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Abstract— Generating 3-D city models rapidly is crucial for
many applications. Monocular height estimation (MHE) is one
of the most efficient and timely ways to obtain large-scale
geometric information. However, existing works focus primarily
on training and testing models using unbiased datasets, which
does not align well with real-world applications. Therefore,
we propose a new benchmark dataset to study the transferability
of height estimation models in a cross-dataset setting. To this end,
we first design and construct a large-scale benchmark dataset
for cross-dataset transfer learning on the height estimation
task. This benchmark dataset includes a newly proposed large-
scale synthetic dataset, a newly collected real-world dataset,
and four existing datasets from different cities. Next, a new
experimental protocol, few-shot cross-dataset transfer, is designed.
Furthermore, in this article, we propose a scale-deformable
convolution (SDC) module to enhance the window-based
Transformer for handling the scale-variation problem in the
height estimation task. Experimental results have demonstrated
the effectiveness of the proposed methods in traditional and
cross-dataset transfer settings. The datasets and codes are
publicly available at https://mediatum.ub.tum.de/1662763 and
https://thebenchmarkh.github.io/.

Index Terms— Benchmark, cross-dataset transfer, remote
sensing, synthetic data, transfer learning, Transformer.

I. INTRODUCTION

MONOCULAR height estimation (MHE) [1] is of great
importance to rapid 3-D city modeling and can give

a basic insight into urbanization level. Geometric information
from 3-D cities can be used for energy demand estimation,
population estimation, damage forecasting, and so on [2].
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Fig. 1. Illustration of MHE in the cross-dataset transfer setting. We aim
to transfer deep models from a large-scale synthetic dataset to different
real-world datasets in a few-shot cross-dataset setting.

On the other hand, the generated height data can also
contribute to many challenging follow-up research topics, such
as urban planning [3], automatic piloting, and robot vision.

Airborne light detection and ranging (LiDAR) can actively
acquire the digital surface model (DSM) data that contain
accurate height information. However, LiDAR is cost-
consuming, due to the airborne carrying platform and data
storage device. Furthermore, its height information is not
updated in a timely manner, limited by the hardware and
complicated postprocessing process. Apart from LiDAR,
incidental satellite images can also provide height data via
the calculation of triangulation from satellite image pairs of
consecutive views at different time intervals. Nevertheless,
the conditions for obtaining such images are quite strict.
In addition, both LiDAR and incidental images are difficult to
handle complex city scenes in a real-time manner. In contrast,
MHE can predict height using only a single aerial image and
offers broad application potential in practice because of its
fairly simple data acquisition requirements.

Benefiting from the powerful feature representation capac-
ity, deep neural networks (DNNs) [4] have dominated most
computer vision fields, including MHE. However, deep-
learning-based MHE methods usually require a large amount
of annotated data, which is difficult to obtain for several
reasons.

First, it is very costly to obtain high-resolution remote
sensing images and their corresponding ground-truth height
values on a global scale. Due to different development
levels and urban construction styles, different cities have
their specific urban layouts, which leads to distinctive height
distribution. This results in severe cross-city domain shifts that
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are very common in real-world applications. One potential
approach to mitigate these domain shifts is to gather data from
multiple cities. However, it is prohibitively expensive or even
impossible to collect high-quality data samples for the MHE
task from diverse cities at a global scale.

Second, to ensure the performance of MHE models in real-
world applications, it is imperative to construct datasets for
MHE model training that encompass a wide range of imaging
conditions. The existing methods usually train and test MHE
models using unbiased datasets [5]. However, for real-world
applications, providing the training data under diverse imaging
conditions can be effective at improving the robustness and
performance of deep networks. However, constructing datasets
with different imaging conditions, such as different camera
poses (heights and angles), camera resolutions, and viewing
fields, is further expensive and difficult. Consequently, there
is a lack of a high-resolution, highly accurate, and large-scale
annotated height estimation benchmark dataset.

