a clear definition
of—and subsequent adherence to—enabling conditions guaran-
tees the validity and quality of displacement vector estimates
leading to standardized interferometric products with improved
interpretability. We introduce the concept of the null line as a
key metric for InSAR geometry and bias estimation, assess its
impact and orientation for all positions on Earth, and propose a
novel reference system that is inherently unbiased. We evaluate
current operational practice, leading to a taxonomy of frequently
encountered misconceptions and to recommendations for InSAR
product generation and interpretation. We also propose new
subscript notation to uniquely distinguish different projection
and decomposition products. Our propositions contribute to
further standardization of InSAR product definition, improved
map annotation, and robust interpretability.

Index Terms— Decomposition, InSAR, line-of-sight (LoS), null
line, projection, solution space, surface displacements.

I. INTRODUCTION

IT IS well-known that InSAR phase observations are only
sensitive to the projection of the 3-D displacement vector

onto the radar line-of-sight (LoS) direction, along a plane
orthogonal to the LoS [1]. This projection, dLoS, in a Cartesian
east, north, up (ENU) coordinate system is described by

dLoS = PLoS⊥ dENU, (1)

where PLoS⊥ = [sin θ sin αd , sin θ cos αd , cos θ ] is the orthogo-
nal projector onto the line of sight, dENU = [de, dn, du]

T is the
3-D displacement vector in the east, north, and up directions,
respectively, θ is the incidence angle toward the radar, and αd

is the azimuth of the zero-Doppler plane (ZDP) at the position
of the target, in the direction toward the satellite; see Fig. 1. In
the early years of InSAR, one viewing geometry was used for
estimating displacements [2], [3], [4]. However, the possibility
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Fig. 1. Schematic overview of the projection of the displacement vector dENU
onto the LoS direction of a satellite in a descending orbit. The LoS direction
of the satellite can be described with two angles: the incidence angle θ and
the azimuth of the ZDP αd . Those angles are described at the position of the
target.

to combine ascending and descending orbits imaging the same
area of interest triggered attempts to estimate the 3-D displace-
ment vectors [5], [6], [7], [8]. Evidently, to estimate the full
3-D displacement vector, one would need three independent
viewing geometries, using three different PLoS⊥ projectors
forming a full-rank matrix with a low condition number [9].
Yet, while the near-polar orbits of contemporary SAR missions
cause an imaging geometry that differs significantly between
ascending and descending orbits, it does not for adjacent tracks
[6], [10]. As a result, the sensitivity is rather unbalanced
for the three Cartesian directions [1]. Observation geometries
are available, i.e., ascending and descending, resulting in an
underdetermined system with an infinite amount of possible
solutions.

The way in which this problem is typically handled in
InSAR literature and operational practice often leads to biased
estimation and requires more standardization and mathemat-
ical and semantic rigor. Concepts such as decomposition
and projection need to be distinguished, and substantiated
assumptions that can serve as boundary conditions need to
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be explicitly stated. In this study, we provide a comprehensive
overview of the topic, proposing necessary terminology and
estimation techniques for the inverse problem. We discuss the
limitations of the decomposition and propose a standardized
approach. In Section II, we give an overarching mathematical
framework rooted in linear algebra, building on previous work
by [1], [6], [7], and [8]. In Section III, we explicitly state the
conditions for a successful inversion, and in Section IV we
introduce of the concept of the null line, which can be used
to propose a coordinate system that is intrinsically unbiased.
Using these concepts, we evaluate current practice and identify
three types of typical geometric flaws encountered in literature
in Section V and provide recommendations for InSAR product
generation and interpretation in Section VI.

II. THEORY

To solve for the full 3-D displacement vector, several
conditions (all necessary but individually not sufficient) need
to be satisfied. Therefore, we first review the relevant InSAR
geometry and the forward model in Sections II-A and II-B,
respectively.

A. Viewing Geometry

The estimated relative displacements resulting from InSAR
parameter estimation are projections of the 3-D displacement
vector onto the LoS direction defined at the position of the
target; see (1). The LoS direction depends on the viewing
geometry toward the satellite. Therefore, the LoS direction is
described using two angles:1 the azimuth of the ZDP at the
Earth’s surface, αd , and the incidence angle, θ ; see Fig. 1.

1) Azimuth of the ZDP: Most SAR satellites operate from
retrograde sun-synchronous near-polar orbits. While the orbital
plane of the satellite has a fixed inclination, the satellite
has a time-varying orbital heading αh , which is the angle
between the velocity vector of the satellite and the geometrical
north. Most contemporary SAR observations are taken at zero
Doppler [1], which defines the ZDP: the plane perpendicular
to the heading of the satellite. Thus, the LoS vector lies in the
ZDP.

The heading, αh , and the orientation of the ZDP—in a
satellite-centered coordinate frame—are different from the
direction of the velocity vector and the azimuth of the ZDP, αd ,
in a target-centered coordinate frame on the Earth’s surface;
see Fig. 2. This effect is caused by the side-looking geometry
of the SAR and the nonparallel nature (convergence) of the
Earth’s meridians. In addition, the azimuth of the ZDP is
range-dependent. These effects are relevant when computing
the viewing geometry. Thus, the projector PLoS⊥ should be
defined using αd rather than using αh .

