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Abstract— One-bit synthetic aperture radar (SAR) imaging has
garnered significant interest due to its ability to lower the cost of
storing enormous amounts of data during sampling and trans-
mission, as well as the expense of analog-to-digital converters
(ADCs). However, existing one-bit SAR imaging methods suffer
from high computational complexity and artifacts in the resulting
images. To address these problems, the sparse logistic regression
(SLR) model solved by iterative hard thresholding (IHT) is
applied to one-bit SAR imaging, and a new SLR-IHT imaging
method is proposed. The SLR-IHT method models the one-bit
SAR imaging problem as an SLR task and optimizes the solution
using the IHT framework. By leveraging the joint sparsity of the
real and imaginary components, the proposed method enhances
imaging quality while effectively suppressing artifacts. To accel-
erate computation, the Armijo step size criterion is employed to
adjust the step size and support set during the iterative proce-
dure. Moreover, a theoretical investigation into the convergence
properties of the proposed method was conducted. Extensive sim-
ulations and real data experiments are conducted to evaluate the
performance of the SLR-IHT method. The results demonstrate
its superiority over existing one-bit SAR imaging techniques in
terms of imaging quality and computational efficiency.

Index Terms— Iterative hard thresholding (IHT), one-bit quan-
tization, sparse logistic regression (SLR), synthetic aperture radar
(SAR) imaging.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) imaging systems offer
the advantage of operating independently of time and

weather conditions, making them widely utilized in both
military and civilian applications [1], [2], [3], [4], [5], [6],
[7], [8]. However, achieving fast and accurate analog-to-digital
converter (ADC) requires expensive hardware enhancements.
To address the challenges associated with storage and trans-
mission, radar signal processing techniques utilizing one-bit
sampled data have garnered considerable attention [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. One-
bit sampling involves comparing the received signal with a
reference quantization level and recording whether the signal
is above or below this level [11], [12], [13]. As a result, the
quantized measurements possess simple symbolic values. The
significant advantage of one-bit quantization is its ability to
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support very high sampling rates while maintaining lower costs
and energy consumption compared to conventional ADCs
[21], [22].

Back in the 1990s, some researchers explored one-bit
sampling quantization and imaging of SAR data, and they
also developed real-time processing architecture designs and
prototype implementations [22], [23], [24], [25]. These studies
indicated that a low SNR could reduce the impact of nonlinear
quantization caused by one-bit quantization. The imaging
results of the one-bit matched filtering (MF) method did not
exhibit significant degradation in imaging performance. Fur-
thermore, doubling the oversampling frequency could reduce
the overlap effects between fundamental and higher-order
harmonics, resulting in imaging results very similar to those
obtained with high-bit quantization in traditional MF imaging,
albeit with an increase in sampled data volume [24]. However,
in situations with relatively low SNR, there is often a higher
level of noise, leading to a decrease in the performance of
traditional MF and a corresponding decline in the performance
of the one-bit MF method. As the SNR increased, the quan-
tization effects of one-bit sampling exacerbated the nonlinear
distortion of the signal spectrum, leading to an increase in
higher-order harmonic components, spectral broadening, and
significant impact on frequency components within the signal
band. Consequently, the direct application of one-bit MF meth-
ods made it challenging to attain high-quality imaging results.

Given the prevalence of sparse scenes in SAR imaging,
sparse imaging methods based on compressive sensing (CS)
have garnered significant research interest. These methods
enable high-resolution imaging of sparse scenes with only a
small number of measurements [26], [27], [28], [29]. However,
the CS imaging methods designed for precise data are not
directly applicable to the echo data obtained from one-bit
quantization. To address this issue, several one-bit CS methods
have been proposed to tackle the signal recovery task with
one-bit quantized data. In [30], the one-bit CS approach is
employed for the first time to accomplish SAR sparse imaging
using one-bit measurements. This method is based on the
Bayesian maximum a posteriori estimation framework, which
derives a mathematical model for reconstructing SAR images
from one-bit measurements. The optimization problem is
solved using a first-order primal-dual algorithm. Experimental
results demonstrate that this method effectively mitigates false
targets and enhances target-background contrast. In addressing
the nonlinear distortion problem of one-bit sampling quantiza-
tion, Jacques et al. [31] and Demir and Erçelebi [32] explore
a time-varying threshold-based one-bit CS method to recover
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the amplitude information lost in nonlinear quantization. The
one-bit model with time-varying thresholding is similar to
the model with fixed zero thresholding and only requires
a comparator to be implemented. However, for more pre-
cise signal estimation, the time-varying Gaussian thresholding
strategy must record the threshold value at each moment.
In [33], a binary CS with time-varying thresholds method
(BCST) is proposed, eliminating the need for unit norm
constraints or consistency functions between measurements
and estimates. This method offers the advantage of solving
the one-bit SAR sparse imaging problem without complex
optimization techniques. It employs variable separation and the
alternating direction method of multipliers (ADMM) to handle
the optimization problem. However, using ADMM involves
matrix inversion operations, resulting in high computational
complexity. Moreover, the storage of time-varying thresholds
still requires significant resources, limiting the full potential
of one-bit quantization. In contrast, using a fixed non-zero
threshold can achieve signal amplitude recovery but is limited
to a small range of signal threshold ratios and performs less
effectively than the random Gaussian threshold method [11].

The binary iterative hard thresholding (BIHT) method
addresses quantization errors by enforcing consistent recon-
struction, which has the advantage of easy implementation
and has been demonstrated to be successful and efficient in
enhancing the performance of one-bit signal recovery [31],
[34], [35]. Building upon this foundation, several researchers
have proposed one-bit SAR imaging approaches based on the
BIHT method framework [10], [36], [37]. In [36], an adaptive
BIHT (A-BIHT) method is proposed, which introduces an
adaptive quantization level parameter scheme and iteratively
updates the imaging results and quantization level parameters.
Moreover, the presence of noise in the echo data can lead to
erroneous one-bit measurements, affecting the consistency of
reconstruction conditions and resulting in artifacts in the final
imaging results. By updating the quantization level parameters
in each iteration, the A-BIHT method relaxes the quantization
consistency constraint to accommodate certain inconsistencies
introduced by noise. Wang et al. [10] argue that existing
one-bit CS SAR imaging methods should take into account the
clustering and joint sparse characteristics commonly observed
in radar backscattering applications. Clustering refers to the
spatial range of the target being imaged, where the majority
of targets extend to a group of adjacent pixels. The clustering
structure of the target image can be exploited to eliminate
isolated artifacts [38], [39]. The joint sparse pattern describes
the similarity in structure between the real and imaginary
parts of the data samples, with both parts largely sharing
zero or non-zero values simultaneously [40]. Based on this
insight, an enhanced BIHT (E-BIHT) method is proposed,
resulting in an image with a higher target clutter ratio. Moti-
vated by the advantages of adversarial samples, Han et al.
[37] introduce the adversarial sample-based BIHT (AS-BIHT)
method for one-bit radar CS imaging. AS-BIHT formulates
the one-bit radar imaging problem by constructing a quantized
level parameter within the imaging process and defining the
problem as a one-bit radar imaging problem with a quantized
level parameter as a parametric model. The parameterized

one-bit radar imaging model leverages adversarial samples to
train quantization level parameters, thereby improving one-bit
imaging performance. The quantization level parameters are
adaptively adjusted by seeking quantization-consistent solu-
tions on the updated imaging scene and related adversarial
samples in each iteration. This method reduces quantiza-
tion inconsistencies arising from one-bit quantization and
noise, resulting in the elimination of artifacts. Experimental
results demonstrate that the AS-BIHT method outperforms
conventional one-bit CS techniques in one-bit radar imaging
performance.

