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Abstract— Vehicle-mounted multichannel ground penetrating
radar (MC-GPR) is a revolutionary technology that facili-
tates the acquisition of volume images by arranging multiple
antennas; however, its images are highly affected by noise
due to different antenna characteristics. This study proposes
reflectivity-consistent sparse blind deconvolution (RC-SBD) for
appropriate denoising of ground penetrating radar (GPR) vol-
ume images. RC-SBD interprets the observed waveform as
the convolution of the emitted wavelets and reflectivity, plus
stationary clutter such as reflections from the vehicle itself. The
method obtains denoised reflectivity by estimating the wavelets
and clutter. The key feature of RC-SBD is that it extends the
existing SBD method to 3-D, and introduces an assumption of
reflectivity smoothness in the horizontal direction, expressed by
the total variation (TV) regularization term. The estimation is
formulated as a minimization problem involving ℓ2 and ℓ1 norms
and is optimized using the Split–Bregman algorithm. Trade-
off hyperparameters of the objective function are optimized via
Bayesian optimization, maximizing the kurtosis of the calibrated
volume image. Validation with synthetic data demonstrates accu-
rate wavelet estimation and significant denoising of the volume
image. Real-world data application further reveals considerable
improvements in the channel-depth cross section, providing a
clear visualization of structures like rebar and steel plates.
Notably, the calibrated image remains stable across diverse
datasets, including earthwork and bridge sections, showcasing
the versatility and reliability of the proposed methodology.

Index Terms— Blind deconvolution, multichannel ground pen-
etrating radar (MC-GPR), sparse modeling, total variation (TV),
volume image processing, wavelet estimation.

I. INTRODUCTION

GROUND penetrating radar (GPR) constitutes a techno-
logical approach that enables the efficient acquisition of

subsurface information by transmitting electromagnetic waves
into the ground and measuring their reflections. With a long
history of application in civil engineering, GPR has been
instrumental in detecting buried pipes [1], [2], voids [3], [4],
and damage [5], [6]. The increasing demand for inspecting
substantial volumes of infrastructure has fostered the need
for high-speed and comprehensive surveys. Consequently,
research into a system known as vehicle-mounted multichannel
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GPR (MC-GPR) has seen considerable progression in recent
years [7], [8], [9], [10], [11], [12], [13], [14]. This system
is characterized by the arrangement of multiple antennas
orthogonal to the scan (or driving) direction, enabling efficient
generation of 3-D images of the subsurface. Despite its inno-
vative nature, the analysis of volume images, which are often
described as the spatial amalgamation of multiple 2-D (B-scan)
images [15], presents certain complexities. In particular, noise
that appears streaky or random is frequently evident in the
images generated by MC-GPR applications. This noise is
largely attributable to the utilization of distinct antennas across
individual channels. Past research applications have primarily
centered around objects that are relatively conspicuous in
the image, such as medium-sized cavities and buried pipes.
As such, the fundamental solution to noise has often been
moved to the margins of these studies. Rigorous channel-
to-channel calibration of MC-GPR will be indispensable for
exploring novel applications, such as the detection of small
voids, rebar, and microdamage.

The theory behind the noise generation can be succinctly
explained through straightforward mathematical equations. Let
us denote f and w as the vectors of observed waves and
transmitted wavelets, respectively, and r as the vector rep-
resenting subsurface reflectivity. For vehicle-mounted types,
although not universally introduced in other studies, the sta-
tionary clutter g, which does not change with observation
locations, should be considered. The clutter g represents direct
waves and reflections from the vehicle body itself, and is a
constant reflection independent of the exploration position.
These variables are related by the following equation:

f [x, c, t] = r[x, c, t] ∗ w[c, t]+ g[c, t]+N (0, σ 2) (1)

where x is the observation point in the scan direction, c is
the channel number, t is the reflection time depth and N
is the Gaussian noise with a variation of σ 2. The above
relation is also shown as a conceptual diagram in Fig. 1. Given
conditions of ideal propagation devoid of frequency-dependent
attenuation, observations are made through the convolution
of the wavelets and subsurface reflectivity. Due to minor
disparities in wavelets between channels and the existence of
the clutter, a discontinuous image is obtained in the channel
direction, even if the reflectivity is smooth. Deconvolution
by wavelets serves as an effective approach for inter-channel
calibration and can be executed as follows:

r̂ =
f̂ − ĝ

ŵ
(2)
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Fig. 1. Data observation model of vehicle mounted GPRs.

where ˆ denotes the discrete Fourier transform (DFT) of the
vectors. When the transmitted wavelet w is known, methods
such as a Wiener filter [16], [17], [18] or deterministic
deconvolution [19] prove efficient.