2) Incidence Angle: The incidence angle, θ , refers to the
nominal (ellipsoidal) incidence angle, i.e., the angle between
the normal vector on the local ellipsoid, at the position of
the target, and the line of sight toward the satellite in the
ZDP. The incidence angle differs from the satellite look
angle θl , which is the angle between the LoS direction

1These angles are not to be confused with the heading angle and look angle
of the satellite, respectively, as we will discuss below.

Fig. 2. Two targets on Earth (black diamonds) observed from a satellite
(black dot) in a descending orbit in the Northern Hemisphere. The velocity
vector of the satellite has azimuth angle αh with respect to the geographical
north. Due to the meridian convergence, the north direction at the Earth’s
surface at near range (nr) differs from the north direction at far range (fr).
Thus, the orientation of the ZDP (in blue) depends on the target position in
range, i.e., αd,nr ̸= αd,fr.

Fig. 3. Schematic overview of the viewing geometry. The heading angles
αh,asc and αh,dsc are the azimuth angles of the velocity vectors of the satellites
with respect to the geometrical north. αd is the azimuth of the ZDP, at the
position of the target (red dot), in the direction toward the satellite. The
incidence angle is the angle between the LoS vector and the local zenith
and varies from near to far range, i.e., θfr > θnr.

and the nadir of the satellite sensor, due to the curvature
of the Earth; see Fig. 3. Moreover, the nominal incidence
angle varies with the range direction resulting in different
incidence angles for different targets (pixels) within the same
image [11].2

As both the incidence angle and azimuth of the ZDP are
range-dependent, they are correlated. Due to the meridian
convergence, the orientation of the target-centered coordinate
system with respect to the satellite-centered coordinate system
differs from near to far range; see Fig. 2. Therefore, αd is

2For example, the incidence angle for the Sentinel-1 Interferometric Wide
swath varies between 29◦ and 46◦.
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Fig. 4. Viewing geometries toward all visible Sentinel-1 swaths (circular
marks), for different latitudes on the Northern Hemisphere, at an arbitrary
longitude 40◦E. For ascending acquisitions (top), the correlation is positive,
and for descending acquisitions (bottom), it is negative. For the Southern
Hemisphere, this is reversed.

range-dependent, i.e., αd,nr ̸= αd,fr where nr and fr represent
the near and far range, respectively. The interdependence
between θ and αd is visualized in Fig. 4 for Sentinel-1
acquisitions at sea level with a varying latitude and an arbitrary
longitude, here 40◦E, for all the available ascending (top) and
descending (bottom) acquisitions [12].

B. Forward Model

The displacement dLoS of a target observed from a satellite
is the orthogonal projection of dENU onto the LoS direction;
see (1). We refer to this as a forced projection, as it is an
implicit autonomous operation. As (1) represents the displace-
ment as a scalar, it requires a directional unit vector to specify
its direction, i.e.,

dLoS uLoS = diag(PLoS⊥) dENU, (2)

where uLoS is the LoS unit vector, defined as

uLoS =

u1
u2
u3

 =

sin θ sin αd

sin θ cos αd

cos θ

, (3)

and PLoS⊥ refers to a projector onto the LoS, along a plane
orthogonal to the LoS unit vector; see (1). The LoS unit vector
has its origin at the target, i.e., motion toward the satellite
yields a decrease in slant range.

Given this forward model, we evaluate the inverse model to
estimate the displacement parameters and discuss the neces-
sary and sufficient conditions for this estimation.

III. CONDITIONS FOR THE INVERSE MODEL

Estimated LoS displacements are 1-D and may be difficult
to interpret by end-users, who are mostly interested in the
“real” (3-D) displacements. This requires a decomposition
of the LoS displacements, i.e., the inverse problem [13].

The functional relation of (1) is therefore extended to a full
mathematical model, including

E{


d(1)

LoS

d(2)
LoS
...

d(m)
LoS


︸ ︷︷ ︸

y

} =


P (1)

LoS⊥

P (2)

LoS⊥

...

P (m)

LoS⊥


︸ ︷︷ ︸

A

de

dn

du


︸ ︷︷ ︸

x

, and (4)

D{


d(1)

LoS

d(2)
LoS
...

d(m)
LoS


︸ ︷︷ ︸

y

} =


QLoS,1 0 . . . 0

0 QLoS,2 . . . 0
...

...
. . .

...

0 0 . . . QLoS,m


︸ ︷︷ ︸

Q y

, (5)

where y is the observation vector, containing vectors d(1)
LoS until

d(m)
LoS, which are m sets of LoS displacement observations.

