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Abstract— A new Cyclone Global Navigation Satellite System
(CYGNSS) data product is described, which is generated from
the raw intermediate frequency (IF) data. The product includes
several established signal coherence detectors, including the
power ratio Pratio, complex zero-Doppler delay waveform, full
entropy Efull, and a novel fast entropy detector Efast. Both
entropy detectors are provided with two temporal resolutions:
2 and 50 ms. Coherence performance is characterized using the
phase derivative of the reflected signal at the peak of the delay
waveform ϕpeak. Threshold values of the full entropy detector
are determined, which classify scattering into three regimes:
incoherent, partially coherent, and coherent. Several scattered
signal strength products are included: signal-to-noise ratio (SNR),
reflected power Pg , reflectivity 0, and normalized bistatic radar
cross section (NBRCS). Each of these products is derived using a
coherent integration time of Tc = 1 ms and incoherent integration
times of Ninc = 1000, 500, 250, 100, 50, and 2 ms. Signal
strength time series at the shorter (2 and 50 ms) times provides
excellent detection of land–water transitions in heterogeneous
scenes. Delay Doppler maps (DDMs) are also generated with
high delay (1τ = 1/16 chip) and Doppler (1 f = 50 Hz)
resolution. The behavior of each signal strength product as a
coherence detector is examined using the full entropy method as a
reference. Performance is characterized using receiver operating
characteristic (ROC) curves. The fast entropy method, which has
a much lower computational cost, is similarly characterized. This
suite of coherence detection methods can be used to detect the
presence of small inland water bodies.

Index Terms— Coherent and incoherent scattering, Cyclone
Global Navigation Satellite System (CYGNSS), Global Navigation
Satellite System Reflectometry (GNSS-R), inland water detection,
raw intermediate frequency (IF).

I. INTRODUCTION

THE Cyclone Global Navigation Satellite System
(CYGNSS) mission [1], [2] is the first microsatellite

constellation by the National Aeronautics and Space
Administration (NASA). CYGNSS provides high
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Fig. 1. Geodistribution of the 2022 CYGNSS Earth’s land surface raw
IF tracks. Target areas cover mainly tropical rainforest regions, as well as
Southern USA, Sudan, India, and Vietnam. Specific sites were selected by
the CYGNSS Science Team based on scientific requirements for ongoing and
future investigations.

spatiotemporal sampling capabilities for Earth’s science
studies using Earth’s surface reflected global positioning
system (GPS) L-band signals at left-hand circular polarization
(LHCP). The mission was originally proposed to further
advance extreme weather predictions with a focus on tropical
cyclone (TC) inner core process studies. More recently,
the mission scientific goals were extended for land surface
studies, including soil moisture content (SMC) determination,
e.g., [3] and [4], surface water monitoring, e.g., [5], [6],
and [7], and freeze/thaw detection, e.g., [8]. The CYGNSS
Global Navigation Satellite System Reflectometry (GNSS-R)
mission team, e.g., [9], [10], [11], [12], [13], [14], [15], and
[16], has developed several L1, L2, and L3 nominal products,
which are publicly available through the NASA’s Physical
Oceanography Distributed Active Archive Center (PODAAC).

In addition, CYGNSS captures raw intermediate frequency
(IF) signal tracks, e.g., [17], [18], and [19], over specific
Earth’s surface areas (see Fig. 1). The main foundation of this
CYGNSS raw IF calibrated product is on the generation of
improved quality high-resolution delay Doppler maps (DDMs)
with shorter integration times, using all the available raw
IF tracks collected over land surfaces. This multiresolution
product is currently available for the CYGNSS inundation
working group. It offers a unique opportunity for studies
dedicated to, e.g., river width [20], river slope [21], wetlands
[22], floods [23], single pass SMC retrievals [24], and devel-
opment and validation of new GNSS-R scattering models,
e.g., [25] and [26]. This scenario also offers the possibility
to test and develop new GNSS-R opportunities in preparation
for the future European Space Agency (ESA) HydroGNSS
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microsatellite constellation mission [27], which is focused on
land surface studies and plans to include an onboard coherent
channel to continuously collect peak-DDM complex data and
raw IF tracks over areas of interest.

Earth’s surface water monitoring is probably one of the
most promising applications of GNSS-R missions because of
their high spatiotemporal sampling capabilities and the high
spatial resolution under the coherent scattering regime. This
is an important research question, and it deserves further
investigation. Theoretically, the resolution is limited by the
size of the first Fresnel zone, with a nonnegligible influence
of higher order zones, e.g., [28], [29], [30], [31], and [32].
It was found that short Ninc provides a reasonable tradeoff
between an acceptable along-track spatial resolution and a
reduced signal noise level, which enables to detect land–water
transitions accurately [33]. We encourage the users to investi-
gate this, and additional research questions, to further advance
our understanding of the ultimate capabilities of GNSS-R.
To do so, the product is delivered with a wide variety of
observables [34], such as power DDMs (Pg , 0, and BRCS),
including the corresponding information at the peak p, as well
as the normalized bistatic radar cross section (NBRCS), and
a wide variety of coherence detectors, i.e., complex delay
waveforms, ϕpeak, Pratio, Efull,and Efast. In addition, quality
flags (see the Appendix) and a comprehensive set of meta-
data, e.g., Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover type, multiresolution Pekel water masks,
and topographic roughness, are included.

This article is organized as follows. First, we introduce
the CYGNSS raw IF data in Section II. Then, the raw IF
signal processing is presented in Section III, describing the
details of the enhanced DDMs, the signal calibration approach,
and the derived land surface observables. Then, the coherence
detectors are presented and described in Section IV. Finally,
Section V concludes this article.