In the aforementioned one-bit SAR CS imaging methods,
regardless of whether they are based on the BIHT frame-
work or ADMM method [10], [33], [36], [37], a significant
number of matrix-vector multiplication or matrix inversion
operations are inevitably required. Particularly for large-scale
one-bit SAR imaging applications, such computations are
time-consuming, and the imaging results are still affected
by artifacts. To tackle these challenges, this article adopts a
perspective of sparse logistic regression (SLR) for one-bit CS
imaging. It treats the problem as the estimation of param-
eter vectors (i.e., reflection coefficients) given samples (i.e.,
observation matrix in CS theory) and labels (i.e., one-bit mea-
surements). SLR represents a classic logistic regression model
with sparse constraints, which has demonstrated effectiveness
in various fields such as neural networks, deep learning, and
bioinformatics for tasks like classification and feature selection
[41], [42], [43], [44], [45]. Therefore, this article formulates
the problem of one-bit SAR imaging as an SLR optimiza-
tion problem, leveraging the nonlinear differentiable logistic
function for learning and representing nonlinear patterns as
a favorable substitute for the sign(·) function [46], [47].
To address the proposed optimization problem, we introduce
the iterative hard thresholding (IHT) framework and propose
a novel SLR-IHT method for one-bit imaging. During the
iterative process, the Armijo line search step is utilized to
adjust the step size and support set automatically, thereby
expediting the computational speed. By imposing joint sparsity
constraints on both the real and imaginary parts, the imaging
quality is improved, leading to a reduction in the impact
of artifacts. Furthermore, a theoretical analysis of the con-
vergence behavior of the proposed optimization method has
been conducted, confirming that the optimization approach
consistently drives the objective function to diminish as the
number of iterations increases. Finally, extensive simulations
and real data experiments demonstrate that the proposed
method achieves effective imaging in sparse scenes with only
a small amount of data. It outperforms existing state-of-the-art
one-bit imaging methods in terms of computational efficiency
and imaging quality.

The remainder of the article is structured as follows:
Section II introduces the one-bit SAR imaging signal model.
Section III describes the suggested one-bit SAR imaging
methods in detail and theoretically analyzed. In Section IV,
the effectiveness of the proposed method is validated through
extensive simulations and real radar data, with quantita-
tive evaluation and analysis of the experimental results.
In Section V, a conclusion is provided.
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II. ONE-BIT SAR IMAGING MODEL

Consider a SAR imaging model with a stepped-frequency
waveform, where the radar emits multiple pulse sequences
while in motion. The radar data is the superposition of echoes
from all scatterers in the illuminated region by the radar
beam. Assuming the scatterers in the scene are stationary, the
stepped-frequency radar system consists of M available pulse
sequences and N available frequencies for each sequence. The
received signal for the nth pulse in the mth sequence can be
represented as follows:

ỹ(m, n) =

∫∫
G

2̃(x, y) · exp
[
− j2π fnτ(m, n, x, y)

]
dxdy

(1)

where fn denote the nth pulse frequency, (x, y) are the
coordinates of the target, 2̃(x, y) is the reflection coefficient
of the target at (x, y), τ(m, n, x, y) represents the time delay
of the target at (x, y), and G denotes the area illuminated
by the radar beam. In order to describe the radar data in
the discrete space domain, the scene needs to be discretized.
It is commonly assumed that the scene consists of a set of
point scatterers distributed on a grid, with the grid points
representing the locations of the scatterers. The reflection
coefficients of the scatterers can be represented as a 2-D matrix
denoted by

G =

 2̃(1, 1) · · · 2̃(1, Q)
...

. . .
...

2̃(P, 1) · · · 2̃(P, Q)

 (2)

where P is the number of points along the x-axis
and Q is the number of points along the y-axis after
scene discretization. To represent the radar data in matrix
multiplicative form, the 2-D reflection coefficient matrix
needs to be reshaped into a column vector 2̃ =

[2̃(1, 1), . . . , 2̃(P, 1), . . . , 2̃(1, Q), . . . , 2̃(P, Q)]T , where
2̃ is a PQ × 1 vector. Based on (2), the discrete expression
of the radar echo data is obtained as

ỹ(m, n) =

PQ∑
i=1

2̃i · exp
[
− j2π fnτ(m, n, i)

]
(3)

where PQ represents the total number of targets after discretiz-
ing the scene, 2̃i denotes the reflection coefficient of the i th
target (i.e., the i th element in 2̃), and τ(m, n, i) represents
the time delay of the i th target. Equation (3) can be expressed
in matrix form as

ỹ = 8̃2̃ + w̃ (4)

where ỹ = [̃y1, ỹ2, . . . , ỹM ]
T

∈ CM N×1 is the measurement
vector, and ỹm = [ym,1, ym,2, . . . , ym,N ] ∈ C1×N , w̃ ∈ CM N×1

is the additive noise vector. 8̃ = [8̃T
1 , 8̃T

2 · · · 8̃T
M ]

T is called
the observation matrix and

8̃m = exp
(
− j2π fm ⊗ τ T

m

)
∈ CN×PQ, m = 1, 2, . . . , M

(5)

where fm = [ f1, f2, . . . , fN ]
T and τm = [τ(m, 1),

τ (m, i), . . . , τ (m, PQ)]T represent the frequency and time

delay vectors of the mth pulse sequence, respectively. The
symbol ⊗ denotes the Kronecker product. Since the received
measurements are recorded and quantized separately on the
I and Q channels, the real and imaginary parts of (4) are
separated, i.e.,

y =

[
Re

(
ỹ
)

Im
(
ỹ
)
]
, 8 =

Re
(
8̃

)
−Im

(
8̃

)
Im

(
8̃

)
Re

(
8̃

)


2 =

Re
(
2̃

)
Im

(
2̃

)
, w =

[
Re

(
w̃

)
Im

(
w̃

)
]

(6)

where Re(·) and Im(·) denote the real and imaginary parts,
respectively, and (4) is reformulated as

y = 82 + w. (7)

The quantization threshold vector in a one-bit SAR imaging
system can be expressed as λ ∈ R2M N×1, and the one-bit
measurement vector can be obtained as

z = sign(y − λ) (8)

where sign(·) is an element-by-element function, defined as

sign(z) =

{
1, if z ≥ 0
−1, if z < 0.