The underline indicates the stochastic nature of the vector.
Each vector d(i)

LoS represents an independent viewing geometry
(orbital position) and contains the observations from all the
scatterers within the same region of uniform motion (RUM,
discussed in Section III-B), which we henceforth term a
set. The size of each set can be different since the number
of available coherent scatterers within an RUM can differ.
E{·} and D{·} are the expectation and dispersion operator,
respectively, and QLoS,i is the variance–covariance matrix of
an independent observation set. When d(i)

LoS has size p × 1,
there are p scatterers within the RUM for that particular
viewing geometry. QLoS,i is a p × p diagonal matrix with
the variances of the LoS observations on the diagonal. For
small RUMs (<100 m), the off-diagonal elements are equal
to zero, since all the observations represent different uncor-
related physical scatterers acquired at different times and the
atmospheric delay can be considered as constant for all the
scatterers [1]. For larger RUMs, this assumption may no longer
be valid and the off-diagonal terms will depend on the distance
between the scatterers.

The system of observation equations can be solved with at
least three sets of LoS observations, under the condition that
they are spatio-temporally coinciding and independent (STCI,
discussed in Section III-A). The row for the first set in the
design matrix A is the projection of the 3-D displacements
onto the LoS vectors toward the first satellite position, cf. (1).
We assume that for observations within one set, the angles θ

and αd are constant within the RUM.
When m ≥ 3, the unknown displacement parameters in

vector x can be estimated using direct inversion or best linear
unbiased estimation [14], i.e.,

x̂ =

{
A−1 y, for m = 3, and
Q x̂ AT Q−1

y y for m > 3, with
(6)

Q x̂ =

{
A−1 Q y A−1, for m = 3, and
(AT Q−1

y A)−1 for m > 3.
(7)
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For a successful estimation of the unknown displacement
parameters, this approach needs to satisfy several conditions,
which are discussed below.3

A. Spatio-Temporally Coinciding and Independent (STCI)
LoS Observations

The mathematical expression of (6) is only valid if all
the LoS observation sets from different viewing geometries
are unambiguously linked to the same physical displacement
signal, x . In this context, we introduce the condition of
spatio-temporally coinciding and independent (STCI) LoS
observations, i.e., i) the same scatterers, from ii) an object that
is not subject to internal deformation, are observed iii) thus
simultaneously and iv) from sufficiently different viewing
geometries.

Obviously, the STCI condition is never fulfilled for a single
target, since point scatterers (PS) observed from one orbital
viewing geometry typically do not coincide with PS from
another viewing geometry, apart from, e.g., lamp posts [15] or
integrated geodetic reference stations (IGRS) [16]. Moreover,
scatterers close to each other are not necessarily stemming
from the same object, considering, e.g., a scatterer on the roof
of a house and a scatterer nearby on the street, which may
represent different deformation phenomena [17]. Added to
this, different (parts of) objects can show different deformation
phenomena [18], [19]. Finally, SAR acquisitions from different
viewing geometries are never taken at the same moment,
and since deformation phenomena, by definition, change over
time, this will result in incomparable displacement parameters.
Especially for rapidly changing deformation phenomena such
as landslides [20] or highly dynamic soils [21], it may be
impossible to assume that observations from different epochs
are comparable.

Consequently, as the strict STCI condition can never be met,
the success of a decomposition is highly dependent on relaxing
this conditions using additional assumptions.

B. Region of Uniform Motion

A plausible assumption that can relax the STCI condition
follows from identifying RUMs, defined such that points that
fall within a single RUM behave uniformly, driven by the
same deformation phenomenon. Thus, only after defining an
RUM (and aligning the different datasets in time) it will be
possible to decompose the LoS observations into the unknown
displacements parameters. In many cases, defining an RUM
can be difficult, since it can easily contain scatterers that
represent different deformation phenomena [17].

C. Datum Connection

LoS observations from different observational sets should be
referenced to the same spatio-temporal datum, i.e., the same
spatial reference point and the same temporal reference epoch.

3Within this work, we focus on the decomposition of interferometric LoS
observations, i.e., we do not consider adding pixel offset tracking or GNSS
observations.

Commonly, different viewing geometries will result in differ-
ent spatial reference points. Therefore, it is at least required
that the reference points of different viewing geometries
represent the same deformation phenomenon i.e., the same
RUM. Temporally, the selected reference SAR acquisitions,
per stack, need to be aligned to refer to the same displacement
parameters, x , in (6). Spatial or temporal interpolation may be
required for this purpose. For displacement signals which are
rapidly changing between epochs, this interpolation will be
more influential.

D. Full Rank System

To unambiguously solve for the three unknown displace-
ment components, we require at least three sets of (STCI)
observations from different viewing geometries to assure a full
rank system, and consequently a unique solution. We define
the solution space as the space that contains all possible
solutions of the linear system. With only one LoS observation
set, the solution space is a solution plane orthogonal to the
LoS displacement vector that contains the endpoint of the LoS
displacement vector. All the points located in this plane are
a possible solution to the inverse problem. The orientation of
the solution plane is thus completely defined by the LoS unit
vector, uLoS; see (3), as it is normal to the solution plane. The
plane contains the endpoint of the LoS vector; see (2).