To address these aforementioned limitations, we resort
to constructing a large-scale synthetic dataset that contains
high-resolution images with accurate geometric information
captured under different conditions. The presented benchmark
dataset, termed Transferable Monocular Height Estimation
(THE), can foster research on transferable representation
learning for MHE, as illustrated in Fig. 1. In addition to
the benchmark dataset, we design a new Transformer-based
method to enhance the performance of MHE models in two
cross-dataset experimental settings. To summarize, we make
the following contributions.

1) Collecting and releasing two new datasets for MHE.
One is a large-scale synthetic dataset termed Grand
Theft Auto for Height estimation (GTAH), which is
obtained from the game Grand Theft Auto [6], under
different imaging conditions. The other dataset is a real-
world one collected from the Actueel Hoogtebestand
Nederland (AHN) project, which covers multiple cities
in the Netherlands.

2) Constructing a new benchmark platform for transferable
MHE. Specifically, one synthetic dataset and five real-
world datasets are included to explore the feasibility of
height knowledge transfer from synthetic to real scenes.
We propose a few-shot cross-dataset transfer setting to
evaluate deep models on datasets that were not seen
during training.

3) To further enhance the model transferability in a
cross-dataset experimental setting, we design a new
scale-deformable convolution (SDC) module to enhance
the Transformer networks with adaptive spatial context.
The SDC module can learn to adjust the spatial context
of representations adaptively across different datasets.

Extensive quantitative and qualitative results show that our
framework outperforms the existing methods clearly, which
indicates the effectiveness of the proposed methods. The
remainder of this article is organized as follows. Section II
reviews related works. Section IV introduces the details of
the proposed method. In Section V, extensive experiments
and analysis are presented to verify the proposed method
comprehensively. Finally, this work is concluded in Section VI.

II. RELATED WORK

Both monocular depth estimation (MDE) and MHE are
geometry-related regression tasks; the former motivates the
development of the latter to some extent. In this section,
related works on MDE are first investigated, and then MHE
is introduced.

A. Monocular Depth Estimation

Early works on MDE used hand-crafted visual features
and probabilistic graphical models (PGMs) to encode depth-
specific visual cues, including object size and texture density,
based on a strong geometric assumption [7], [8], [9].
Recently, deep-learning-based methods have dominated this
field because of their powerful feature representation capacity.
There are roughly two types of deep-learning-based MDE,
supervised methods [10], [11], [12], [13] and self-supervised
(unsupervised) methods [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25].

In this work, we mainly introduce the supervised methods,
which take a single image as input and generate a pixelwise
depth prediction map, following the standard supervised-
learning workflow with the need for manual-annotated depth
labels. These methods achieve state-of-the-art performance
by making breakthroughs in innovative architecture designs,
effective incorporation of geometric and semantic constraints,
and novel objective functions. Some enlightening works [10],
[26], [27] have applied deep convolutional neural network
(CNN) architectures to MDE, directly estimating depths from
single monocular images in an end-to-end trainable manner,
and achieving impressive performance. To model the semantic
and geometric structure of objects within a scene, some
work [28], [29], [30] has introduced semantic segmentation
into MDEs as an auxiliary task, which can guide depth
estimation at the object level.

Taking into account the imbalanced depth distribution that
restricts model performance, Jiao et al. [12] presented an
attention-based distance-related loss to concern more distant
depth regions. Lee and Kim [31] combined multiple loss
terms adaptively to train a monocular depth estimator from
a constructed loss function space containing many loss terms.
To balance the coverage speed of these losses, a loss-aware
adaptive rebalancing algorithm was further designed in the
course of training. The work most closely related to ours
is [32], in which a robust training objective is designed to
train deep-learning-based MDE models using multiple mixing
datasets. For the first time, they propose to evaluate MDE
models in a zero-shot cross-dataset transfer setting. More
recently, vision Transformer-based deep models [33], [34]
have also been proposed, to take advantage of the powerful
representation learning ability of the Transformer backbone.