(9)

To reduce the complexity of the imaging system, we adopt
zero threshold quantization, represented by setting λ = 0.

In many SAR imaging scenarios, the scene of interest is
inherently sparse [26], [27], [28], i.e., only a few coefficients in
2 are significantly non-zero, while the remaining coefficients
are either zero or close to zero. Assume that the sparsity level
of 2 is 2K , meaning that the number of dominant coeffi-
cients cannot exceed 2K . Consequently, one-bit SAR imaging
problem can be reformulated as the following optimization
problem:

2̂ = arg min
2

∥z − sign(82)∥0

s.t. ∥2∥0 ≤ 2K , ∥2∥2 = 1 (10)

where the ℓ2-norm constraint of ∥ 2 ∥2= 1 is incorporated to
prevent trivial all-zero solutions and ensure the uniqueness of
the solution. One-bit SAR imaging aims to estimate 2 based
on the one-bit measurement vector z. Since 2 is a sparse
signal, the one-bit CS techniques can be employed to solve
the imaging problem.

Recent one-bit SAR imaging methods described in [10],
[36], and [37] are modeled on the BIHT framework and are
mainly reconstructed by constraining 2 to be consistent with
the one-bit measurement z, denoted as

2̂ = arg min
2

∥ [z ⊙ (82)]− ∥1

s.t. ∥2∥0≤ 2K , ∥2∥2= 1 (11)

where [·]− denotes a negative function, if ui < 0, [ui ]− = ui ,
otherwise [ui ]− = 0. The symbol ⊙ stands for Hadamard
product. Specifically, during the kth iteration, given the initial
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estimate 2 and the one-bit measurement z, the subgradient is
calculated as follows:

∇J = 8T (
z − sign

(
82k)). (12)

The iterative update formulas are obtained

ak+1
= 2k

− α∇J (13)

2k+1
= η2K

(
ak+1) (14)

where α is a scalar that controls the gradient descent step, and
η2K (·) is a function that uses thresholding to find the optimal
2K -term approximation of a.

III. PROPOSED METHODS

In contrast to previous one-bit SAR imaging techniques
based on the BIHT framework, we model the one-bit measure-
ments from the SLR perspective. SLR is a special nonlinear
regression model with broad applicability in neural networks
[48], [49], machine learning [50], bioinformatics [51], and
other fields, demonstrating significant feature selection and
classification abilities. Due to the prevalence and utility of
SLR, various generalized techniques and models have been
developed [52], [53], [54]. On this basis, this article transforms
the one-bit CS imaging problem into an SLR optimization
problem.

A. Sparse Logistic Regression

The observation model for SAR in the real number domain
is described by (7). In order to accurately reconstruct the
reflection coefficient 2 of the target from binary echo data, the
one-bit SAR imaging process involves estimating the param-
eter vector 2 given the samples 8 and labels z. Traditional
logistic regression models are commonly employed when the
number of samples exceeds the number of features. However,
in many practical applications, this model may suffer from
underdetermination issues, leading to overfitting problems.
For instance, in data mining and machine learning, only a
few features are typically crucial, making sparse criteria for
input features desirable for faster prediction or better pattern
interpretation. By imposing sparse constraints, the number of
features can be reduced to effectively capture the character-
istics of real-world problems, resulting in the widely studied
SLR problem. Since targets with high scattering coefficients
often exhibit a sparse distribution [26], [27], [28], the one-bit
SAR sparse imaging problem can be naturally formulated as
an SLR problem. For one-bit quantized data z ∈ {1, −1}, the
following probabilistic model is assumed:

P
(
zi = ±1 | 8i,:

)
=

1
1 + exp

(
−zi

(
8i,:2

)) (15)

where 8i,: represents the i th row of 8, i = 1, 2, . . . , 2MN ,
P(zi ) denotes the conditional probability of label zi given the
sample 8i,: and the parameter vector 2. P(zi = 1 | 8i,:) +

P(zi = −1 | 8i,:) = 1. If (8i,:2) → +∞
lim

(8i,:2)→+∞

P
(
zi = 1 | 8i,:

)
=

1
1 + exp

(
−zi

(
8i,:2

)) = 1

lim
(8i,:2)→ +∞

P
(
zi = −1 | 8i,:

)
=

1
1+exp

(
−zi

(
8i,:2

)) = 0

if (8i,:2) → −∞
lim

(8i,:2)→−∞

P
(
zi = 1 | 8i,:

)
=

1
1 + exp

(
−zi

(
8i,:2

)) = 0

lim
(8i,:2)→−∞

P
(
zi = −1 | 8i,:

)
=

1
1 + exp

(
−zi

(
8i,:2

)) =1.

Therefore, (15) can be seen as utilizing the logistic func-
tion σ(zi (8i,:2)) = 1/(1 + exp(−zi (8i,:2))) to quantify
the consistency between the measurement value zi and the
estimated value 8i,:2. When 8i,:2 is larger, the probability
of zi = 1 is higher, and when 8i,:2 is smaller, the probability
of zi = −1 is higher. Hence, it effectively models the accu-
racy of one-bit quantization. To estimate the weight parameter
2 using 2MN independent and identically distributed samples
(8i,:, zi ), i = 1, 2, . . . , 2MN , the classical logistic regression
model can be obtained by solving the maximum likelihood
estimation

L(2) =

2M N∏
i=1

P
(
z = zi | 8 = 8i,:

)
=

2M N∏
i=1

√
P
(
8i,:

)1+zi
(
1 − P

(
8i,:

))(1−zi )
. (16)

Taking the logarithm of (16), we can get

log(L(2)) =

2MN∑
i=1

[
−

1
2
(1 + zi )log

(
1 + exp

(
−

(
8i,:2

)))
−

1
2
(1 − zi )log

(
1 + exp

(
8i,:2

))]
(17)

and
−

1
2
(1 + zi )log(1 + exp−(8i,:2))

= −log(1 + exp(−(8i,:2))), if zi = +1

−
1
2
(1 − zi )log(1 + exp(8i,:2))

= −log(1 + exp(8i,:2)), if zi = −1.

(18)

By introducing both the l0 sparsity constraint and the l2 norm
constraint, and assuming that the maximum number of
non-zero elements in 2 does not exceed 2K , we define the
following sparse optimization problem:

arg min
2

f (2) =

2M N∑
i=1

log
(
1 + exp

(
−zi

(
8i,:2

)))
s.t. ∥ 2 ∥0 ≤ 2K , ∥ 2 ∥2= 1. (19)

Given that the real and imaginary parts of the complex reflec-
tion coefficient vector 2 can be viewed as projections onto two
orthogonal axes, it is observed that they often exhibit similar
structures. Specifically, the real and imaginary parts of 2 tend
to exhibit consistency in terms of assuming zero or non-zero
values, indicating a joint sparse pattern. By incorporating this
joint sparsity constraint into (19), the objective function can
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be expressed as follows:

arg min
2

f (2) =

2M N∑
i=1

log
(
1 + exp

(
−zi

(
8i,:2

)))
s.t.