The equation of the solution plane with unit vector uLoS
through the point dLoS uLoS is

uLoS · (dENU − dLoSuLoS) = 0, (8)

with dENU = [de, dn, du]
T , uLoS = [u1, u2, u3]

T , cf. (3).
When two LoS observation sets are available, the solution

space reduces to a line, i.e., the intersection of the two solution
planes. All the points on the solution line are a potential
solution to the inverse problem, since the line contains the
endpoint of the unknown displacement vector.

To solve unambiguously for the 3-D displacement vector,
albeit with various degrees of precision, three or more sets of
LoS observations are required. Only then, there is one unique
point where the three solution planes intersect. The quality of
the displacement estimator x̂ , see (6) and (7), follows from
error propagation as

Q x̂ =
(

AT Q−1
y A

)−1
=

σ 2
e σen σeu

σen σ 2
n σnu

σeu σnu σ 2
u

. (9)

The diagonal elements of Q x̂ give the variances for d̂e, d̂n ,
and d̂u , respectively. The requirement of working with three
STCI LoS observation sets, stemming from the same RUM,
is a necessary but insufficient requirement. The three STCI
LoS observation sets also need to have sufficiently different
angular diversity to ensure full rank.

E. Angular Diversity

As almost all the SAR satellites operate right-looking,
orbiting the Earth in near-polar retrograde orbits, they all have
very similar viewing geometries, resulting in limited angular
diversity. Thus, the solution lines for each combination of any
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Fig. 5. Full variance–covariance matrix, Q x̂ , see (9), of the estimates
of the three displacement components, on a logarithmic scale. (a) All the
observations from right-looking satellites; see Table I. (b) Two right-looking
and one left-looking satellite. This yields a significant improvement in the
estimate of dn , but also the other displacement components benefit from the
addition of a left-looking radar acquisition.

TABLE I
CHARACTERISTICS OF THE SIMULATED VIEWING GEOMETRIES

ascending and descending viewing geometry will have very
similar orientations. Consequently, even with LoS observations
from three viewing geometries, the inverse problem is often
ill-posed [13], A is close to rank deficient, and the solution
is unstable: a small difference in the LoS observations may
lead to a large change in the estimated displacement com-
ponents [6], [10]. This follows from the variance–covariance
matrix, Q x̂ , of the estimated displacement components; see
Fig. 5.

Simulating three different viewing geometries, e.g., one
descending and two ascending acquisitions, we compute the
precision for the estimated displacement parameters using (9).
Simulating one scatterer per viewing geometry (Table I) and
using σ 2

LoS = 1 mm2 for all the three observations, we estimate
Q x̂ ; see Fig. 5(a). The diagonal of Q x̂ shows the variances of
d̂e, d̂n , and d̂u . The precision (σ ) with which we can estimate
the north component is ∼40 times larger than the simulated
σLoS values. The precisions for the east and up components
are much better, i.e., 1.5 and 5.5 mm, respectively.

One solution to improve dn is to add a left-looking obser-
vation as suggested by [6] and [10].4 Fig. 5(b) shows Q x̂
for a situation where the second ascending acquisition is left-
looking. The precisions of the unknown parameters are now
0.3, 4.5, and 0.7 mm for de, dn , and du , respectively, which
is about one order of magnitude improvement for all the
components. Nevertheless, σn is still the largest, especially
considering that σLoS was 1 mm. Other options to retrieve dn

include using noninterferometric observables, such as along-
track offset measurements [5], which are only feasible for
smooth wide-area phenomena and large displacements, not for
PS in the built environment with millimeter displacements.
Finally, future multistatic squinted systems may also enable
more variety in viewing geometry; see [23].

4Left-looking geometries will be feasible with the NISAR mission [22].

Fig. 6. When two LoS viewing geometries are available, the null line can
be defined (i.e., the null space of the corresponding projection matrix). The
orientation of the null line is defined as the intersection of the two null planes
of the two available LoS vectors. Here, we visualized one ascending (blue)
and one descending (green) unit vector and the corresponding null planes.
The null line is fully described by azimuth angle φ and elevation angle ζ

since the position is irrelevant.

IV. NULL LINE

In many practical situations, the maximum number of STCI
LoS sets is two (ascending and descending). This results in an
underdetermined problem with an infinite number of possible
solutions. However, when the viewing geometry of the two
available acquisitions is known (i.e., before we need to have
actual observations), we can define the null line, n, which is
the null space of the projection matrix A i.e., the solution to
A dENU = 0. The null line is visualized in Fig. 6, where the
blue and green arrows are the LoS unit vectors corresponding
to an ascending acquisition and a descending acquisition, the
blue and green planes are the null planes, and the orange line
is the null line.