II. CYGNSS RAW IF DATA

A. Introduction

The raw IF samples collected by the delay Doppler mapping
instrument (DDMI) onboard CYGNSS contain the highest
possible resolution over delay and Doppler space. The access
to this raw IF data enables high-resolution processing on-
ground, in many ways not possible in real time by the
instrument. For example, the raw IF samples can be pro-
cessed to extract in-phase I and quadrature Q information
of the complex DDMs for high-quality evaluation of coherent
Earth’s surface scattering. In addition, comprehensive studies
of the received reflected signal power can be performed using
variable delay and Doppler spacing and integration times, thus
permitting the generation of extremely high-resolution DDMs
for advanced science applications, including ocean and land.

B. Baseline L1 Mission Product

After the antenna and the low-noise amplifier (LNA), the
GPS signal enters the onboard receiver, where it is downcon-
verted and digitized. These raw IF samples are then processed
using a fast Fourier transform (FFT) technique, implemented

in the receiver. The real-time output is a DDM with 128 delay
bins at 1/4 chip delay steps and 20 Doppler bins at 500-Hz
steps. The scattered signal power is processed using a coherent
integration time Tc = 1 ms and an incoherent averaging
time Ninc = 1000 ms (December 2016–August 2019) or
500 ms (August 2019–present). This onboard full DDM is
compressed to meet the satellite downlink requirements. The
compressed DDM includes 17 delay bins and 11 Doppler bins,
which are centered at the onboard estimated nominal specular
point, and the bit depth of each bin is truncated from 32 to
8 bits. A more precise geolocation of the nominal specular
point is performed on-ground. These DDMs are generated in
raw uncalibrated units, and calibration is performed at the
University of Michigan (UMich) [35].

C. Raw IF Data Collection

Starting from 2017, some few raw IF datasets are being col-
lected by the DDMI and downloaded to ground for improved
studies over specific target areas, with specific interest for
the CYGNSS science team. More recently, a new raw IF
data collection strategy was approved in winter 2022 so that
∼20 raw IF tracks are downloaded continuously every week.
Two files for each raw IF data collection are generated: one
raw IF metadata file and one raw IF data file. The raw IF
metadata file contains the ID of the spacecraft, a single Data
Recorder Track 0 (DRT0) packet, and one or more pulse per
second (PPS) packets. The raw IF data file includes three sets
of raw signal sample streams (∼60 s) received by the zenith
antenna and the nadir antennas at port and starboard. All raw
IF tracks collected by the CYGNSS mission to date include
byte interleaved data from all three antenna channels of the
DDMI, numbered as follows: zenith navigation antenna, nadir
starboard side science antenna, and nadir port side science
antenna.

All samples for all channels are saved as 2-bit values and are
interleaved. The source of the binary raw IF data is byte 9–byte
N of the File Transfer Packet Data (FD00) packets emitted by
the DDMI. The raw IF file contains bytes 9–N of multiple
contiguous FD00 packets. The FD00 packets are expected to
contain consecutive sequence byte numbers. If a missing FD00
packet is detected, 2048 zero bytes are inserted in the raw IF
file in place of the missing data. The first FD00 packet in
the stream carries a DRT0 header block at the beginning of
the data bytes. The rest of this first packet and all subsequent
packets contain the binary raw IF sample data.

III. RAW IF SIGNAL PROCESSING

A. Introduction

The bandwidth of the raw signal is ∼2.5 MHz, centered at
the IF of ∼3.8 MHz. In the nominal mode, the IF signals are
sampled with a sampling rate of ∼16.0 MHz and a resolution
of 2 bits per sample for both direct and reflected channels.
The ground-based raw IF processing uses a delay-domain FFT
technique to perform the correlations at all the delay samples
using a frequency-domain multiplication. The delay sampling
is configured based on the decimation of the sampling rate and
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Fig. 2. Enhanced uncalibrated DDMs [1 f = 50 Hz Doppler bin resolution
and 1τ = 1/16 chip delay bin resolution] derived from the raw IF processing
in counts: (a) standard DDM—land (Ninc = 50 ms), (b) full DDMs—ocean
(Ninc = 50 ms), and (c) super DDMs—cyclone (Ninc = 250 ms). The antenna
footprint on the surface often truncates one side of the signal [see Fig. 2(c)].

the Doppler processing range. Ninc and the delay Doppler sam-
pling properties are also configured depending on the Earth’s
surface type, i.e., ocean versus land. The raw IF processing is
designed and built on a Linux Ubuntu laptop using the GNU
Compiler Collection (GCC) compiler and the FFTW library.
The code is written in C with the FFT processing based on
the open source “fastgps” signal acquisition processor [36],
upgraded to accept the CYGNSS raw IF data format and
perform GNSS-R specific processing tasks, including variable
noncoherent integration.

B. Multiresolution Enhanced DDMs

Different types of enhanced DDMs can be generated to
improve and enable new scientific applications over land and
ocean by CYGNSS (see Table I). The main three DDM types
are illustrated in Fig. 2. In so doing, the key parameters are the
following: coherent integration time Tc, incoherent integration
time Ninc, delay bin resolution 1τ , Doppler bin resolution
1 f , delay window dw, and Doppler window Dw. This article
is focused on Earth’s land surfaces [see Fig. 2(a)].

All enhanced DDMs are generated with 1 f = 50-Hz
Doppler bin resolution and 1τ = 1/16 chip delay bin res-
olution. The DDMI estimation of the Doppler at the nominal
specular point is introduced in the raw IF processing to repro-
duce as much as possible the onboard scenario for calibration

TABLE I
SUMMARY OF THE PROPERTIES OF EACH RAW IF DATA PRODUCT TYPE.