PQ∑
i=1

∥

√
(2i )

2
+

(
2i+PQ

)2
∥

0
≤ K , ∥ 2 ∥2= 1. (20)

Thus, the one-bit imaging problem is turned into the solution
model (20).

B. Optimization Method

The IHT method has gained significant attention due to
its simple implementation and favorable recovery character-
istics. Thus, we employ the IHT framework along with the
Armijo-type step size criterion to autonomously adjust the step
size and support set for solving optimization problem (20).
The parameter vector 2 is iteratively updated according to
the following three main steps.

1) Gradient Descent and Debiasing: The gradient descent
step is calculated as

h(2) = (2 − α∇ f (2)) (21)

where α represents the step size and ∇ f (2) denotes the
gradient of (20), that is,

∇ f (2) = −8T z ⊙
exp(−z ⊙ (82))

1 + exp(−z ⊙ (82))
. (22)

Choose TK as the optimal support of size 2K for h(2).
Specifically, TK comprises a set of indices that correspond
to the maximum 2K absolute elements in h(2)

2TK = η2K (h(2)). (23)

Once TK is selected, the debiasing step attempts to provide
a better estimate by solving an optimization problem in a
restricted subspace that is set to zero by setting all elements
of 2 with index T C

K , where T C
K is the complement of TK in

{1, 2, . . . , 2PQ} [41].
2) Armijo Line Search: During the gradient descent process,

we employ the classical Armijo line search step size criterion
to estimate the parameter α in (21). The Armijo criterion is
guided by two key principles: the objective function value
should be sufficiently minimized, and the line search step
size should not be too small. Assuming that the estimated
2k of 2 is obtained during the kth iteration. Then, 2k

αl
=

η2K (2k
− αl∇ f (2k)) is computed by iteration, where α0 =

√
k, αl = α0β

l , and l is the smallest non-negative integer
satisfying the following conditions:

f
(
2k

αl

)
≤ f

(
2k)

−
σ

2

∣∣∣∣2k
αl

− 2k
∣∣∣∣2

(24)

where the parameter (σ/2) is commonly selected as a tiny
positive value. In Algorithm 1, we summarize the Armijo line
search procedures.

After the debiasing step 2k
αl

= η2K (2k
− αl∇ f (2k)), it

guarantees that the number of non-zero elements in 2k
αl

does
not exceed 2K at each iteration. Hence, the computation of

Algorithm 1 Armijo line search.

1) Input: 2k , ∇ f (2k), α0 =
√

k, β, σ , and maximum
number of iterations lmax ;
2) Repeat the following, l = 0, 1, 2, . . . , lmax

2k
αl

= η2K (2k
− αl∇ f (2k));

3) Until Eq. (24) is satisfied, or the maximum number of
iterations is reached;
4) Output: 2k

αl
.

∇ f (2), f (2k
αl
), and f (2k) can be sped up by constraining

8, 2k to its support set TK , i.e.,

f (2) =

2M N∑
i=1

log
(

1 + exp
(
−zi

((
8i,:

)
TK

2TK

)))
(25)

∇ f (2) = − 8T z ⊙
exp

(
−z ⊙

(
8TK 2TK

))
1 + exp

(
−z ⊙

(
8TK 2TK

)) . (26)

The label subscript indicates that 8i,: and 2 only include
elements which index belongs to TK . Since the number of
non-zero elements is significantly fewer than the number
of pixels, i.e., 2K ≪ 2PQ, (25) and (26) can effectively
reduce the computational complexity of the Armijo line
search.

3) Joint Sparse Pattern: Due to the joint sparsity constraint
in (20) being non-differentiable, for the 2k

αl
obtained by the

Armijo line search, the greedy selection rule 0(2k
αl
, K ) is

used to guarantee the joint sparse pattern [10]. Definition
0(2, K ) is an element-by-element operation, and 0(2i , K )

is calculated as follows:

0(2i , K ) =

 2i ,

√
(2i )

2
+

(
2i+PQ

)2
≥ δ

0,

√
(2i )

2
+

(
2i+PQ

)2
< δ

i ≤ PQ

(27)

otherwise

0(2i , K ) =

 2i ,

√
(2i )

2
+

(
2i−PQ

)2
≥ δ

0,

√
(2i )

2
+

(
2i−PQ

)2
< δ

i > PQ.

(28)

In (27) and (28), δ is the K th largest element of
{((2i )

2
+ (2i+PQ)2)1/2

| i = 1, 2, . . . , PQ}.
At the kth iteration, the iteration stops wherever the

maximum number of iterations kmax has been achieved
or | f (2k+1) − f (2k)| < 10−6(1 + | f (2k)|) is satis-
fied. We summarize the proposed SLR-IHT method in
Algorithm 2.

Remark 1: The selection of sparsity level K . Similar to
existing one-bit CS imaging methods based on the BIHT
framework [10], [36], [37], the proposed method is a greedy
selection approach that requires specifying the sparsity level K
as an input parameter. In the context of greedy algorithms, the
selection of the sparsity parameter K can be based on empiri-
cal knowledge or involve running the method with a range of
different sparsity levels K and subsequently choosing the most
suitable sparse recovery result, albeit at the cost of increased
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Algorithm 2 SLR-IHT.
1) Input: The one-bit measurement vector z, the observation
matrix 8, the sparsity level K , and the maximum number
of iterations kmax ;
2) Initialization: 20

= 0;
3) Repeat the following, k = 0, 1, 2, . . . , kmax

a) Calculate the gradient ∇ f (2k);
b) Estimate 2k

αl
using Algorithm 1;

c) Joint sparse constraint 2k+1
= 0(2k

αl
, K );

4) Until the iteration termination conditions are satisfied;
5) Output: Estimated value 2̂ = 2k+1/∥ 2k+1

∥2.

computational complexity [10], [36]. Another strategy involves
estimating the sparsity level K of the scene roughly based on
MF theory by imaging the scene and analyzing the recovered
image [55]. In Section IV, we perform an analysis of the
proposed method’s performance for various sparsity levels K
using both simulated and real data. The results demonstrate
that the proposed method consistently achieves better imaging
results across a wide range of sparsity levels.