The orientation of the null line is an important metric
for InSAR interpretation since we cannot, interferometrically,
observe any displacement component in its direction i.e., the
two viewing geometries have zero sensitivity in the direction
of the null line. This direction is therefore valuable to
know, before starting an InSAR survey and accompanying
InSAR results. The null line is described by azimuth angle
φ and elevation angle ζ . When the viewing geometry for each
acquisition is known, the orientation of the null line can be
computed from the cross product of the two normal vectors
of the null planes (the LoS unit vectors)

n = u(1)
LoS × u(2)

LoS

=

 sin θ1 sin θ2 cos αd,1 − sin θ2 cos θ1 cos αd,2
− sin θ1 cos θ2 sin αd,1 + sin θ2 cos θ1 sin αd,2

sin θ1 sin θ2 sin(αd,1 − αd,2)

, (10)

where (θ1, αd,1) and (θ2, αd,2) correspond to the first and
second viewing geometries, respectively. With n, it is possible
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Fig. 7. Orientation of the null line for Sentinel-1, defined by φ and ζ ; see Fig. 6. The checkered pattern is due to the S1 orbit pattern. (a) Azimuth φ.
(b) Elevation ζ . Values are calculated by combining the ascending and descending observations that have a maximum azimuth of the ZDP, for each location
on Earth, considering the maximum asymmetry between the two ZDPs. This demonstrates that φ ≈ 0° for the Northern Hemisphere. The values for φ and ζ in
radians are near-identical to the tan φ and tan ζ factors in (13), for the east- and up-bias, respectively. (c) and (d) φ and ζ values for all possible combinations
between overlapping ascending and descending acquisitions. Results computed using [24].

to compute φ and ζ

φ = tan−1
(

n1

n2

)
, and ζ = tan−1

(
n3√

n2
1 + n2

2

)
, (11)

where n1, n2, and n3 are the east, north, and up components
of n, respectively.

A. Null Line Orientation Evaluation

To evaluate the orientation of the null line for an actual
mission at an arbitrary position on Earth, we apply (11)
to the Sentinel-1 viewing geometry; see Fig. 7(a) and (b).5

This shows the values for φ and ζ , respectively, the azimuth
and elevation of the null line. We find that φ ≈ 0° for the
Northern Hemisphere, but that this is not always the case for
the Southern Hemisphere. Moreover, everywhere on Earth the
elevation angle ζ > 0°.

At higher latitudes, different tracks overlap, enabling multi-
ple ascending and descending viewing geometries per location.
Therefore, Fig. 7(a) and (b) uses the largest possible αd per
location, i.e., favorably the largest asymmetry between the two
viewing geometries.

To investigate whether φ = 0° can really be considered a
“rule of thumb” for the Northern Hemisphere for Sentinel-1,
we compute φ and ζ for all possible combinations between
ascending and descending acquisitions for latitudes varying
between −75◦ and +85◦, at arbitrary longitude 30◦; see
Fig. 7(c) and (d). Typically for the Northern Hemisphere,
all the combinations result in φ ≈ 0°. Yet, for the higher
southern latitudes, different combinations result in φ ̸= 0°,
e.g., for applications in Antarctica. Elevation angles ζ increase
significantly at higher latitudes, affecting the Arctic, South
America, South Africa, New Zealand, and the Antarctic.

5The software that computes the orientation of the null line for different
satellite missions at different locations on Earth is made available via [24].

B. Impact of the Null Line Orientation

Frequently,6 it is postulated that with the current orbits
and viewing geometries of SAR missions, there is no
sensitivity for displacement components in the north direc-
tion, and that it is therefore possible to simply “remove”
or “disregard” dn from the inverse problem, cf. (4),
resulting in

E{


d(1)

LoS

d(2)
LoS
...

d(m)
LoS


︸ ︷︷ ︸

y

} =


sin θ1 sin αd,1 cos θ1
sin θ2 sin αd,2 cos θ2

...
...

sin θm sin αd,m cos θm


︸ ︷︷ ︸

A

[
de

du

]
︸︷︷︸

x

. (12)

This would only be a valid approach when the orientation
of the null line is φ = 0° ∧ ζ = 0°. However, even while φ

may be close to zero, ζ never is.
Fig. 5 reveals that the estimators for de, dn , and du are

correlated. Therefore, removing dn from the inverse problem
will result in biased estimates for de and du , i.e.,

d̂e = de + Be, with Be = tan φ dn

d̂u = du + Bu, with Bu = tan ζ dn, (13)

where Be and Bu are the biases on the estimated east and up
components, respectively. The bias terms are thus the product
of the i) the orientation of the null line n and ii) the magnitude
of the actual (but unknown) north displacement. In Table II,
we show the values for tan φ and tan ζ for different cities in the
world. For example, for Melbourne a 1-unit north displacement
leads to a bias in the east and up components of 0.01 and
0.13 units, respectively. These values are near-identical to the
azimuth φ and elevation ζ angles, when expressed in radians;
see Fig. 7.

6For example, see [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
and [35].
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TABLE II
SCALING FACTORS FOR THE BIAS IN THE EAST AND UP DIRECTIONS FOR

DIFFERENT CITIES IN THE WORLD, INDICATING THAT A NONZERO
NORTH COMPONENT MULTIPLIED BY THE GIVEN NUMBER WILL

YIELD THE BIAS IN THE EAST AND UP COMPONENTS,
RESPECTIVELY, SEE (13)

Fig. 8. Orientation of the null line n in the ENU reference frame is given by
azimuth angle φ and elevation angle ζ . The projection of n onto the EU plane
is line k which has elevation angle ξ . (a) φ ̸= 0° and ζ ̸= 0°, and therefore
k as a component in the east and up directions, i.e., ξ ̸= 90°. (b) φ = 0° and
therefore ξ = 90°, k only has a component in the up direction. (c) We show
the orientation of the NLA frame with the plane spanned by the leaning axis
(with elevation angle ζ + 90°) and azimuth axis (with azimuth φ + 90°) in
orange. The null line is orthogonal to this plane.