THIS ARTICLE IS FOCUSED ON LAND. COHERENT INTEGRATION TIME
Tc , INCOHERENT INTEGRATION TIME Ninc , DELAY BIN RESOLU-

TION 1τ , DOPPLER BIN RESOLUTION 1 f , DELAY WINDOW dw ,
AND DOPPLER WINDOW Dw

purposes. The DDMI Doppler information is provided every
Ninc = 1000 ms (December 2016–August 2019) or every
Ninc = 500 ms (August 2019–present). A spline method is
applied to the DDMI-based Doppler vector to generate more
precise Doppler inputs for lower integration times Ninc =

250 ms, Ninc = 100 ms, Ninc = 50 ms, and Ninc = 2 ms.
The delay bin resolution is determined by the effective sam-

pling rate. In the nominal mode, raw IF data are sampled at a
rate of ∼16 MHz, which is approximately 16 000 samples per
1 ms. Approximately, 16 samples per GPS coarse/acquisition
(C/A) code chip is a delay chip resolution of 1/16 chip in
the DDMs. The raw IF processing allows the selection of
different delay bin resolutions so that the ∼16-MHz samples
are downsampled.

1) 1/8 Chip Delay Bin Resolution: Downsampling by a
factor of 2 to a ∼8-MHz sampling rate or eight samples
per chip.

2) 1/4 Chip Delay Bin Resolution: Downsampling by a
factor of 4 to a ∼4-MHz sampling rate or four samples
per chip.

3) 1/2 Chip Delay Bin Resolution: Downsampling by a
factor of 8 to a ∼2-MHz sampling rate or two samples
per chip, which is the Nyquist limit for the GPS C/A
code.

The output power after raw IF processing is not exactly the
same at different delay sampling rates because the processing
uses 1-ms FFTs in each case on different length vectors to
perform the correlations. The shorter the vector, the faster
the FFT, but delay samples are thrown out. The highest
achievable resolution, which has the slowest FFTs, is at the full
sampling rate or 16 samples per chip (i.e., 1/16 chip delay bin
resolution). As such, the use of 1/16 chip delay bin resolution
without sample decimation provides the highest fidelity results.
The required longer run time is not a limiting consideration
because the processing is performed on-ground.

The raw IF processing output DDMs are generated in raw
uncalibrated units, known as counts (see Fig. 2). There is a
scale difference between these DDMs and those generated by
the DDMI probably due to the onboard compression algorithm
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and the fact that the DDMI uses the “Zoom” Doppler domain
correlator (and possibly some internal, unknown, bit overflow
shifting/scaling) [37]. This difference must be compensated.
In addition, both processing chains must be referenced to the
GPS absolute time. Thus, before radiometric calibration, time
synchronization and scaling strategies must be defined.

C. Time Synchronization and Geolocation

Accurate GPS timing information derived from the direct
signal received by the zenith navigation antenna is used to
improve the geolocation of the nominal specular point over
the Earth’s surface. The nominal specular point position is
computed over the world geodetic system (WGS) 84 ellipsoid
of reference, and then, the solution is projected over the NASA
Shuttle Radar Topography Mission (SRTM) global digital
elevation model. This improvement compared to the nominal
mission data enables more accurate land-surface studies. The
original data strategy was designed for ocean wind speed
retrieval for long Ninc, and the onboard timing precision is
adequate to that goal.

In addition, a lag-correlation technique is used for each
pseudorandom noise (PRN) code number, to align the onboard
generated time series and the raw IF-based time series, before
calibration. Lag correlation is the correlation between two
series where one of the series has a time lag with respect
to the other. This is required to compensate for a variable
temporal offset that is present between the two time series. The
compensation of this offset is used to align the raw IF time
series with the onboard operations in real-time processing.
Time series at different Ninc is aligned at the beginning of
each sampling rate’s integration period.

D. Calibration Strategy

1) Scaling: Uncalibrated DDMs are measured in counts.
These counts are linearly related to the total signal power
generated by the raw IF processing (Cif) or the DDMI (Cddmi).

Raw IF-based DDMs (Cif) in counts can be related to the
arriving signal power as follows:

Cif(τ, f ) = G if(Pa + Pr + Pg(τ, f ) + Pe) (1)

where τ is the delay, f is the Doppler, G if is the end-to-
end gain of the raw IF processor, Pa is the thermal noise
power generated by the antenna (in Watts), Pr is the thermal
noise power generated by the instrument (in Watts), Pg is
the scattered GNSS power (in Watts), and Pe (in Watts)
represents certain parameters of the real-time signal processing
performed by the DDMI on orbit, which are unknown, and so
cannot be exactly duplicated by the ground processing of raw
IF data.

DDMI-based DDMs (Cddmi) in counts can be related to the
arriving signal power as follows:

Cddmi(τ, f ) = Gddmi(Pa + Pr + Pg(τ, f )) (2)

where Gddmi is the end-to-end gain in real-time DDMI pro-
cessing.

Fig. 3. Before-scaling comparison of DDMI [1 f = 500 Hz, 1τ = 1/4 chip,
and Ninc = 500 ms] and raw IF [1 f = 50 Hz and 1τ = 1/16 chip] peak
reflected-power time series [counts]. These time series correspond to a single
PRN number within one raw IF file. Track acquired on April 22, 2022. The
DDMI L1 (red) trace is so low that it seems to be a flat zero as its 105 versus
1014 for the raw IF (see Fig. 5 for trend after scaling).

Combining (1) and (2), both types of uncalibrated DDMs
can be linearly related as follows:

Cddmi(τ, f ) =

(
Gddmi

G if

)
Cif(τ, f ) − Gddmi Pe (3)

The first step in the calibration is to estimate the coefficients
to transform Cif(τ, f ) in Cddmi(τ, f )

p1 =
Gddmi

G if
(4)

and

p2 = −Gddmi Pe (5)

After lag correlation, a linear regression between the times
series (see Fig. 3) at the maximum peak (subscript p) of the
raw IF-based (Cif,p) and the DDMI-based DDMs (Cddmi,p) at
Ninc = 500 ms is used (see Fig. 4) to empirically determine the
coefficients for each PRN code number per channel. This is
necessary because certain parameters of the real-time signal
processing performed by the DDMI on orbit are unknown
and so cannot be exactly duplicated by the ground processing
of raw IF data. These parameters include the start and stop
times of the coherent correlation relative to the time-varying
phase of the GPS L1 carrier signal and the phase tracking
algorithm used to synchronize the timing of the correlator.
Both parameters can affect the scaling of the DDM data
products.