Remark 2: The selection of the observation matrix and
its scalability. The SLR-IHT method is a sparsity-driven
algorithm that achieves one-bit CS imaging with a small
number of randomly selected echo samples. Assuming we
randomly select Mr sequences from a total of M sequences,
with Nr randomly selected frequency points per sequence,
we can construct a new observation matrix 8′

∈ R2Mr Nr ×2PQ .
Hence, the reduced measurement vector can be represented as

zr = sign
(
8′2 + wr

)
(29)

and one-bit sparse imaging can be achieved using the SLR-
IHT method. The proposed method can also be extended to
address one-bit sparse imaging problems of various signal
types and imaging scenarios by adapting the construction of
the observation matrix 8.

Remark 3: Memory requirements. Both the proposed
method and existing one-bit CS imaging methods, such as
BCST [33], A-BIHT [36], and AS-BIHT [37], require stor-
ing the observation matrix 8 ∈ R2M N×2PQ . Consequently,
directly constructing the observation matrix typically neces-
sitates substantial memory storage, which limits the practical
application of these methods in large-scale real-time SAR
imaging. To overcome this challenge, a nonuniform fast
Fourier transform (NUFFT) based imaging method was pro-
posed in [56] and [57] to expedite the imaging process. This
method solely requires storing the interpolation coefficients
of NUFFT, thereby obviating the need for direct construction
of the observation matrix and effectively reducing memory
consumption. Another strategy involves adopting an approxi-
mate observation approach by introducing operators based on
the MF theory and their corresponding inverse operators to
substitute for the computationally intensive matrix–vector mul-
tiplications 8(·) and 8T (·) in (22) [55], [58], [59], [60], [61],
[62]. This technique leverages the inherent advantages of both
CS methods and MF methods in imaging and achieves memory
requirements comparable to traditional MF-based methods.

The proposed method can integrate these advancements to
further expedite imaging and mitigate memory constraints.

C. Convergence Analysis

To analyze the convergence of the proposed method, we ini-
tially present the following Definition and Lemma.

Definition 1 [42]: Let f (x) be a continuously differen-
tiable function. For any vector x and 1x ∈ R2PQ×1, if the
following inequality holds:

f (x + 1x) ≤ f (x) + ⟨∇ f (x), 1x⟩ +
λ∗

2
∥ 1x ∥

2
2 (30)

where ⟨x, y⟩ represents the inner product of vectors x and
y, then f (x) is said to be strongly smooth with a parameter
λ∗ > 0 on the R2PQ×1.

Lemma 2 [42]: The sparse logistic loss function is contin-
uously differentiable and strongly smooth on R2PQ×1. That is,
for any 2, 2∗

∈ R2PQ×1, the following inequality holds:

f (2) ≤ f
(
2∗

)
+ ⟨∇ f

(
2∗

)
, 2 − 2∗

⟩ +
λ∗

2
∥ 2 − 2∗

∥
2
2.

(31)

For the Armijo line search step in Algorithm 1, we have the
following Theorem.

Theorem 3: The function f (2) is strongly smooth, given
2k

∈ S, where S is the sparse set defined as S =

{2 ∈ R2PQ×1
:∥ 2 ∥0≤ 2K }. Then, for the Armijo line search

step in Algorithm 1, the following inequality holds:

f
(
2k

αl

)
≤ f

(
2k)

−
σ

2
∥ 2k

αl
− 2k

∥
2
2 for 0 < α ≤

1
λ∗ + σ

.

(32)

Therefore, αl is clearly defined in Algorithm 1.
Proof: According to the computation of 2k

αl
in

Algorithm 1, we have

2k
αl

∈ argmin
{∥∥2 − 2k

+ α∇ f
(
2k)∥∥2

2 : 2 ∈ S
}

(33)

which implies that ∥ 2k
αl

−2k
+α∇ f (2k) ∥

2
2≤∥ α∇ f (2k) ∥

2
2

through 2k
∈ S. This leads to∥∥2k
α − 2k

∥∥2
2 ≤ −2α

〈
∇ f

(
2k), 2k

α − 2k〉. (34)

From the strong smoothness property of f (2) and (34),
we can derive that

f
(
2k

αl

)
≤ f

(
2k)

+
〈
∇ f

(
2k), 2k

αl
− 2k〉

+
λ∗

2

∥∥(
2k

αl
− 2k)∥∥2

2

≤ f
(
2k)

−
1

2α
∥ 2k

αl
− 2k

∥
2
2 +

λ∗

2

∥∥(
2k

αl
− 2k)∥∥2

2

= f
(
2k)

−
1
2

(
1/α − λ∗

)
∥ 2k

αl
− 2k

∥
2
2. (35)

By constraining α ∈ (0, (1/λ∗
+ σ)], we obtain the desired

result. □
In the kth iteration, when utilizing Algorithm 1 to esti-

mate 2k
αl

, we subsequently apply the greedy selection rule
2k+1

= 0(2k
αl
, K ) to ensure joint sparsity constraints. Let
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2k+1
+ 12k

= 2k
αl

, where 12k contains only a few non-
zero elements, and the position indices of these elements are
denoted as T12k . According to Lemma 2, there exists λ∗ such
that

f
(
2k+1)

≤ f
(
2k

αl

)
+

〈
∇ f

(
2k

αl

)
, 12k〉

+
λ∗

2

∥∥12k
∥∥2

2.

(36)

Given that f (2k
αl
) satisfies (32) and ⟨∇ f (2k

αl
), 12k

⟩ =∑
i∈T12k

∇i f (2k
αl
)12k

i tends to zero [44], [63], substituting
(32) into (36) yields

f
(
2k+1)

≤ f
(
2k)

−
σ

2

∥∥2k
αl

− 2k
∥∥2

+
λ∗

2

∥∥12k
∥∥2

2. (37)

When σ∥ 2k
αl

− 2k
∥

2
2 − λ∗

∥ 12k
∥

2
2 ≥ 0, we have

f (2k+1) ≤ f (2k), indicating that the f (2) consis-
tently decreases with an increasing number of iterations.
In Section IV, we conducted cross-validation and experimen-
tal analysis of algorithm parameters σ and β. Furthermore,
we performed experimental verification of the convergence of
the proposed method under these reference parameter settings
using various simulated and real radar data.

D. Computational Complexity Analysis

Let I = PQ represent the total number of imaging pixels
and J = MN for the total number of transmitted frequencies,
so that 8 ∈ R2J×2I , z ∈ R2J×1, and 2 ∈ R2I×1 hold. For
the proposed SLR-IHT method, the computational complexity
of the joint sparse constraint step 0(2, K ) is negligible
relative to the Armijo line search and gradient calculation.
Since the operation is constrained to the support set TK ,
the computational complexity of the Armijo line search is
about O(4J Kl), where l is the number of iterations, which is
typically set to no more than 15. The main cost of calculating
gradient is to compute 8T z, approximately O(4I J ). Thus,
each iteration of SLR-IHT has a total computational cost of
approximately O(4J (Kl + I )).