Geometrically, removing dn from the decomposition
equation is equivalent to projecting both the LoS observations
onto the east–up (EU) plane.7 Thus, also the 3-D null line will
be projected onto the EU plane, which yields a line that we
refer to as k; see Fig. 8. Line k has elevation angle ξ , and
as long as ξ ̸= 90° and ξ ̸= 0°, k has both a component
in the up and east directions, i.e., k contains infinitely many
combinations of de and du . Consequently, it is not possible
to give unbiased estimates for both de and dn . If and only
if φ = 0°, line k has no component in the east direction and
ξ = 90°, yielding an unbiased de and a biased du component.

7Note that this is a discretionary projection, and not a forced projection,
as introduced in Section II-B.

C. NLA Frame

Using the concept of the null line with its unique orientation
in 3-D space, we propose a null line aligned (NLA) coordinate
system with the first axis in the local horizontal plane, the
second axis aligned along the null line, and the third one
complementing the right-handed 3-D Cartesian system; see
Fig. 8(c).

The plane orthogonal to the null line (i.e., spanned by
the first and third axes) is termed the NLA plane and has
the unique characteristic that an orthogonal projection of any
displacement vector onto that plane will not influence (bias)
the two in-plane components. This characteristic of unbiased-
ness makes the NLA system optimally suited for direct usage
in mathematical or geophysical models, as opposed to the
frequently used8 EU plane, which is biased by definition.
Obviously, intuitive interpretability of NLA results and visu-
alizations may require some training.

Using the NLA acronym as mnemonic, the axes can be
referred to as the null-line (axis), the leaning axis, which is
tilted backward with an elevation angle of ζ + 90°, and the
azimuth axis, which is horizontal with azimuth φ + 90°; see
also Fig. 8(c).

Projecting the two LoS observation vectors independently
onto the NLA plane allows for the simple (and unbiased)
retrieval of the resultant vector.

V. EVALUATION OF CURRENT PRACTICE

While the geometry of InSAR follows from conventional
linear algebra, its application in practice is conditional to
assumptions and requires strict adherence to the conditions
formulated in Section III. Evaluating contemporary literature
on InSAR geometry shows that this is not always the case.
We identify three types of typical geometric flaws in InSAR,
related to attribution, projection, and decomposition.

A. Attribution

Attribution errors occur when the LoS observation is lit-
erally attributed to one displacement direction (usually the
vertical), given only a single viewing geometry, without pro-
jection and without further justification. Obviously, this is
erroneous and results in a severe underestimation (bias) of
vertical displacements of (cos θ)−1, i.e., up to 40%; see (1).
While explicit attribution errors were more common in the
early days of InSAR, ambiguous statements or colorbar labels
can still be found in recent literature and products.9 Moreover,
describing LoS motion with words such as “subsidence” adds
another layer of semantic confusion.10 Attribution errors can
be easily avoided by explicitly stating prior assumptions and
using unambiguous axes and colorbar labels.

B. Projection

Projection errors occur, e.g., when LoS displacement esti-
mates are actually “projected onto the vertical,” (PoV) but

8For example, see [26], [28], [29], [33], and [36].
9For example, see [37], [38], [39], [40], and [41].
10For example, see [40] and [42].
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are subsequently presented as “vertical displacements.” Obvi-
ously, these two estimates would only be identical under the
assumption that any nonvertical displacement component of
the 3-D displacement vector is zero. Since this assumption
is in many cases incorrect, e.g., for landslides, but even
for subsidence bowls, it leads to a biased estimate. Such a
bias can have a significant impact combined with a small
likelihood of being detected.11 Often, explicit assumptions on
the nonexistence of the horizontal component are lacking.12

Typically, projection errors go hand in hand with indistinct
verbs, such as “converted,” “transformed,” “computed,” “cal-
culated,” or “determined.” These all suggest that there is a
unique relationship between the LoS displacements and the
vertical displacements, which is in general incorrect.

C. Decomposition

The most frequently occurring geometric InSAR fallacy is
a decomposition error, which occurs when the existence of
a null space is ignored; see Section IV. A typical example
of a decomposition error is the suggestion that by combining
an ascending and a descending time series, it is possible
to disentangle east–west horizontal deformation from vertical
deformation.13 Statements such as these have in common
that they suggest that it is possible to unambiguously and
unbiasedly “disentangle,” “estimate,” “determine,” “compute,”
or “reconstruct” two displacement components, usually the
vertical and east components, with two LoS observations.
As discussed in Section IV-B, with these viewing geometries
this will always result in biased estimates, except for the NLA
coordinate system proposed in Section IV-C. Consequently,
also a decomposition into the plane spanned by the up direc-
tion and the azimuth look direction of one of the satellites is
incorrect (i.e., biased) since this plane is not orthogonal to the
null line.