The scale factor is derived with the corresponding high
delay and Doppler bin resolution raw IF time series [1 f =

50 Hz and 1τ = 1/16 chip] because the output power of
the raw IF processor is different at different delay sampling
rates. In addition, the impact of different Ninc’s is considered.
The output reflected power changes with different Ninc’s since
the software processing computes an accumulation over the
incoherent integration time. It does not compute an average
over the incoherent integration time. Thus, there is a need to
scale linearly with the length of the integration interval as
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Fig. 4. Sample scale factor between DDMI [1 f = 500 Hz, 1τ = 1/4 chip,
and Ninc = 500 ms] and the Ninc = 500-ms raw IF [1 f = 50 Hz and
1τ =1/16 chip] time series of reflected peak power in raw uncalibrated units
[counts] after lag correlation. This sample scale factor corresponds to a single
PRN number within one raw IF file. Track acquired on April 22, 2022.

Fig. 5. After-scaling comparison of DDMI [1 f = 500 Hz, 1τ = 1/4 chip,
and Ninc = 500 ms] and raw IF [1 f = 50 Hz and 1τ = 1/16 chip] peak
reflected-power time series [counts]. These time series correspond to a single
PRN number within one raw IF file. Track acquired on April 22, 2022.

follows (see Fig. 5):

Cif,scaled,N inc(τ, f ) = p1Cif,Ninc(τ, f )
Ninc,0

Ninc
+ p2 (6)

where Ninc is any incoherent averaging and Ninc,0 is the
incoherent averaging time used to derive the scale factor (p1,
p2), i.e., 500 ms after August 2019. It is worth highlighting
that the scale factor (p1, p2) is derived for each raw IF track.

Fig. 5 shows the after-scaling time series. The output
reflected power of the different time series is unbiased. In addi-
tion, the raw IF time series shows a higher dynamic range
and an improved resolution compared to the DDMI because
of the shorter integration times down to Ninc = 2 ms, and the
higher delay and Doppler bin resolution [1 f = 50 Hz and
1τ = 1/16 chip].

After scaling, the signal-to-noise ratio (SNR) is computed
as follows:

SNR = 10 log 10
(

Cif,p,scaled,N inc

CN ,if,scaled,Ninc

)
(7)

Fig. 6. Sample DDMs: (a) and (b) standard L1 DDMI data [1 f = 500 Hz,
1τ = 1/4 chip, and Ninc = 500 ms] and (c) and (d) raw IF calibrated product
[1 f = 50 Hz, 1τ = 1/16 chip, and Ninc = 50 ms] for (a) and (c) coherent
scattering regime and (b) and (d) incoherent scattering regime.

Fig. 7. Raw IF sample DDMs [1 f = 50 Hz, 1τ = 1/16 chip, and Ninc =

50 ms] under (a) and (c) coherent scattering regime and (b) and (d) incoherent
scattering regime: (a) Pg(τ, f ), (b) Pg(τ, f ), (c) 0(τ, f ), and (d) BRCS(τ, f ).

where CN ,if,scaled,Ninc is the noise power. Noise information is
calculated separately for each DDM, using pixels in which no
signal power is present, i.e., the 180 top delay rows of the
original uncompressed 512 × 200 DDMs [1 f = 50 Hz and
1τ = 1/16 chip] in counts.

2) Radiometric Calibration: This section describes the
radiometric calibration [38], [39], [40] approach used to
convert each bin of the after-scaling DDMs into counts
Cif,scaled,N inc(τ, f ) to units of Watts Pg(τ, f ). After radiometric
calibration, the reflected power DDMs (in Watts) are derived
as follows (see Fig. 6):

Pg(τ, f ) =
C(PB + Pr )

CB
(8)
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Fig. 8. GNSS-R raw IF reflectivity 0p time series in the SWOT cal/val site
(track acquired on March 27, 2022) for Ninc: (a) 2, (b) 50, (c) 100, (d) 250,
and (e) 500 ms.

where C=(Cif,scaled,N inc(τ, f )−CN ,if,scaled,Ninc), PB is the black-
body thermal noise power, and CB is the DDM in the
blackbody state.

The DDM noise power is expressed in counts as

CN ,if,scaled,Ninc = p1CN ,if,Ninc

Ninc,0

Ninc
+ p2 (9)

where CN ,if,Ninc is the noise of the before-scaling DDMs.
PB and CB are derived onboard during the blackbody

calibration when a calibration switch selects between the nadir
antenna and a blackbody target as the source of the input signal

Fig. 9. GNSS-R raw IF reflectivity 0p geolocated in the SWOT cal/val site
(track acquired on March 27, 2022) for Ninc: (a) 2, (b) 50, (c) 100, (d) 250,
and (e) 500 ms.

to the DDMI. The blackbody calibration is performed every
60 s for each nadir antenna. The DDM in the blackbody state
is given as follows:

CB = G(PB + Pr ) (10)

PB can be expressed as follows:

PB = kTI Bw (11)
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Fig. 10. GNSS-R raw IF reflectivity 0p time series in Pacaya–Samiria (track
acquired on February 16, 2022) for Ninc: (a) 2, (b) 50, (c) 100, (d) 250, and
(e) 500 ms.

where TI is the effective temperature of the instrument’s
blackbody load source. PB is determined from a physical tem-
perature sensor measured at 1 Hz and is near enough in time to
the 1-Hz science measurement so that the physical temperature
does not change significantly between the thermistor reading
and the science measurement. CB is made within 10 min
(starting in 2021) of science measurement and close enough in
time so that the receiver gain and noise figure do not change

Fig. 11. GNSS-R raw IF reflectivity 0p geolocated in Pacaya–Samiria (track
acquired on February 16, 2022) for Ninc: (a) 2, (b) 50, (c) 100, (d) 250, and
(e) 500 ms.

significantly [41]. In addition, the blackbody measurements
are on-ground resampled and interpolated to the measurement
time.