The computational complexity of the SLR-IHT method is
compared with the three state-of-the-art one-bit CS imaging
methods, BCST [33], A-BIHT [36], and AS-BIHT [37]. Both
A-BIHT and AS-BIHT methods are based on the BIHT
method framework. According to (12), each iteration of the
BIHT method involves the 8(·) and 8T (·) operation, and
the main computational complexity is O(8J I ). The proposed
method usually satisfies the Kl ≪ I , so the computational
complexity is lower than that of the BIHT method. In each
iteration, the A-BIHT method additionally needs to build sup-
port sets for consistency and inconsistencies, and the AS-BIHT
method needs to generate additional adversarial samples and
adjust the quantization level, both of which require 8(·) and
8T (·) operations. Therefore, the computational complexity of
these two methods is higher than that of the BIHT method.
The BCST method needs to calculate the matrix inversion
(88T

+ µI2M)−1 before iteration, where µ is the regular-
ization parameter, and the computational complexity is about
O(8/3J 3). In the iterative process, the computational com-
plexity of the BCST method is approximately O(8I J + 8J 2).
By comparison, it is proved that the proposed method has

Fig. 1. Imaging scene of a simulation experiment.

a lower computational complexity per iteration than current
methods.

IV. NUMERICAL RESULTS

In order to verify the effectiveness of the proposed method
in one-bit SAR imaging, this section presents experimental
results using both simulated and real radar data. We compare
the performance of the proposed SLR-IHT method with that
of the traditional back-projection (BP) method, as well as the
one-bit CS-based imaging methods, BCST [33], A-BIHT [36],
and AS-BIHT [37]. The reconstructed images obtained from
each method are normalized for fair comparison. All exper-
iments are conducted on a personal computer equipped with
an Intel Core1 i9-13900HX processor and 64 GB of RAM.

A. Simulation Data Experiment

We first generated a simulated imaging scene to evaluate
the performance of all methods. To quantitatively compare the
imaging performance of the proposed method and the com-
parison methods, we employed mean square error (MSE) and
target-to-clutter ratio (TCR). MSE is defined as follows [37]:

MSE = 10log10

(∥∥∥2 − 2̂

∥∥∥
2
/(PQ)

)
(38)

where 2 represents the normalized ground truth and 2̂

represents the reconstructed results. A lower MSE indicates a
smaller reconstruction error and higher imaging quality. TCR
is defined as [37]

TCR = 10log10

(1/PT )
∑

(x,y)∈T |2T |
2

(1/PC)
∑

(x,y)∈C |2C |
2 (39)

where 2T and 2C represent the amplitudes of pixels in the
target and clutter regions, respectively, while PT and PC are
the respective number of pixels. A higher TCR value indicates
a stronger concentration of dominant coefficients in the target
region, resulting in a reduction of artifacts outside this region.
To compute TCR, we select the target and clutter regions based
on the known ground-truth positions of the targets.

Since one-bit CS-based imaging methods require only a
small number of measurements to achieve highly accurate

1Trademarked.
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Fig. 2. One-bit SAR imaging result of the simulated scene (K = 800, SNR = 20 dB, SR = 25%). (a) BP, (b) BP (one bit), (c) BCST, (d) A-BIHT,
(e) AS-BIHT, and (f) SLR-IHT.

imaging of sparse scenes, we introduce the sampling ratio (SR)
to measure the proportion of randomly sampled data [64]

SR =
Randomly selected amount of data

Total amount of data
× 100%. (40)

The SNR of simulation experiment data adopts the defini-
tion in [65], [66], and [67]

SNR = 10log10
E∥82∥

2
2

E∥w∥
2
2

. (41)

1) Simulation Experiments: The imaging area in the simu-
lation was chosen to be 100 × 100 m, divided into a grid of
P × Q = 101 × 101 pixels with a grid spacing of 1 m
per pixel. There were a total of 20 antenna positions and
2001 frequency points, with an aperture length of 200 m.
The frequency sweep was conducted with a 1-MHz step size,
covering the frequency range from 5 to 7 GHz, resulting
in a bandwidth of 2 GHz. The imaging scene consisted of
five targets, occupying a total of 684 pixels, as illustrated
in Fig. 1. All target scattering coefficients were normalized.
Target T1 occupied 576 positions with a scattering coefficient
of 1. Target T2 comprised a grid of size 7 × 7 with a scattering
coefficient of 0.8. Targets T3 and T4 consisted of grids of
size 5 × 5 with a scattering coefficient of 0.6. Compared
to the other targets, T5 was a small target occupying a
3 × 3 grid with a scattering coefficient of 0.4. The termination
conditions for BCST, A-BIHT, and AS-BIHT were set as a

TABLE I
QUANTITATIVE COMPARISON OF IMAGING RESULTS OF DIFFERENT

METHODS IN SIMULATION SCENE

maximum of 200 iterations or when the kth iteration satisfied
(|2k

− 2k−1
|2/|2

k
|2) < 10−6.

We set the SR = 25% and the SNR = 20 dB in the
simulation experiments. For the proposed method, A-BIHT
and AS-BIHT, we fixed the sparsity level K = 800.
Fig. 2(a) and (b) illustrates the imaging results obtained
using the complete quantized data and the one-bit quantized
data with the BP method, respectively, revealing the presence
of high sidelobe levels. In contrast, the one-bit CS-based
methods, including BCST, A-BIHT, AS-BIHT, and our pro-
posed method, successfully estimated all the scattering points.
However, BCST, A-BIHT, and AS-BIHT methods exhibited
varying degrees of artifacts. In contrast, the proposed SLR-IHT
method demonstrated cleaner backgrounds and a better rep-
resentation of the differences in scattering intensity among
the five targets. Table I presents the MSE and TCR values
for all the images in Fig. 2, further confirming the quanti-
tative evaluation results that the proposed method achieved
the lowest MSE and the highest TCR. This is because the
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Fig. 3. Quantitative evaluation of MSE and TCR values for the imaging
results of the proposed method with different parameter configurations.
(a) MSE. (b) TCR.

Fig. 4. MSE and TCR variation curves with SNR, where the SR = 25%
and K = 800. (a) MSE. (b) TCR.

proposed method is based on the SLR model, which utilizes a
differentiable nonlinear logistic function to learn and represent
the nonlinear patterns. It provides an excellent alternative to
the sign(·) function and improves imaging results. Moreover,
our method incorporates joint sparsity constraints on the real
and imaginary parts, effectively suppressing the occurrence of
artifacts.