Two variations on decomposition errors can be
distinguished.

1) Assuming Signal Sensitivity Dependency: The first vari-
ant of a decomposition error occurs when it is assumed that
due to the lack of sensitivity for the north component, dn ,
it can be removed from the inverse problem altogether.14 This
assumption would only be valid if the orientation of the null
line n is (φ, ζ ) = (0, 0), hence in the north and horizontal
directions, respectively, which is never the case; see Fig. 7.
Thus, removing dn from (4) cannot be justified by the low
sensitivity for that component unless we have prior knowledge
of the expected magnitude of the north component. When dn

is larger than the noise level of the projected LoS observations,
it can still be discriminated from the observations.

2) Assuming Displacement Components to be Known: The
second variant of a decomposition error occurs when it is
argued that dn = 0 as a consequence of the insensitivity to

11For example, see [43], [44], [45], [46], and [47].
12For example, see [48], [49], [50], and [51].
13For example, see [26], [28], [29], and [33].
14For example, see [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],

[35], and [52].

displacements into the north direction.15,16 Obviously, this
assumption refers to the actual size of the physical signal,
i.e., the unknown parameter, which is evidently not correlated
to the sensitivity of a particular radar instrument. The flawed
argument is made to reduce the number of unknowns from
three to two, and subsequently arrive at a square linear system.

In conclusion, the implicit assumption that with two obser-
vation geometries we can estimate any arbitrary two directions
in 3-D space (including the fashionable EU decomposition),
by deliberately ignoring dn , or by assuming that dn is known,
leads to an erroneous (i.e., biased) decomposition.

VI. RECOMMENDATIONS FOR INSAR PRODUCT
GENERATION AND INTERPRETATION

While the underdetermined nature of the problem cannot
be formally solved, we propose to pursue standardization for
InSAR product generation and interpretation. First, we discuss
two options for performing a displacement vector decompo-
sition given two viewing geometries. Then, we evaluate the
options for displacement vector projection onto a 1-D direction
and a 2-D plane.

A. Recommendations for Vector Decomposition

A decomposition of two LoS observations is feasible when
the two LoS observations are STCI. Yet, as this is practically
impossible (Section III-A), it is necessary to define an RUM
and perform a datum connection; see Section III. Given
the model of observation equations of (4) and (5) with only
two observation geometries, the only way to reduce the rank
deficiency is to reduce the parameter space from three to two
unknown parameters. This goal can be achieved in two ways.

The first “physical” option is to change the orientation of
the Cartesian reference frame in combination with a priori
physical information: the strap-down system, which we discuss
in detail in [53]. For example, for many physical phenomena
gravity is the driving force for displacements, which allows
us to define a 2-D vertical plane in which the displacement
vector is expected to be situated. Examples include landslides
and glaciers, where this plane is spanned by the vector normal
to the slope and the gravity vector [20], [54], [55], [56],
or for line infrastructure where it may be assumed that no
displacements occur in its longitudinal direction [57], [58].
Both require a known rotation of the Cartesian frame such that
one direction can be plausibly assumed to be displacement-
free. Consequently, any frame misalignment will result in
biased estimates; see Section IV.

A second “geometric” option is to take advantage of the
orientation of the null space, by choosing an NLA Cartesian
coordinate system; see Section IV-C. This yields a plane
orthogonal to the null line, and the (forced) orthogonal pro-
jection of a displacement vector onto that plane will not
influence (bias) the two in-plane components. Thus, these in-
plane components can be uniquely and unbiasedly estimated.

15For example, see [30], [33], and [34]. Note that the dn = 0 assumption
is a specific case of the more generic assumption that dn is known.

16Note the subtle difference between variant 1, which simply removes the
dn component, and variant 2, which assumes it is equal to a known value,
i.e., zero.
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This option is particularly recommended when the InSAR
results are used as input in a physical or mathematical model,
since their unbiased nature will not compromise the output of
that model.

For both the “physical” and the “geometrical” option,
we recommend to explicitly mention the orientation of the null
line with the InSAR product since it comprises information on
the direction in which displacements cannot be observed.

Frequently used alternative options are not recommended.
Theoretically, when it would be known from physics that
a displacement component is zero in a cardinal compass
direction, i.e., a northbound component equal to zero (dn = 0),
the parameter space has dimension two, and the remaining
parameters may be uniquely estimated. However, while this
physics-based rank reduction may not be impossible, e.g.,
considering perfectly east–west oriented tectonic faults [6], it
is a solution that is in a generic sense physically unrealistic
and often unsubstantiated, since dynamic processes on Earth
typically do not have a preference for a cardinal compass
direction. Likewise, it is not recommended to use the widely
advocated and applied decomposition in the EU plane, as this
introduces biases, is prone to misinterpretation, and suggests
an estimation possibility that is nonexistent; see Section IV-B.