The thermal noise power generated by the DDMI can be
expressed as follows:

Pr = kTr Bw = k[(NF − 1)290]Bw (12)
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Fig. 12. Zooming GNSS-R raw IF reflectivity 0p over high-interest target areas: (a) track acquired on March 27, 2022 [see Fig 9(a)] and (b) track acquired
on February 16, 2022 [see Fig. 11(a)]. Land–water transitions are accurately captured by CYGNSS. Over water, the reflectivity increases because of the higher
dielectric constant, smoother surface, and the absence of vegetation cover. It is also worth highlighting that the signal fluctuations over water are probably
due to variable surface roughness.
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where NF is the DDMI noise figure and Tr is the DDMI tem-
perature. The NF versus temperature profile was characterized
prelaunch for all the instrument LNAs. NF is continuously
updated in-orbit.

3) Inverting Land Surface Parameters: Several L1b observ-
ables are derived after radiometric calibration, including
reflectivity 0(τ, f ), bistatic radar cross section (BRCS) (τ, f ),
and NBRCS(τp, f p).

The reflectivity DDM is estimated as follows [see Fig. 7(c)]:

0(τ, f ) =
(4π)2 Pg(τ, f )(Rr (τp, f p) + Rt (τp, f p))

2

λ 2Gr (τp, f p)EIRP(τp, f p)
(13)

where Rt and Rr are the ranges from the transmitter and
the receiver to the Earth’s surface scattering area, Gr is the
receiver antenna gain, λ is the signal electromagnetic wave-
length, and EIRP is the transmitter equivalent isotropically
radiated power of the right-hand circular polarization (RHCP)
direct GPS signal.

The BRCS DDM is estimated as follows [see Fig. 7(d)]:

BRCS(τ, f ) =
(4π)3 Pg(τ, f )(Rr (τp, f p)Rt (τp, f p))

2

λ 2Gr (τp, f p)EIRP(τp, f p)
(14)

The surface NBRCS is estimated as follows:

NBRCS(τp, f p) =
BRCS(τp, f p)

Aeff
(15)

where Aeff is the effective scattering area corresponding to
four delay bins × ten Doppler bins cell around the peak over
land surfaces because the scattered signal is concentrated in a
small area near the specular point. For the inversion of the land
observables, the calibration variables are approximated with
the values corresponding to the peak. This is used for the cal-
ibration of the ocean DDMs [see Fig. 2(b)] but approximating
at the nominal specular point [38]. Thus, it can be applied over
land surfaces because the scattering is more specular (scattered
signal is concentrated in a small area near the specular point)
than over the ocean. However, when the scattering is very
diffuse, i.e., off-specular [see Fig. 2(c)], this approximation
is no longer valid, and per-bin calibration variables must be
used along the complete dw and Dw windows (see Table I).
In addition, the delay Doppler ambiguity introduced by the
Woodward ambiguity function (WAF) must be considered.

E. Time Series Analysis: Reflectivity Case Study

The time series of peak reflectivity 0p = 0(τp, f p) is
selected to highlight some product capabilities, but more
observables are available for the final users. Two IF tracks
are considered over a Surface Water and Ocean Topography
(SWOT) mission cal/val site (see Figs. 8 and 9) and the
Pacaya–Samiria region in the Amazon basin (see Figs. 10
and 11). The corresponding geolocation of 0p using Landsat
imagery is depicted in Figs. 9 and 11. Ninc = 2- and 50-ms 0p

time series shows a higher signal dynamic range and a higher
spatial resolution than those corresponding to Ninc = 500 ms.
There is clear evidence of the sensitivity of 0p to the presence
of surface water, showing the capability to detect small inland
water bodies (see Fig. 12) and land–water transitions over
complex heterogeneous scenes.

In the SWOT site, low 0p ∼ <0.1 levels [see Fig. 8(a)]
appear over vegetated areas because of the larger attenuation
of the reflected signal by the vegetation cover [42], [43], [44]
[see Fig. 9(a)]. On the other hand, in the inundated terrain
located in one lateral of the Amazon River, 0p increases up
to ∼0.2. The Amazon River is then divided into several arms,
surrounded by vegetation. 0p can capture sharp transitions
land–water–land. Within the river, there is a combination of
sharp peaks 0p ∼ 0.5 with lower values ∼0.2 probably
because of the different surface roughness conditions across
the wide Amazon River. It is worth pointing out that the spatial
resolution gradually decreases with increasing Ninc. The 500-
ms 0p time series is not able to resolve this complex scene
[see Fig. 9(d)]. On the other hand, increasing Ninc helps to
reduce signal noise, e.g., Ninc = 2 ms versus Ninc = 50 ms.

The Pacaya–Samiria scene (see Fig. 11) is characterized by
a complex-form river within the Amazon basin, surrounded
by dense vegetation and several other small-size water bodies
(see Fig. 12). The orientation of the selected raw IF track is
interesting because the nominal specular point crosses some of
these water bodies and, in addition, is laterally surrounded by
a few of them. The Ninc = 2-ms 0p time series [see Fig. 11(a)]
resolves this complex scene better than longer times, showing
that the spatial resolution under the coherent scattering regime
is fine enough to detect small inland water bodies, while the
impact of higher order Fresnel zones appears negligible in this
scenario (see Fig. 12).

However, there is a nonnegligible impact on target areas
characterized by a large and smooth surface water extension
surrounded by heavy vegetation [31], [32].