However, the exact wavelet is often not known in various
circumstances. Such an issue, termed blind deconvolution,
generally represents an ill-posed problem that seeks to find
both unknown reflectivity r and wavelets w. The goal of
deconvolution varies, e.g., for calibration (as in this study)
or input electric field estimation for full-waveform inversion
(FWI) [20], [21], [22], or one may be interested in the obtained
high-resolution reflectivity itself. In the realm of seismic data
processing, methods based on the presumption of the wavelet
being of minimum phase (spiking deconvolution) have been
proposed [23], [24]. Nevertheless, the wavelet is frequently
nonminimum phase in GPR, leading to the proposition of
deconvolution methods premised on the mixed-phase assump-
tion [25], [26], [27].

Sparse modeling has gained momentum in the realms
of image processing and machine learning as a technique
underpinning the presumption of sparsity in information and
facilitating the extraction of its essence [28], [29]. This concept
has found its way into the GPR field, where it is commonly
recognized as sparse blind deconvolution (SBD). The SBD
method seeks to identify higher-resolution reflectivity and
enhanced wavelets by presupposing that subsurface reflectivity
is sparse, an assumption grounded in practical reasoning. Past
studies have demonstrated robust recovery of nonminimum
phase wavelets and high-resolution reflectivity [30], [31],
[32], [33]. Li [31] proposed a technique that alternately
updates the wavelet and reflectivity for superior results. They
introduced a regularization term that integrates high order
statistics [34] and the ℓp norm, the effectiveness of which was
corroborated using simulated data. Jazayeri et al. [33] further
put forward an alternating update technique to effectuate
more robust deconvolution. By solving the ℓ2 − ℓ1 mini-
mization problem with unconstrained basis pursuit denoising
(UBPDN) [35], their method realized a higher resolution of
experimental GPR waveforms.

Despite their efficacy, the aforementioned methods have
been designed for B-scan images acquired with a pair of
antennas, while methods suitable for volume images measured
with multichannel antenna pairs have yet to be proposed.
A plausible approach would be to apply the SBD method
independently for each channel and obtain the wavelets, but

TABLE I
DEFINITIONS AND DESCRIPTIONS FOR THE OBSERVATION MODEL

this presents challenges such as phase inconsistency in the
depth direction. In other words, phenomena such as the
unevenness or irregularity in the depth of the road surface
can occur. Consequently, an appropriate 3-D extension of the
method is needed.

This study puts forth an extended alternating update SBD
method, adapted to three dimensions, for the extraction
of wavelets from MC-GPR for volume image calibration.
The optimization equation incorporates the assumption of
consistent subsurface reflectivity. Specifically, the horizontal
total variation (TV) of the reflectivity is integrated into the
objective function. This study terms the proposed method
reflectivity consistent SBD (RC-SBD). Additionally, the study
acknowledges and addresses the stationary clutter engendered
by vehicle-mounted radar. Section II elucidates the formula-
tion and algorithm devised to solve the problem. Section III
validates the results of the proposed method using synthetic
data, while Section IV presents its application to real-world
data. Conclusions are given in the last section.

II. METHODOLOGY

A. Proposed Model

The variables utilized for constructing the model are sum-
marized in Table I. These variables are either vectors or
multidimensional arrays, simplistically referred to as ten-
sors. The elements nd , ns , and nc represent the length of
a volume image in the depth direction, scan direction, and
number of channels, respectively. Data acquisition by on-
vehicle MC-GPR can be conceptualized according to the
following equation:

F = W R + G. (3)

When W is constituted by a Toeplitz form, the first term can
typically represent a linear convolution. Specifically, we adopt
the stepped frequency continuous wave (SF-CW) system,
which observes data in the frequency domain. Therefore, for
each channel c, the tensor W is assumed to be a circulant
matrix constituted as follows:

W (:, :, c)=

á
wc(0) wc(nd − 1) · · · wc(1)
wc(1) wc(0) wc(2)

...
. . .

...

wc(nd − 1) · · · wc(1) wc(0)

ë
.

(4)
In this study, tensor products such as W R are defined to

be the matrix product for each channel c. It follows that the
calculation below is performed:

F(:, :, c) = W (:, :, c)R(:, :, c)+ G(:, 1, c). (5)
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The second term denotes a stationary clutter tensor that
includes direct waves and reflections from mounting devices.
We assume that this clutter is stationary and does not undergo
substantial variations in the scan direction.