B. Monocular Height Estimation

Motivated by the success of deep-learning-based MDE,
researchers have attempted to directly predict the height of
objects, i.e., the DSM, within single aerial images from an
overhead view [1], [35], [36], [37], [38], [39], [40], [41], [42],
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Fig. 2. Visualization of some samples from the synthetic GTAH dataset and real-world datasets. To simulate the complex real-world conditions in monocular
aerial images, various imaging conditions, which may influence the performance of MHE, are taken into consideration, including different heights, weathers,
and times of day. Moreover, it can be seen that the scale-variation problem between different datasets is very obvious.

[42], [43], [44], [45], [46]. Srivastava et al. [35] proposed
a multitask CNN architecture for joint height estimation and
semantic segmentation in monocular aerial images in 2017 for
the first time. Mou and Zhu [1] published a concurrent work
that proposed a fully convolutional–deconvolutional network
for MHE and demonstrated its usefulness, for instance, the
segmentation of buildings. Ghamisi and Yokoya [36] and
Paoletti et al. [37] performed the image-to-image translation
from monocular optical images to the corresponding depth
maps within three cities, using the technique of generative
adversarial network (GAN). Amini Amirkolaee and Arefi [38]
presented a CNN-based method to identify collapsed buildings
after an earthquake, based on preevent and postevent satellite
images as well as airborne LiDAR data. Based on the
CNN architecture, they further designed a postprocessing
approach to merge multiple predicted height image patches
into a seamless continuous height map [39]. Liu et al. [40]
proposed a joint framework called height-embedding context
reassembly network (HECR-Net) to simultaneously predict
semantic labels and height maps from single aerial images,
by distilling height-aware embeddings implicitly.

Leveraging the optical flow prediction technique,
Chridtie et al. [41] developed an encoding strategy of the
universal geocentric pose of objects within static monocular
aerial images and trained a deep network to compute the
dense representation; these attributes were exploited to rectify
oblique images to dramatically improve the accuracy of height
prediction of multiple images taken from different oblique
viewpoints. Mahmud et al. [42] proposed a boundary-aware
multitask deep-learning-based architecture for fast 3-D
building modeling from single overhead images, by jointly
learning a modified signed distance function, a dense height
map, and scene semantics from building boundaries to model
the buildings within the scenes. Madhuanand et al. [43] aimed
to estimate depth from a single unmanned aerial vehicle
(UAV) aerial image, by designing a self-supervised learning

approach named self-supervised MDE that does not need any
information other than images.

Although these works have contributed to the development
of MHE in the past few years, most of them stayed within
a particular comfort zone. There is an urgent need to study
some more crucial issues that restrict the practical application
of MHE in the open real world, such as the exploration in
few-shot knowledge transfer in a cross-dataset setting, and
scale-adaptive MHE model design. Aiming to address these
problems, this article conducts the corresponding research and
exploration.

III. TRANSFERABLE MONOCULAR HEIGHT ESTIMATION

This section describes the proposed THE benchmark, which
includes a synthetic GTAH dataset and five real-world datasets.
The newly constructed GTAH and AHN datasets are described
in detail, including their data source, dataset details, and
statistical characteristics. Then to fairly evaluate the proposed
two datasets in the MHE field, a comprehensive statistical
analysis for datasets from five different domains is performed.

A. GTAH

In this section, the data source and dataset details of the
synthetic GTAH dataset are introduced in detail.

1) Data Source: GTAH was collected from an electronic
computer game called Grand Theft Auto V (GTA5) that
was developed by Rockstar North and published by Rockstar
Games [6]. The virtual world in GTA5 covers an area of
252 km2, containing many scenes such as beach, stadium,
mall, and store.

2) Dataset Details: GTAH contains a total of 85 881 pairs
of synthetic monocular aerial images and their associated
pixelwise height maps, with a resolution of 1920 × 1080.
To simulate the complex real-world conditions in monocular
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aerial images, various imaging conditions are taken into
consideration, as follows.