IV. COHERENCE DETECTORS

A. Introduction: Coherent and Incoherent Scattering
Modeling

There are several correlation techniques to extract the
geophysical information from the scattered GNSS signals.
CYGNSS uses the classical GNSS-R or cGNSS-R. The scat-
tered electric field is cross-correlated with a replica of the
known GNSS codes, so as to generate the so-called complex
DDMs (see Fig. 13)

Y (τ, f ) =
1
Tc

∫ Tc

0
a(t)u(t + τ)e2π j ( fc+ f )t dt (16)

where a represents the modulating PRN code, u is the received
signal, fc is the GNSS carrier frequency, and t is the time.
In a spaceborne scenario, increasing Tc is debatable as the
motion of the receiver (∼7 km/s) will limit the signal phase
coherence. Some results estimated that close to Tc = 1 ms
is near optimal and Tc ∼ 0.8 ms for a faster moving Shuttle
instrument [11], while Tc = 1, 2 ms for a classical GNSS-R
configuration [45]. However, since the scattered signal is of
even weaker amplitude than the direct one, and in addition,
it suffers from speckle noise, a large number of incoherent
averages have to be done to improve the SNR of the so-called
power DDMs

〈
|Y (τ, f )|2

〉
=

1
Ninc

Ninc∑
i=1

|Y (τ, f )|2 (17)
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Fig. 13. Scattered complex field (peak of the complex delay waveform, Tc =

1 ms, no incoherent averaging): (a) coherent scattering and (b) incoherent
scattering.

Power DDMs can be modeled as the sum of two terms [13],
[28], [32], [43]〈

|Y (τ, f )|2
〉

=
〈
|Yinc(τ, f )|2

〉
+

〈
|Ycoh(τ, f )|2

〉
(18)

where ⟨|Yinc(τ, f )|2⟩ is the incoherent scattering term and
⟨|Ycoh(τ, f )|2⟩ is the coherent scattering term.

⟨|Yinc(τ, f )|2⟩ can be obtained as follows [13]:〈
|Yinc(τ, f )|2

〉
=

λ2

(4π)3

∫∫
EIRPGr

R2
r R2

t
γ σ0

|X(τ, f )|2d A

(19)

where χ is the WAF, σ 0 is the bistatic scattering coefficient,
γ is the transmissivity of the vegetation [44], and A is the
scattering area, which is limited to the so-called glistening
zone.

Under the Huygens–Kirchhoff principle, ⟨|Ycoh(τ, f )|2⟩ can
be expressed as in (20), shown at the bottom of the page,
[29], [30], [31], [32], where υ is is the characteristic free
space wave impedance ∼120π , k is the angular wavenumber,
θi is the incidence angle, R is the complex Fresnel reflection
coefficient, and σ is the surface height standard deviation
(related to small-scale surface roughness).

Results have demonstrated the impact of higher order Fres-
nel zones on the total coherent reflected power as collected by
a GNSS-R sensor, showing ringing fluctuations in the reflected
power near high-contrast boundaries. This theoretically deter-
mines the spatial resolution of the coherent scattering over
heterogenous areas.

B. Coherence Detectors: Definitions

Several coherence indices are provided to help the final
users in selecting the most appropriate observable for each

Fig. 14. Sample temporal series of delay vector over the White River Basin,
AR, USA (track acquired on January 15, 2022).

targe area, depending on the dominant scattering mechanism,
i.e., coherent or incoherent.

The full entropy detector Efull is obtained by applying the
von Neumann entropy definition to the corresponding GNSS-R
density matrix Dfull as follows [46]:

Efull = −Tr(Dfull log Dfull) (21)

where the symbol Tr is the trace of the matrix.
The full GNSS-R density matrix DFull is calculated after

normalization of the eigenvalues β using its trace

DFull =
β

Tr(β)
(22)

where β is the diagonal eigenvalues matrix generated with
the generalized eigen decomposition (GED) of the correlation
matrix Q

φtp Qφ = β (23)

where φ is the eigenvectors matrix and the superscript tp
denotes the matrix transpose. Q is generated from the N
sequential snapshots of the zero-Doppler delay waveforms Z
[Tc = 1 ms and Ninc = 1 ms] (see Figs. 14 and 15) as
Q = Z Z H/N , where H denotes the Hermitian transposition.
In this study, 48 bins centered at the maximum peak of the
waveforms are used for entropy calculations. Tr(β) is equal
to the sum of its eigenvalues. Efull output values are finally
generated with two different temporal resolutions of 2 and
50 ms.

This metric uses the idea of entropy as an estimation of
the information available in the eigenvalues of the correla-
tion matrix. The eigenvalues are a reliable estimator of the
energy distributed along the dimensions of the signal subspace.
Efull ∼ 1 represents a uniform eigenvalues’ distribution, which
is an indication of totally incoherent scattering. On the other
hand, Efull ∼ 0 indicates the presence of a dominant eigen-
value, which is an indication of totally coherent scattering. The
full entropy Efull detector is based on the variations in time of
the scattered signal, as well as in the shape of the waveforms.

〈
|Ycoh(τ, f )|2

〉
= υ

λ 2Gr EIRP
4π

∣∣∣∣∣− jk
∫∫

2 cos θi X (τ, f )

4π Rt Rr

√
γ |R|

2e −(2kσ cos θi )
2 e

jk(Rt +Rr )

d A

∣∣∣∣∣
2

(20)
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Fig. 15. Sample zero-Doppler delay waveform [Tc = 1 ms and Ninc = 1 ms]
over the White River Basin, AR, USA (track acquired on January 15, 2022).

Fig. 16. Coherence detectors time series in Pacaya–Samiria (track acquired
on December 31, 2022) as a function of 0p : (a) Efull, (b) Efast, and (c) Pratio.

Fig. 17. Comparison of the full entropy Efull coherence detector and the 2-km
spatial resolution Pekel surface water percentage [%] over Pacaya–Samiria
(track acquired on December 31, 2022).

The fast entropy detector Efast is a fast and approximated
calculation of Efull. It is computed using the von Neumann
entropy definition as follows:

Efast = −Tr(Dfast log Dfast) (24)

Fig. 18. Coherence detectors geolocated in the Pacaya–Samiria (track
acquired on December 31, 2022) for (a) Efull, (b) Efast, and (c) Pratio.