The SBD of GPR, proposed in a previous study [33], iden-
tified sparse reflectivity and wavelet by solving the following
equation:

min
R(:,:,c)

1
2
∥F(:, :, c)−W (:, :, c)R(:, :, c)∥2

2

+λr∥R(:, :, c)∥1 +
λw

2
∥wc∥

2
2. (6)

Here, ∥x∥p represents the ℓp norm, which is defined by
∥x∥p = (|x1|

p
+ |x2|

p
+ · · · + |xn|

p)1/p. λr and λw stand for
the regularization hyperparameters. As simultaneous reso-
lution of the minimization problem concerning R and W
proved to be challenging, they split (6) into two equations,
and resolved the problem for R and W alternately. In other
words, reflectivity is initially obtained given the initial wavelet,
followed by updating the wavelet utilizing the updated reflec-
tivity. Reiteration of the aforementioned procedure led to
minimizers, and the method was shown to perform well for
sparse reflectivity estimation and transmitted wavelet estima-
tion in the single-channel case.

We extend the method to 3-D by introducing the assump-
tion that the reflectivity is smooth in the scan and channel
directions. This is accomplished by solving the optimization
problem

min
R,G

1
2
∥F −W R − G∥2

2 + λtvTV(R)+ λr∥R∥1

+
λg

2
∥G∥2

2 +
λw

2
∥W∥2

2. (7)

The above equation is also split into two following equations
and solved alternately:

min
R,G

1
2
∥F −W R − G∥2

2 + λtvTV(R)+ λr∥R∥1 +
λg

2
∥G∥2

2

(8)

min
W

1
2
∥F −W R − G∥2

2 +
λw

2
∥W∥2

2. (9)

The newly introduced regularization hyperparameters are
denoted by λtv and λg . The first term common to (8)
and (9) represents a fidelity term grounded on the observation
model (3), serving to weaken the constraint. λtv symbol-
izes TV, renowned as one of the most efficacious image
denoising techniques [36], [37]. The TV minimization method
finds application within the GPR field for the purpose of image
restoration or noise reduction [38], [39], and ensuring the
stability of the FWI [40].

The TV term functions to minimize the magnitude of
the derivative, essentially smoothing the image. Nevertheless,
since it is analogous to the ℓ1 regularization term, it has the
capacity to preserve meaningful derivatives. Therefore, it is
possible to maintain the effects of the ℓ1 regularization term R,
which induces sparsity in the reflectivity, while simultaneously
ensuring smoothness of R. Two variants of the TV indices
exist: isotropic and anisotropic. The latter, which is less prone

to induce image distortion [41], is employed in our study and
can be represented by the following equation:

TV(R) =
∑

i

»
(∇s R)2

i + (∇c R)2
i . (10)

∇s and ∇c are the derivative operator in the scan and channel
direction. Here, the forward difference operator with Neumann
boundary conditions is adopted, i.e.,

D =

â
−1 1 0 · · · 0
0 −1 1 0
...

. . .
...

0 −1 1
0 · · · 0 0 0

ì
(11)

∇s R(d, :, c) = DR(d, :, c) (12)
∇c R(d, s, :) = DR(d, s, :). (13)

B. Split Bregman Algorithm

In the proposed optimization problem (8), the involvement
of nondifferentiable functions such as the TV and the ℓ1-norm
makes the problem challenging to solve.

Assuming that E ∈ RN
7→ R is a convex function and

8 ∈ RN
7→ RN is a convex and differentiable function,

we consider the minimization problem given by (14) for a
specific u ∈ RN . The constraints in (14) are relaxed to
transform the problem into (15)

min
u
∥8(u)∥1, s.t. E(u) = 0. (14)

The constraints are weakened by

min
u
∥8(u)∥1 + E(u). (15)

By introducing a auxiliary variable d ∈ RN , the problem can
be reformulated as expressed in (16), and further transformed
into

min
u
∥d∥1 + E(u), s.t. 8(u) = d (16)

min
u
∥d∥1 + E(u)+

α

2
∥d −8(u)∥2

2. (17)

The constraints are also relaxed in this step. It is known that
by applying the Bregman iteration and then using the “adding
the noise back” method, (17) can be further rewritten into an
iterative formula as in

(uk+1, dk+1) = min
u,d
∥d∥1 + E(u)+

α

2

∥∥d −8(u)− dk
g

∥∥2

2

(18)

dk+1
g = dk

g + (8(uk+1
− dk+1)). (19)