2) Imaging Performance With Different Parameter Config-
urations: The parameters involved in the Armijo line search
step of Algorithm 1 for the proposed method include σ and β.
σ primarily controls the level of reduction in the objective
function f (2), while β governs the rate of change in the
step size. To evaluate the influence of the parameters σ and
β on the performance of the SLR-IHT method, we conducted
experimental analysis using the simulated data corresponding
to Fig. 2. The parameter σ was varied within the range of
[100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

], while β was varied
within the range of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
Fig. 3 illustrates the quantitative evaluation results with dif-
ferent σ and β values, based on 50 Monte Carlo random trials
and the calculated mean values. The observations show that
when σ is fixed at 100, the imaging results consistently exhibit
poor quantitative evaluation, characterized by higher MSE and
lower TCR, regardless of the chosen β value. However, for
σ values less than or equal to 10−1, the SLR-IHT method
achieves superior imaging performance and demonstrates
robustness in the selection of β. Based on these findings,
we selected σ = 10−4 and β = 0.8 as the parameter settings
for subsequent imaging experiments in our proposed method.

In the subsequent simulations, we conduct Monte Carlo
random trials to study the imaging performance of different

Fig. 5. MSE and TCR variation curves with the sparsity levels K , where
the SR = 25% and SNR = 20 dB. (a) MSE. (b) TCR.

methods with various conditions, including different SNR, SR,
and sparsity level K . The experiments are repeated 50 times,
with the measurement data being regenerated for each trial,
and the results of all methods are averaged for analysis.

3) Imaging Performance With Different SNRs: Fig. 4
presents all one-bit CS-based methods’ imaging performance
curves as the SNR varies, with SR = 25% and K = 800. It is
evident that the imaging performance of all methods improves
with increasing SNR. Notably, the proposed SLR-IHT method
exhibits significant advantages in terms of MSE and TCR
compared to the other comparative methods. While the BCST
method outperforms AS-BIHT and A-BIHT in terms of
imaging performance, it requires storing time-variable thresh-
olding, which introduces an additional system burden. On the
other hand, AS-BIHT adaptively adjusts the quantization level
parameter by consistently reconstructing the updated imaging
scene and corresponding adversarial samples in each iteration,
resulting in improved imaging quality compared to A-BIHT.

4) Imaging Performance With Different Sparsity Levels K :
The proposed methods, AS-BIHT and A-BIHT, are all greedy
selection methods that require setting the sparsity level K as
an input parameter. Given that the actual count of scattering
points within the scene is 684, it is imperative to select
a sparsity level parameter K greater than 684 to ensure
complete imaging. In Fig. 5, we analyze the relationship
between imaging performance and the sparsity level K for
all methods, with SR = 25% and SNR = 20 dB. When K
was set to 700, slightly exceeding the actual count of scatter
points, the proposed method exhibited limitations in effectively
estimating certain weak scatter points within the scene. This
led to a relatively higher MSE, although it remained lower
than that of the comparative methods. Notably, this was due
to the concentration of estimated scatter points within the
target region 2T , thus maintaining a relatively high TCR.
When K = 750, the proposed method exhibited enhanced
capabilities in effectively estimating all scatter points within
the scene while adeptly suppressing clutter, resulting in the
lowest MSE. As sparsity level K continues to increase, the
SLR-IHT, A-BIHT, and AS-BIHT methods retain a higher
number of scatter points than the actual count within the scene,
leading to increased MSE and decreased TCR. Consequently,
when choosing the sparsity level K for the scene, opting for
a value slightly greater than the actual count of scatter points
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Fig. 6. MSE and TCR variation curves with SR, where the SNR = 20 dB
and K = 800. (a) MSE. (b) TCR.

proves effective in achieving improved imaging performance
with these greedy selection methods. The BCST algorithm,
independent of the sparsity level K , maintains stable MSE
and TCR values regardless of changes in the sparsity level K .

5) Imaging Performance With Different SRs: Fig. 6 presents
the investigation of imaging quality with different SRs, with
SNR = 20 dB and K = 800. It is evident that the imaging
performance of all methods improves as the SR increases. Both
evaluation metrics consistently demonstrate the same conclu-
sion regarding imaging performance assessment. Similar to
the findings in Figs. 4 and 5, the proposed method exhibits
superior imaging performance compared to the comparison
methods across both evaluation metrics. With the increase in
SR, the AS-BIHT method achieves better adjustment of the
quantization level parameter, resulting in improved imaging
performance that surpasses that of the A-BIHT method.

B. Real Data Experiments

This section presents a comparative analysis of the imaging
results obtained from two sets of real radar data. Due to the
unavailability of the true scattering values in the real data
and the challenge of accurately delineating the target region,
we evaluate the imaging quality using the following metrics
[64], [68]:

Entropy = −

P∑
p=1

Q∑
q=1

∣∣2̂pq
∣∣2∥∥∥2̂

∥∥∥2

2

log

∣∣2̂pq
∣∣2∥∥∥2̂

∥∥∥2

2

. (42)

A smaller value of entropy indicates better focusing quality.
In addition, the maximum iteration count for all methods was
capped at 50.

1) First Set of Real Data Imaging Experiments: The first
set of experiments was conducted in a microwave anechoic
chamber. A pair of Archimedes helical antennas are used to
transmit and receive radar signals at a distance of 0.79 m and
a height of 1.33 m relative to the target plane. A stepped
frequency signal with a step size of 1 MHz was utilized,
covering the frequency range of 0.5–2.5 GHz. Fig. 7(a) depicts
the target distribution in the imaging region, and Fig. 7(b)
depicts the geometry of the imaging scene. There are five
distinct objects in the scene, including two dihedral reflectors
(T1, T2), two trihedral reflectors (T1, T2), and a metal sphere
T5. Notably, T5 was considerably smaller than the other targets.

Fig. 7. (a) Target distribution. (b) Geometry of the imaging scene.

Fig. 8. Imaging results of the first set of real data. (a) BP, uses fully one-bit
quantized data. (b) BCST, SR = 25%. (c) BCST, SR = 50%.

TABLE II
ENTROPY COMPARISON OF IMAGING RESULTS FROM DIFFERENT

METHODS (FIRST SET OF REAL DATA)

The imaging area measures 4 × 4 m, while the number of
image grids is 150 × 150.

In Fig. 8, we compare the imaging results of the BP method
and the BCST method with different SRs. Fig. 9 presents
the imaging results obtained using the A-BIHT, AS-BIHT,
and our proposed method with various SRs and sparsity level
K . From Figs. 8 and 9, it can be observed that the BP
method suffers from significant blurring and artifacts, and both
the BCST and A-BIHT methods fail to effectively estimate
the target T5. As the SR increases from 25% to 50%, the
AS-BIHT method effectively estimates all targets, but there
is still a certain degree of blurring artifacts, as shown in
Fig. 9(e). In contrast, our proposed method consistently and
effectively estimates all targets with lower sparsity level K and
SR conditions. To quantify the imaging results, we calculate
each method’s entropy values, as listed in Table II. It can
be observed that with the same SR, increasing the sparsity
level K leads to higher entropy values for A-BIHT, AS-BIHT,
and the proposed method. However, our method consistently
maintains smaller entropy values, indicating superior focusing
quality and effective artifact suppression.