Fig. 19. Efull tracks geolocated in (a) SWOT ca/val site (track acquired
on March 27, 2022) and (b) Pantanal (track acquired on July 7, 2022) target
areas.

where Dfast is the fast GNSS-R density matrix, which is
defined as follows:

DFast =
η

Tr(η)
(25)

where η is the diagonal eigenvalues matrix. η1, is the
largest eigenvalue of the correlation matrix after whitening
correlated additive noise Qw, which is computed using the
so-called power method [47]. The second eigenvalue η2 is
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Fig. 20. Time series in the SWOT cal/val site (track acquired on March 27, 2022): (a) ϕpeak and (b) Efull. Full entropy levels are identified for the classification
of several scattering regimes: incoherent, partially coherent, and coherent.

Fig. 21. Time series in the Pantanal (track acquired on July 7, 2022): (a) ϕpeak and (b) Efull. Full entropy levels are identified for the classification of several
scattering regimes: incoherent, partially coherent, and coherent.

defined as the mean value of the remaining eigenvalues.
The power method is used to iteratively find the eigenvalue
of Qw that is largest in absolute value, i.e., the dominant
eigenvalue of Qw. Although this restriction may seem severe,
dominant eigenvalues are of primary interest in many physical
applications, which is the case.

The power ratio Pratio is the ratio of the raw counts of the
13 × 51 delay Doppler grid surrounding the peak value of Cif
[1 f = 50 Hz and 1τ = 1/16 chip] over the sum of the rest
of the values as follows [48]:

Pratio =
Pratio,in

Pratio,out
(26)

where

Pratio,in =

6∑
i=−6

25∑
j=−25

Cif(τp + i, f p + j) (27)

and

Pratio,out =

dw∑
i=1

Dw∑
j=1

Cif(i, j) − Pratio,in. (28)

C. Time Series Analysis: Detectors’ Intercomparison

One single raw IF track over a complex heterogeneous
scene in the Pacaya–Samiria region is selected to show an

intercomparison of the time series of the three coherence
detectors previously described (see Figs. 16–18).

The full entropy Efull and fast entropy Efast suddenly
decrease when a water body approaches the nominal specular
point because the coherent scattering becomes dominant, and
thus, there is a dominant eigenvalue (see Figs. 16 and 18).
Consequently, the reflectivity 0p increases, which is an addi-
tional indication that the surface scattering is mainly coherent
⟨|Ycoh(τ, f )|2⟩ over surface water bodies [28], [46], [48].

On the other hand, in the presence of vegetated areas, both
entropy indices (Efull and Efast) increase because the scattered
signal becomes incoherent ⟨|Yinc(τ, f )|2⟩. It is worth pointing
out that Efull shows more clear transitions from coherent to
incoherent regimes and a higher signal dynamic range than
Efast [see Fig. 16(a) and (b)]. In addition, the power ratio
Pratio time series is depicted [see Fig. 18(c)]. Pratio increases
in the presence of water. Pratio was designed primarily for
use when signal phase information is not available (i.e., the
standard CYGNSS L1 products). It has been adapted for
its application with short integration times and high delay
and Doppler resolution DDMs by tuning the noise exclusion
threshold process.

Fig. 17 shows a comparison of the full entropy coherence
detector Efull and the 2-km resolution Pekel water mask.
Efull provides real-time information regardless of weather
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Fig. 22. Scatter plots of EFast versus EFull (resolution 50 ms) using all the
available raw IF tracks collected over land surfaces in 2022, as a function of
the following parameters with Ninc = 50 ms: (a) SNR, (b) Pratio, (c) NBRCS,
and (d) 0p .

conditions, while the Pekel mask is based on averaged optical
Landsat imagery from the global surface water explorer [49].
This is the reason why the Pekel mask is not able to show
the presence of water over areas covered by vegetation (see

Fig. 23. ROC curves of the peak-observables (SNR, 0p , and NBRCS) and
the coherence detectors (Efast and Pratio) using Efull as the truth reference.
Entropy detectors with 50 ms of resolution and the rest of the parameters with
Ninc = 50 ms.

Fig. 17), while the GED of Q enables the capability to detect
small coherence changes (see Fig. 17).

D. Full Entropy-Based Coherence Classification

GNSS-R surface scattering over land surfaces is com-
posed of two terms: coherent ⟨|Ycoh(τ, f )|2⟩ and incoherent
⟨|Yinc(τ, f )|2⟩ scatterings, depending mainly on surface rough-
ness [50], [51], [52], [53], [54]. The full entropy Efull is the
most powerful coherence detector presented in this study [see
Fig. 16(a)]. Here, it is selected as the main truth reference
for further evaluation. The phase derivative at the peak of
the reflected complex zero-Doppler delay waveforms ϕpeak is
used to derive the full entropy levels that can be used to
classify the different scattering regimes. ϕpeak is computed as
the arctangent of the product of the complex peak Yn(τp, f p)

and the conjugate of the previous complex peak Yn−1(τp, f p)

with Tc = 1 ms.
Two raw IF tracks have been selected over target areas with

differentiated geophysical properties (see Fig. 19): the first one
over the SWOT cal/val site (see Figs. 19(a) and 20) and the
second one over the Pantanal [55], [56], which is the world’s
largest tropical wetland area (see Figs. 19(b) and 21). Both
regions are characterized by the presence of surface water
covered by heavy upwelling vegetation. This scene remains
unresolved for optical sensors.