Here, k denotes the iteration number and dg ∈ RN is a
variable associated with the subgradient. Equation (18) can be
“split” into two subproblems, as given in

uk+1
= min

u
E(u)+

α

2

∥∥dk
−8(u)− dk

g

∥∥2

2
(20)

dk+1
= min

d
∥d∥1 +

α

2

∥∥d −8(uk+1)− dk
g

∥∥2

2
. (21)

In (20), u is decoupled from the L1 norm, and if E is differ-
entiable, the problem becomes simple to solve. Equation (21)
is known to have a closed-form solution, given by

dk+1
= prox

Å
8(uk+1)+ dk

g ,
1
α

ã
(22)
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TABLE II
DEFINITIONS AND DESCRIPTIONS FOR THE SPLIT BREGMAN ALGORITHM

prox is a shrinkage function: prox(X, λ) = sgn(X ) ⊙ max
(|X | − λ, 0), where sgn and ⊙ refers to the signum function
and the Hadamard product, respectively.

C. Iterative Optimization

Now, we consider a specific solution to the main problem
using. In Section II-B, it was necessary to introduce two
variables for the splitting optimization: an auxiliary variable
and a variable related to the subgradient (they correspond
to dk and dk

g , respectively). To apply the split Bregman
algorithm, new variables are introduced for the derivative in
each direction of the image and for the ℓ1 norm (Table II).
Using these variables, main minimization problem (8) can also
be expressed in the form of iteration as in (18) and (19)

L(R, G, A, B, C, Ag, Bg, Cg)

=
1
2
∥F −W R − G∥2

2

+ λtv

Å»
∥A∥2

2 + ∥B∥2
2 +

α

2
∥A−∇s R − Ag∥

2
2

+
α

2
∥B −∇c R − Bg∥

2
2

ã
+ λr

(
∥C∥1 +

α

2
∥C − R − Cg∥

2
2

)
+

λg

2
∥G∥2

2 (23)

{Rk+1, Gk+1
}

= min
R,G
L
Ä

R, G, Ak, Bk, Ck, Ak
g, Bk

g, Ck
g

ä
(24)

{Ak+1, Bk+1, Ck+1
}

= min
A,B,C

L
Ä

Rk+1, Gk+1, A, B, C, Ak
g, Bk

g, Ck
g

ä
(25)¶

Ak+1
g , Bk+1

g , Ck+1
g

©
= min

Ag,Bg,Cg

L
Ä

Rk+1, Gk+1, Ak+1, Bk+1, Ck+1, Ag, Bg, Cg

ä
.

(26)

The solutions to the above subproblems must be followed
sequentially. First, (24) is a simultaneous minimization prob-
lem for R and G. This can be solved using the gradient
method, since L is fortunately convex and has only one
solution. The partial derivative of L with respect to G is

∂L
∂G
= (1+ λg)G − F +W R (27)

and ∂L/∂G = 0 has a closed-form solution of

G(:, 1, j) =
∑ns

k=1(F(:, k, j)−W (:, :, j)R(:, k, j))
ns(1+ λg)

. (28)

The partial derivative with respect to R is

∂L
∂ R
= W⊤(−F +W R + G)+ αλtv

(
∇

2
s R −∇s(A− Ag)

+∇
2
c R−∇c(B−Bg)

)
+αλr (R − (C − Cg)) (29)

and the gradient can be calculated using G obtained in (28).
The next step is minimization with respect to alternative
variables (25). This has the following closed-form solution
with shrinkage:

Ak+1
=
∇s Rk+1

+ Ak
g

T
⊙max

ß
T −

1
α

, 0
™

(30)

Bk+1
=
∇s Rk+1

+ Bk
g

T
⊙max

ß
T −

1
α

, 0
™

(31)

Ck+1
= prox

Å
Rk+1

+ Ck
g,

1
α

ã
(32)

where, T = ((∇s R)2
+ (∇c R)2)1/2. The last step is the mini-

mization with respect to the subgradient-related variable (26).
Analogous to (19), they can be updated by the following
equations:

Ak+1
g = Ak

g − (Ak+1
−∇s Rk+1) (33)

Bk+1
g = Bk

g − (Bk+1
−∇c Rk+1) (34)

Ck+1
g = Ck

g − (Ck+1
− Rk+1). (35)

Using the sparse and smooth reflectivity R obtained from
the above iterative process, the transmitted wavelet W can be
estimated based on (9). This is done in a similar way to the
derivation of the Wiener filter. The updating equation for each
channel c is as follows:

ŵc =

ns∑
k=1

R̂∗(:, k, c)⊙ (F̂(:, k, c)− Ĝ(:, 1, c))
ns(∥R̂(:, k, c)∥2

2 + λw)
(36)

where ∗ denotes the conjugate. The above procedure can solve
the main problem (7) and is summarized in Algorithm 1.
irg and µ represent the iteration number and the learning
rate of the gradient method, respectively. The gradient descent
method is shown as an example in Algorithm 1, but methods
such as momentum and Adam [42], which are expected to have
fast or stable convergence, can of course be adopted. For the
initial value of W , the experimentally observed direct waves
can be used. The variables introduced for the split Bregman
algorithm are initialized as tensors with all zero elements.