B. Recommendations for Vector Projection

When there is no deformation direction in which displace-
ments are known to be zero, or when it is inconvenient to
decompose the two LoS observations in the plane orthogonal
to the null line, it will not be possible to decompose the
LoS observations. Yet, a projection is an operation that is
admissible and can always be performed without exceptions
or assumptions. Clearly, a projection product is different from
estimating the unknown parameter in the corresponding direc-
tion. Moreover, “projection-onto” products are discretionary
projections, and it is up to the user to decide on whether such
a projection contains intelligible information. We distinguish
projection onto a 1-D direction from a single-viewing geom-
etry, and onto a 2-D plane from dual-viewing geometries.

1) Projecting One LoS Observation Onto One Direction:
With only one LoS observation available, it is possible to
project that observation onto any particular direction. For
example, often dLoS is PoV direction using

d PoV = Pup, LoS⊥ dLoS = (cos θ)−1dLoS (14)

where Pup, LoS⊥ is the projector, and dPoV is the projection
of dLoS onto the vertical direction. Note that in general
dPoV ̸= dup. The operation is an oblique projection of the LoS
observations onto the vertical axis, along a plane orthogonal
to the LoS unit vector. In contrast, when the LoS observations
would be projected orthogonally onto the vertical, i.e., along
a plane orthogonal to the “up” unit vector, that would result
in

dPoV⊥ = Pup, up⊥dLoS =

0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

P

uLoSdLoS = cos θ dLoS.

(15)

Thus, both Pup, LoS⊥ and Pup, up⊥ are allowable discretionary
projectors, but with a different result.

The main recommendation is therefore to i) explicitly men-
tion the use of a projection-onto product, e.g., using the PoV
as subscript similar to the LoS subscript, and ii) explicitly
distinguish an oblique from an orthogonal projection, using
the ⊥ indicator. This is necessary both in text AND in carto-
graphic symbols and, e.g., colorbar annotations. Furthermore,
we recommend to report the orientation of the null plane, since
it is the plane where no displacements can be observed.

2) Projecting Two LoS Observations Onto a Plane: When
two LoS observations are available, the observations can be
projected onto any arbitrary plane. When aN LoS displacement
vector is projected onto the plane spanned by the east and up
axes, i.e., the EU plane, we have

dPoEU =

1 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

P

uLoSdLoS (16)

where dPoEU is the projection of dLoS onto the EU plane. When
this projection is performed for the two LoS observations,
it is possible to transform the projections into east and up
components with (12) resulting in de,PoEU and du,PoEU. However,
it should be stressed that the results (de,PoEU, du,PoEU) are not the
same as the unknown displacement components (de, du).

C. Presenting LoS Observations Unaltered

The last option for handling the underdeterminedness prob-
lem is presenting the LoS observations unaltered as the final
product. This is obviously correct, as it does not attempt to
do any projection, attribution, or decomposition, as in [25],
[59], [60], and [61]. The drawback of the LoS product is
that it is typically more difficult to interpret, especially for
nonexperts. As the actual vertical and horizontal displacement
components are projected onto the LoS and superposed, what
happens in the real world remains obscured. Yet, this is the
preferred option when the InSAR results are used as input in
a physical or mathematical model, since their unbiased nature
will not compromise the output of that model.

VII. CONCLUSION

Based on a general review of InSAR geometry, including
the geometry-defining parameters from the satellite orbits in
combination with the curved Earth, the relationship between
the LoS observables and the 3-D displacement components is
described. Whether decomposition—i.e., estimation of (some
of the) 3-D displacement parameters—is permitted is depen-
dent on the STCI condition: spatio-temporally coinciding
independent observations. As this condition is typically never
fulfilled, it can be relaxed using the explicit assumption of
RUMs: regions of uniform motion. Together with explicit
spatio-temporal datum connection between the SAR datasets
and ≤3 (full rank) viewing geometries with sufficient angular
diversity, the quality of the estimates can be derived. In many
practical situations, at most two viewing geometries are avail-
able, defining the null line, whose orientation defines the
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estimability of displacement components. It depends on the
orbital and viewing geometry as well as on the location on
Earth. The null line orientation should be stated explicitly in
any standard InSAR product, as it is one of the fundamental
metrics required for a proper interpretation. The null line also
allows for the definition of the only unbiased reference system
for displacement component estimation without necessarily
adding assumptions, termed NLA: the null-line aligned coor-
dinate system.

Evaluating current practice yields three types of errors
that are frequently encountered: which are termed attribu-
tion, projection, and decomposition errors. These lead to
recommendations for InSAR product generation and interpre-
tation. For vector decomposition, it is recommended to use
the strap-down or the null-line aligned coordinate system,
to prevent biased estimation, and refrain from using the biased
decomposition on the EU plane. For vector projections, it is
recommended to use descriptive subscripts, dLoS, dPoV, dPoV⊥ ,
or dPoEU to unambiguously define projected InSAR products,
both textual and in maps and graphs.

The code to compute the null line orientation for any
arbitrary location on Earth is available for download via
https://gitlab.tudelft.nl/drama/drama [24].
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