Three different scattering regimes are shown in Figs. 20
and 21, including incoherent, partially coherent, and coherent.
The classification is based on Efull time series with 50 ms of
resolution because of the noisier performance with 2 ms. The
variance decreases by increasing the number of waveforms
(see Fig. 15) for the estimation of each entropy value. The
larger the number of waveforms under consideration, the larger
the heterogeneity of the equivalent footprint, but the overall
entropy is lower. This is relatively similar to speckle noise
mitigation by coherent averaging, which increases the coher-
ence of the signal compared to lower Tc. In addition, it is
worth to comment that the minimum entropy levels are of
the same order, independently of the number of waveforms
considered for calculations. The incoherent scattering regime
is characterized by random phase fluctuations and full entropy
levels higher than Efull ∼ 0.7. This state appears in densely
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TABLE II
PER-DDM QUALITY FLAGS 1

TABLE II
(Continued.) PER-DDM QUALITY FLAGS 1

vegetated areas without surface water (see Fig. 19). The
partially coherent regime is characterized by a noisy linear
trend of the phase derivative ϕpeak and full entropy levels
between Efull ∼ 0.3 and EFull ∼ 0.7. This state is found in
regions such as the Pantanal wetlands (see Fig. 19). Finally,
the coherent scattering regime is found for full entropy levels
below Efull ∼ 0.3. ϕpeak is clearer in this state, which is
associated with the presence of inland water bodies without
upwelling vegetation cover, i.e., low γ levels. In this scenario,
when the surface is smooth, the scattering is highly coherent,
and the reflected signal phase can be tracked.

This characterization has been found to provide an accurate
scattering classification over the complete CYGNSS raw IF
dataset. In this section, two tracks have been selected to
illustrate their temporal series, and in Section IV-E, the study
is performed using the full dataset.

E. Full Dataset Assessment: Fast Versus Full Entropy

Finally, all the available raw IF tracks collected over land
surfaces in 2022 are selected for a global scale assessment. The
performance of Efast versus Efull is evaluated as a function
of SNR [see Fig. 22(a)], Pratio [see Fig. 22(b)], NBRCS
[see Fig, 22(c)], and 0p [see Fig. 22(d)]. Efast has a lower
computational requirement [see (24)] than Efull [see (21)], but
there is a clear functional relationship between both entropy
metrics. For the coherent scattering regime, i.e., Efull ∼ <0.3,
the relationship appears linear, which means that Efast is an
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TABLE III
PER-DDM QUALITY FLAGS 2

excellent coherence detector, despite the use of the power
method for the estimation of the dominant eigenvalue. On the
other hand, it seems that Efast saturates for Efull ∼ >0.7. This
is probably because of the better capability of Efull to capture

the incoherent scattering regime and its higher signal dynamic
range (see Fig. 16). This improved performance is possible
because of the higher accuracy of the GED in determining the
eigenvalues than numerical methods. Efast uses the mean value
of the remaining eigenvalues, as an estimation of the second
eigenvalue η2, and thus, there is a limitation in the detection of
the incoherent scattering, which is associated with a uniform
eigenvalues’ distribution.

Higher values of SNR [see Fig. 22(a)], Pratio [see Fig. 22(b)],
NBRCS [see Fig. 22(c)], and 0p [see Fig. 22(d)] are clustered
within the coherent (Efull ∼ <0.3) and the partially coherent
(0.3 ∼ <Efull ∼ <0.7) scattering regimes. To further evaluate
the performance of the different observables and coherence
detectors, we use the receiver operating characteristic (ROC)
curves [8], using Efull as proxy data (see Fig. 23). The
scattering is incoherent if the full entropy is Efull ∼ >0.7, and
it is coherent when full entropy is Efull ∼ <0.3 (see Figs. 20
and 21).

The optimum operating point of an ROC curve is defined
at the point of inflection when the slope of each curve crosses
from above to below unity (see Fig. 23). This point marks
the transition from more true than false detections to more
false than true. In addition, the ratio of the probability of
detection (PD) and the false alarm rate (FAR) is related to
the area between each curve and the diagonal line (PD = 0
& FAR = 0 to PD = 1 & FAR = 1) in Fig. 23: Efast_area
(∼0.49), SNRarea (∼0.47), and Pratio_area (∼0.47), NBRCSarea
(∼0.46), and 0p_area (∼0.46). Based on both the optimum
points of the curves and the area under the curves, Efast
shows a behavior almost similar to Efull, which confirms the
functional relationship found in Fig. 22. The threshold levels
(one for each observable) at the optimum operating points
of the ROC curves can be used for coherence detection and,
thus, for inland water bodies tracking. Future versions of this
product could include more coherence detectors [57].

V. CONCLUSION

The new CYGNSS multiresolution land data product based
on enhanced quality DDMs is generated after processing and
calibrating raw IF collections. 0p time series with low inte-
gration times, e.g., Ninc = 2 and 50 ms, captures land–water
transitions with high accuracy because of the higher signal
dynamic range and the higher spatial resolution compared to
the standard mission L1 product. In addition to power observ-
ables, the use of complex DDMs allows us to characterize
the performance of more advanced algorithms for coherence
detection. Bistatic scattering regimes are classified as incoher-
ent (Efull ∼ >0.7), partially coherent (0.3 ∼ <Efull ∼ <0.7),
and coherent (Efull ∼ <0.3) by analyzing time series of
ϕpeak. Based on this truth reference state generated with Efull,
ROC curves are used to characterize the performance of Efast,
SNR, Pratio, NBRCS, and 0p. A PD higher than ∼95% for
an FAR lower than ∼5% is found at the optimum points
of the ROC curves using all the 2022 raw IF tracks over
land surfaces. In particular, Efast appears to be an excellent
water detector, showing a clear linear functional relationship
with Efull under the coherent scattering regime. The lower
computational requirement of this detector makes it suitable
for in-orbit water monitoring.
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The ultimate goal of this article is to show the capabilities
of our product to the users for further advancement of the
CYGNSS science team investigations over land surfaces, with
special interest in inland water bodies monitoring. This is
currently a hot research topic with the SWOT mission aiming
to resolve ∼100-m-wide rivers and ∼250 × 250 m lakes and
reservoirs.

APPENDIX
QUALITY FLAGS

See Tables II and III.
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