III. VALIDATION BY SYNTHETIC DATA

A. Data Generation

The time signal of wavelets and clutter significantly varies
depending on their vehicular installation, making these shapes
exceedingly challenging to accurately determine by experi-
ment. Consequently, we employed synthetic data with known
true values for methodological validation.

The creation of synthetic data is based on the SF-CW
approach, in accordance with the real-world data acquisition
methods discussed later in Section IV. This method involves
transmitting a sinusoidal wave with a frequency that changes
at a fixed step, while measuring the amplitude and phase
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Algorithm 1 Transmitted Wave Estimation
Require: F, W , A = B = C = Ag = Bg = Cg = 0,
Ensure: R, G, W

repeat
repeat

while i < irg do
R← R − µ∂L/∂ R
G←

∑ns
k=1(F −W R)/{ns(1+ λg)}

end while
T ←

√
(∇s R)2 + (∇c R)2

A← ∇s R+Ag

T ⊙max{T − 1
α
, 0}

B← ∇s R+Bg

T ⊙max{T − 1
α
, 0}

C ← prox(R + Cg,
1
α

)
Ag ← Ag − (A−∇s R)
Bg ← Bg − (B −∇c R)
Cg ← Cg − (C − R)

until convergence of R, G
update W by (36)

until convergence of W

of the reflected waves. The discretized frequency used for
transmission and observation is from 50 to 3030 MHz, with
a step size of 20 MHz. The conversion to the time domain is
conducted using the inverse discrete Fourier transform (IDFT).

The wavelets were generated across 29 channels. Three
distinct types of volume images were synthesized, each of
which includes manually generated layered and hyperbolic
responses. These were generated by the convolution of trans-
mitted waves with 3-D synthetic sparse data in the frequency
domain, followed by the addition of stationary clutter. 20 dB
Gaussian noise was also added to the volume image. For
the algorithm’s initial wavelets, random errors were imposed
on the amplitude and phase spectra of the true transmitted
waves. Within the algorithm, zero-padding increased the time
waveform to nd = 210 points. Furthermore, the following
normalization was applied to the wavelets at the onset of each
iteration to avoid the explicit solution of W = 0:

wc ←
wc

max{max(w1), max(w2), . . . , max(wnc )}
. (37)

Two further modifications were implemented to stabilize the
results. The first concerns a constraint on the updating of (36).
The calibration process involves multiplying by the inverse
of the wavelet, a procedure that can become unstable when
F − G is small. To mitigate this, only the top half of the
F − G amplitudes were used for updating at each frequency.
The second modification was the application of smoothing
in the frequency domain, which was accomplished using a
Gaussian window. After convergence, the observed data F was
calibrated in the frequency domain based on (2). We want to
note that the calibration data obtained from (2) is determined
in the frequency domain, and thus, it does not necessarily yield
a sparse waveform.

B. Selection of Hyperparameters

The primary optimization problem (7) includes hyperpa-
rameters such as λtv , λr , λw, λg , along with the hidden

Fig. 2. Scatter plots of kurtosis of the calibrated image against. (a) RMSE
of the calibrated volume image. (b) RMSE of the wavelets.

Split Bregman parameter α. These hyperparameters determine
the trade-off between the terms of the objective function.
Some of the hyperparameters affect the estimation results,
hence careful consideration was needed. Typically fixed, the
Split Bregman parameter is assigned a value of α = 5 in
this case. Furthermore, λtv is set to 1, as we discerned that
excessively small λtv values lead to nonsmooth calibrated
images. The remaining hyperparameters exert a substantial
influence on the estimation outcomes, thus searched in a
certain range. Kurtosis is frequently employed as a metric
for desirable waveforms [27], [43], [44]. This study follows
suit, utilizing the maximization of kurtosis of the calibrated
image as a condition for the optimal hyperparameters, i.e., the
maximization of the subsequent objective function:

kurtosis =
E[(x − µ)4]