Furthermore, we note that increasing the SR from 25% to
50% does not significantly impact the entropy values for all
methods with the same sparsity level K . This demonstrates
that 25% of the data is sufficient to achieve satisfactory
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Fig. 9. Imaging results of the first set of real data. From top to bottom, the sparsity levels are K = 20, 25, and 30. (a) A-BIHT, SR = 25%, (b) AS-BIHT,
SR = 25%, (c) SLR-IHT, SR = 25%, (d) A-BIHT, SR = 50%, (e) AS-BIHT, SR = 50%, and (f) SLR-IHT, SR = 50%.

TABLE III
COMPARISON OF TIME CONSUMPTION OF DIFFERENT METHODS

(FIRST SET OF REAL DATA)

imaging results and highlights the advantage of CS methods,
which enable effective imaging with limited measurements.
In addition, we conducted a comparison of the time consump-
tion among different methods with various SRs, as shown in
Table III. The results demonstrate that our proposed SLR-IHT
method is significantly less time-consuming than other meth-
ods. This advantage is attributed to the fact that the proposed
method performs iterative optimization on a smaller support
set, and the computational complexity depends on the size of
the support set, i.e., the sparsity level K . When K is small,
the time consumption is consequently reduced.

2) Second Set of Real Data Imaging Experiments: In
order to further validate the imaging effectiveness of var-
ious methods in dealing with complex targets, the second
set of imaging experiments uses a set of wrench data for
one-bit SAR imaging. The optical image of the wrench model
employed in the experiment is depicted in Fig. 10. For data
acquisition, a linear frequency-modulated continuous wave
(FMCW) signal spanning the frequency range of 77–81 GHz
was employed, with 256 samples. The imaging region was
defined as 0.45 × 0.45 m, with a scene size of 150 × 150 and a
pixel spacing of 0.003 m. The primary scattering bodies in the

Fig. 10. Optical image of the wrench model.

Fig. 11. Imaging results of the second set of real data. (a) BP, uses fully
one-bit quantized data, (b) BCST, SR = 25%, and (c) BCST, SR = 50%.

scene comprised the wrench itself and its fixed base. For the
normalized imaging results, we take the logarithm to display.

Similar to the first set of real data experiments, we present
the imaging results using the BP and BCST methods in
Fig. 11. Additionally, Fig. 12 showcases the imaging results
obtained using the proposed, A-BIHT, and AS-BIHT meth-
ods with different sparsity levels K and SR. The results
demonstrate that, compared to the conventional BP method,
the CS-based methods require only a small number of mea-
surements to effectively estimate the contours of the targets.
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Fig. 12. Imaging results of the second set of real data. From top to bottom, the sparsity levels are K = 1000, 1250, and 1500. (a) A-BIHT, SR = 25%,
(b) AS-BIHT, SR = 25%, (c) SLR-IHT, SR = 25%, (d) A-BIHT, SR = 50%, (e) AS-BIHT, SR = 50%, and (f) SLR-IHT, SR = 50%.

TABLE IV
ENTROPY COMPARISON OF IMAGING RESULTS FROM DIFFERENT

METHODS (SECOND SET OF REAL DATA)

Among the CS-based methods, the proposed method exhibits
clearer imaging results of the wrench and its base, effec-
tively suppressing clutter and artifacts, and concentrating
the dominant coefficients at the positions of real scatterers.
In contrast, the imaging results of the compared AS-BIHT
method, A-BIHT method, and BCST method still exhibit
more artifacts. Regarding the proposed method, the A-BIHT
method, and the AS-BIHT method based on greedy selection
rules, as the sparsity level K increases, the contours of the
targets in the imaging results become clearer. However, due to
the increased number of retained scatter points, the occurrence
of clutter and artifacts becomes more severe. Notably, the
proposed method performs better in suppressing clutter and
artifacts than the compared methods. The imaging results with
different sparsity levels K indicate that the proposed method
achieves good imaging results across a wide range of sparsity
levels.

The entropy values for all imaging results obtained using
different methods are documented in Table IV. The results
indicate a slight decrease in entropy for all CS-based imaging
methods with an increase in SR, implying an improvement
in imaging quality with a larger amount of available data.

TABLE V
COMPARISON OF TIME CONSUMPTION OF DIFFERENT METHODS

(SECOND SET OF REAL DATA)

Moreover, Fig. 12 demonstrates that the contours of the imag-
ing results become sharper as the SR increases. Notably, the
proposed method consistently exhibits the lowest entropy value
compared to the A-BIHT and AS-BIHT methods, showcasing
its effectiveness in accurately focusing on targets and sup-
pressing artifacts. In Table V, we present a comparison of the
time consumption among all CS-based methods, highlighting
the significant advantage of the proposed method in terms of
imaging efficiency. Moreover, the computational complexity
of the proposed method is closely tied to the sparsity level K ,
resulting in increased computation time as K significantly
increases. Although the entropy of the proposed method at
K = 1500 appears higher than that of the BCST method in
Table IV, a closer examination in Table V reveals that the time
consumption of BCST is substantially higher than that of the
proposed method.

C. Convergence Performance Analysis

In this section, we validate the convergence of the pro-
posed method through simulations and experimental data
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Fig. 13. Logistic loss curve of the proposed method with the number of
iterations. (a) Simulated data with SNR = 20 dB, K = 800, SR = 25%.
(b) First set of real data with K = 20, SR = 25%. (c) Second set of real data
with K = 1250, SR = 25%.

experiments. The logistic loss is defined as

Logistic loss =
1

2M N

2M N∑
i=1

log
(
1 + exp

(
−zi ·

(
8i,:2

)))
.

(43)

Fig. 13 illustrates the logistic loss curve of the proposed
method for 200 iterations when imaging simulated data and
two sets of real data. It can be observed that the logistic
loss of the proposed method continuously decreases with
an increasing number of iterations. Even when dealing with
imaging data of different scales, the proposed method typically
significantly reduces logistic loss after less than 20 iterations
and gradually stabilizes after fewer than 50 iterations. This
indicates that the proposed method exhibits good convergence
performance in handling imaging tasks.

V. CONCLUSION

In this article, we present the application of the SLR
model in the field of one-bit SAR imaging, combined with
the classical IHT method, to achieve high-quality imaging
results. To accelerate the computational process, we utilize the
Armijo line search during the iterative optimization process.
Additionally, the introduction of joint sparsity constraints on
the real and imaginary parts effectively suppresses artifacts in
the reconstructed images. The convergence of the proposed
method is also analyzed theoretically. Extensive simulations
and imaging experiments using real radar data demonstrate
that our proposed method outperforms existing state-of-the-
art one-bit SAR imaging methods in terms of imaging quality
and time consumption. This emphasizes the feasibility and
superiority of our approach in addressing the challenges of
one-bit SAR imaging. Furthermore, the proposed method
employs zero thresholding for one-bit quantization, reducing
the complexity of the imaging system compared to methods
using time-varying thresholds.
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