σ 4 . (38)

In this equation, µ and σ represent the mean and standard
deviation of the random variable x , where the calibrated
volume image substitutes for x . The validity of using kurtosis
as an indicator is briefly validated here. Fig. 2 presents scatter
plots of kurtosis against root mean squared error (RMSE) of
the calibrated volume image and the wavelets for each set
of hyperparameters. Each black point signifies a combination
of λr , λg = 0.01, 0.1, 1, 10 and λw = 10−6, 10−5, 10−4,
10−3, 10−2, translating to a total of 80 grid search outcomes.
Within this range, the RMSE of the volume image exhibits a
distinctly negative correlation. Similarly, the correlation coeffi-
cient between kurtosis and wavelets error also demonstrated a
negative correlation at −0.77. Consequently, the maximization
of kurtosis emerges as an apt indicator for determining the
hyperparameters that yield accurate volume image with the
wavelets also being well estimated at this point.

For practical considerations and to ascertain optimal param-
eters with fewer trials compared to grid search, a search
utilizing Bayesian optimization was attempted [45]. λr and λg

were sought in the range from 0.01–10, and λw was searched
in the range from 10−6–10−2. The optimized results of a total
of 30 trials are shown in Table III. Also, kurtosis and RMSE
for this parameter set are indicated by the red dots in Fig. 2.
Convergence to the vicinity of the optimal range by grid search
was substantiated.
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TABLE III
OPTIMIZED HYPERPARAMETERS FOR THE SYNTHETIC DATA

Fig. 3. RC-SBD results of synthetic data regarding wavelet estimation
(channel no. 20). (a) Comparison of the truth, estimated, and initial wavelet.
(b) RMSE convergence of the estimated wavelets by 15 × iteration.

Fig. 4. Comparison of the stationary clutter in the time domain. (a) Truth
and estimated for the representative channels. (b) Residual between the truth
and the estimated.

C. Calibration Results

Fig. 3 shows the results of the wavelet estimation using
parameters derived from Bayesian optimization. In the time
domain, the predicted waveform nearly aligns with the true
waveform, signifying precise estimation [Fig. 3(a)]. Fig. 3(b)
demonstrates the RMSE between the true wavelet and the
estimated wavelet for each channel. The decreasing errors
across all channels demonstrate the effectiveness of multichan-
nel wavelet estimation using the proposed approach.

The estimation result for the stationary clutter is exhibited
in Fig. 4, where Fig. 4(a) represents the true and the estimated

clutter, and Fig. 4(b) shows the residual between the two.
While simple ℓ2 norm adjustment does not yield a perfect
estimate, the method manages to capture a general trend.
Fig. 4(b) retains horizontal streaks around the travel time
of 2, 5, and 10 ns. This can be attributed to the difficulty
in distinguishing a strong and horizontally uniform layered
response from stationary clutter in the scan direction. One
way to mitigate this estimation error is to use a variety of
data, including complex reflections.

Fig. 5 presents the slices of the volume image after calibra-
tion. Fig. 5(a) is calibrated by the true wavelets and stationary
clutter and Fig. 5(b) comprises the image calibrated according
to (2), solely using the initial wavelets. Due to errors in the
wavelets and deconvolution performed without eliminating the
stationary clutter, Fig. 5(b) exhibits significant noise. This
noise, resulting from the channel characteristics, is especially
noticeable in the scan-channel (horizontal) and channel-depth
cross sections, obscuring the subsurface responses. Although
the scan-depth cross section appears cleaner than the two
above as it utilizes a single antenna, it is still impacted
by the stripe noise. Fig. 5(c) illustrates the volume image
calibrated by the estimated wavelets and stationary clutter.
All three sections reveal that noise has been effectively elim-
inated. This denoising effect is particularly conspicuous in
the channel-depth cross section, where the two hyperbolic
responses are clearly discernible.

Also for reference, the peak signal-to-noise ratio (PSNR)
expressed by the following equation is shown above the
volume data:

PSNR = log10

(
R2

MSE

)
(39)

where MSE is the Mean Squared Error of the noiseless and
the target data, and R is the peak value of the data. Compared
to the initial wavelet calibration, PSNR was improved by
about 7 dB, and the noise improvement was confirmed in terms
of the index. It can be concluded that the proposed method can
precisely estimate the wavelets and clutter from the observed
data based on the model in (3). Furthermore, calibration using
these estimates yields smooth and highly discernible data.

IV. APPLICATION TO REAL-WORLD DATA

A. Measurement System

The proposed method was applied to real-world data, col-
lected from two vehicle-mounted MC-GPRs, as illustrated
in Fig. 6. The vehicle in Fig. 6(a) was designated as Vehicle-1,
while the one depicted in Fig. 6(b) was referred to as
Vehicle-2.

These vehicles were equipped with radar systems that used
the (SF-CW) method for the transmission and reception of
electromagnetic waves. The operating frequency band spanned
from 50 to 3030 MHz, with 20 MHz intervals. The data
acquisition interval was set to 7 cm in the scan direction
and 7.5 cm in the channel direction. These MC-GPRs were
equipped with 29 and 25 channels respectively, allowing for
data acquisition across widths of 2.1 and 1.8 m. The radar
was of an air-coupled type, with the antenna positioned 15 cm
above the ground.
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Fig. 5. Comparison of calibrated volume image. (a) Calibrated by the true transmitted wave and stationary clutter. (b) Calibrated by the initial transmitted
wave. (c) Calibrated by the estimated transmitted wave and stationary clutter.

Fig. 6. Vehicles used for the measurement. (a) Vehicle-1. (b) Vehicle-2.

Fig. 7. Pictures of the bridge slab field. (a) Panomaric view. (b) Rebars and
the steel plate installed inside the slab.

Direct waves were recorded with the antenna oriented
toward the air in a preliminary experiment. These waves were
then subtracted from the observed data before being used as
inputs to the algorithm. The direct waves also provided the
initial value for the transmitted wavelets.

Vehicle-1 was used to collect data from experimental envi-
ronments that simulated the conditions of an earthwork road
and a bridge slab, as shown in Fig. 7. The bridge slab site
was embedded with steel bars at regular intervals of either
15 or 30 cm and selectively integrated steel plates to expose
the characteristics of the floor slab’s substructure. Conversely,
Vehicle-2 was used on national roads located within Saitama
Prefecture, which incorporated diverse sections including both
earthwork and bridges.

Hyperparameters were determined by Bayesian optimiza-
tion based on kurtosis maximization, similar to the previous
chapter. Three training and three validation datasets were
prepared for each vehicle. Each dataset contained 50 points
in the scan direction, corresponding to a size of 3.5 m. The
wavelets and clutter were estimated using the training data, and

TABLE IV
OPTIMIZED HYPERPARAMETERS FOR THE REAL-WORLD DATA

Fig. 8. Initial wavelets (direct wave) and the estimated wavelets by the
RC-SBD method of channel no. 20. (a) Vehicle-1. (b) Vehicle-2.

these estimates were then used to calibrate the validation data
according to (2). Hyperparameters maximizing the kurtosis of
the calibrated validation data were sought. The Split Bregman
and TV parameters were fixed to α = 10 and λtv = 1.
λr and λg were explored in the range from 0.01–10, and λw

was explored in the range from 10−6–10−2. The hyperparame-
ter sets chosen through 30 iterations are presented in Table IV.
Fig. 8 provides a comparative depiction of the waveforms
of both the estimated and initial wavelets for representative
channels, corresponding to the optimal parameter sets.

The computations were programed and executed in MAT-
LAB on a computer equipped with an Intel Core i9-9980HK
CPU and an NVIDIA GeForce RTX 2080 GPU. The aver-
age computation time for each pair of hyperparameters was
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Fig. 9. Comparison of the calibrated volume image (vehicle-1). Top row (a)–(c) calibrated by the direct waves. Bottom row (d)–(f) calibrated by the estimated
wavelets and the clutter. (a) and (d) Overall view of volume image. (b) and (e) Channel-depth slice images. (c) and (f) Scan-channel slice images.

Fig. 10. Comparison of the calibrated volume image (vehicle-2). Top row (a)–(c) calibrated by the direct waves. Bottom row (d)–(f) calibrated by the
estimated wavelets and the clutter. (a) and (d) Overall view of volume image. (b), (c), (e) and (f) Channel-depth slice images.

approximately 200 s, amounting to a total computation time
of 2 h. While the computation may seem time-consuming,
it is important to note that the estimated wavelets and clutter
for frequency domain calibration can be utilized for any
observed data, provided that the installation conditions on the
vehicle remain unchanged. Therefore, computation time does
not present a significant obstacle for practical applications.

B. Calibration Results

Fig. 9 presents a comparison between the volume image
calibrated with direct waves and those calibrated with esti-
mated wavelets by the RC-SBD for Vehicle-1. The top row

of the figure displays results calibrated by subtracting direct
waves and dividing by the same, while the bottom row presents
results from the proposed method, calibrated by subtracting
both direct waves and the estimated clutter, and dividing by the
estimated wavelets. Fig. 9(a) and (d) provide an overall view of
the volume image, revealing a significant improvement in the
image quality, with the stripe noise observed in the synthetic
data now eliminated.

The efficacy of the RC-SBD is particularly noticeable in the
channel depth slice [Fig. 9(a) and (d)], which utilizes multiple
antennas for observation. Around 5 ns in the depth direction,
rebar reflections can be seen, displaying the overlap of the
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hyperbolic response from densely placed rebars. Steel plates
integrated into the underside of the bridge slab become visible
around 8 ns in the depth direction.

The scan-channel cross section, or horizontal cross section,
also sees significant improvement. Fig. 9(c) and (f) show
the depth at which the rebar reflection was detected. Striped
noise at 0.6 and 1.4 m in the channel direction overlap with
reflections from the main bars in Fig. 9(c), obscuring them.
However, these stripes are mitigated in Fig. 9(f), revealing
clear, periodic rebar responses. The removal of antenna char-
acteristics for each channel significantly improved the noise
across all cross sections, resulting in more consistent volume
image.

The application for even longer data is presented in Fig. 10.
These figures show the results of calibrating in-service road
image of around 1400 scan points (100 m) in the scan
direction. For this vehicle, calibration with direct waves
introduces unwanted low-frequency noise into the waveform.
In contrast, calibration using the estimated wavelets and clut-
ter effectively eliminates the presence of unwanted waves
and enhances visibility. As mentioned previously, this vol-
ume image includes both the bridge and earthwork sections.
Fig. 10(b) and (e) represent channel-depth slices of the bridge
section. The hyperbolic curve caused by the rebar is clearly
visible through 5–6 ns depth. Also, at around the depth of 7 ns,
a response presumed to be a girder under the slab can be seen.
Fig. 10(c) and (f) the slices of the earthwork section, where the
boundary response of the road surface and the base is easily
discernable following clutter removal. Notably, the quality
of the image improves continuously over the entire 100 m
span. Even with training data as short as 3.5 × 3 = 10.5 m,
the estimates prove versatile enough to be applied to both
earthwork and bridge sections.

V. CONCLUSION

This study introduced the RC-SBD methodology for
the calibration and denoising of MC-GPR volume image.
This approach represents an evolution of the existing SBD
algorithm, previously used for B-scan images. An integral part
of this evolution is the incorporation of a TV regularization
term, which articulates the assumption of smooth subsurface
reflectivity. In the context of synthetic data, the RC-SBD
method proved highly efficient. The wavelets estimated by
the method deviated minimally from the ground truth, which
translated into a substantial enhancement in the quality of
the resulting volume image. A key factor in this result was
the automatic hyperparameter estimation via Bayesian opti-
mization, which was aimed at maximization of kurtosis. This
process successfully yielded optimal wavelets.

Furthermore, the methodology demonstrated significant
robustness when applied to real-world data. It shed light on
the responses of rebar, steel plate, and strata in channel-depth
cross sections, which had previously been unobserved. The
process of subtraction and division using the estimated clutter
and transmitted wavelets resulted in marked improvements in
the volume image with a range of 100 m. This included both
earthwork and bridge sections. A significant advantage of this
approach is that the transmitted wave and clutter estimated

for a specific vehicle can be generalized to any observed data,
as long as the radar installation conditions remain constant.
This insight suggests that the RC-SBD method offers an
efficient and flexible tool for the calibration and denoising of
MC-GPR volume image.

While this study has made significant progress in enhancing
the calibration and denoising of MC-GPR volume image
through the RC-SBD method, it also leaves several important
aspects unaddressed.

1) The study approximated the amplitude of stationary
clutter using the ℓ2 norm. However, this approximation
is a coarse estimate and is highly reliant on the training
data used. This approach, while effective as a first
approximation, may be insufficient for more accurate or
nuanced applications. The introduction of more rigorous
estimation techniques, such as statistical or stochastic
methods, may provide a more robust and accurate mea-
sure of stationary clutter amplitude.

2) The current RC-SBD method does not accommo-
date the time-varying attenuation of the transmitted
wave. This limitation is a departure from the phys-
ical reality of wave propagation, where attenuation
is often frequency-dependent and varies with time.
The existing methodology essentially attempts to find
an average wavelet that results in an optimal cali-
brated volume image. Incorporating a term represent-
ing frequency-dependent attenuation could potentially
improve the accuracy of deconvolution or calibration
procedures in future applications of the method.
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