1) Height Distribution: Most of the scenes in GTAH are
located in areas with a rich variety of buildings for height
diversity. Diverse height facilitates a comprehensive and
fair assessment of the performance of MHE algorithms,
for the situation where height estimation is valid for
some heights but is poor when faced with a wide variety
of heights.

2) Camera Locations: For the diversity of height and scene
information, 1111 positions are selected along the roads
in GTA5’s city as the plane coordinates of the camera
without respect to camera heights.

3) Camera Angles: Taking [x, y, z] as the coordinate
system, monocular aerial images of GTAH are captured
from different viewpoints to simulate the diversity of
camera pose.

4) Camera Heights: For the diversity of scene scales,
monocular images are acquired at four camera heights
of 300, 380, 460, and 540 m, to study the effects of the
camera height in practice.

5) Weather Types: To evaluate the effectiveness and
robustness of MHE methods in different weathers,
GTAH contains three common weather conditions:
“sunny,” “foggy,” and “cloudy.”

6) Shadows: Shadow is an implicit visual cue influencing
the performance of MDE models. Dijk and Croon [47]
made an ablation study of shadows to demonstrate their
effect on MDE. As a similar task focusing on pixelwise
regression, it could be presumed that MHE may also
be influenced by shadows. To enable a study of this
kind, GTAH contains the monocular images with (w/)
and without (w/o) shadows.

7) Capturing Different Times of Day: Different times of
day have a significant impact on light intensity and
direction, which further determines the shadow direction
of buildings. For the fine study of capturing times of
day and their subsequent effects, three times of day
are considered in GTAH: 9:00 A.M., 15:00 P.M., and
18:00 P.M.

Some example images of GTAH are shown in Fig. 2, and some
statistical results of GTAH are shown in Fig. 3.

B. AHN

The data source, collection, and properties of the real-world
AHN dataset are introduced in this section.

1) Data Source: AHN was collected from the Actueel
Hoogtebestand Nederland1 project.

2) Dataset Details: AHN contains a total of 10 775 pairs
of real monocular aerial images and their associated pixelwise
height maps, with a resolution of 1024 × 1024. In the
AHN dataset, images are selected to cover different scene
types, including buildings, farms, forests, and water areas.
The corresponding height maps are also carefully processed
for MHE model training and evaluation. In addition, unlike

1https://www.ahn.nl/het-verhaal-van-ahn

Fig. 3. Spatial distributions of heights of MHE datasets, including GTAH,
AHN, JAX, OMA, ATL, and ARG. The x- and y-axes represent the width
and height of the image, respectively. Darker colors represent larger height
values. Different cities have clearly different spatial patterns.

other datasets, the AHN dataset covers multiple cities in
the Netherlands, as shown in Fig. 2.

3) How the Height Maps are Generated: GTAH is
generated using the GTA game, where we manipulate the pose
of cameras and adjust other rendering parameters to obtain a
variety of RGB images along with their corresponding height
maps. The height data in GTAH are synthetically generated
using a game engine, ensuring high quality and precision.
The AHN dataset is acquired from the AHN project, which
uses airborne LiDAR technology. The height data in the AHN
project undergo extensive quality control checks before being
released, ensuring its reliability and accuracy. For the US3D
datasets, the height data are derived from airborne LiDAR data
obtained from the Homeland Security Infrastructure Program.2

Specifically, the above ground level (AGL) height images are
considered as the ground-truth height data.

C. Comparison With Other Existing MHE Datasets

To enrich the proposed THE benchmark dataset, we further
take in the data of four cities from Urban Semantic 3-D
[48], [49], [50], including Jacksonville (JAX), Omaha
(OMA), Atlanta (ATL), and Argentina (ARG). The detailed
comparisons of these six MHE datasets are presented in
Table I. In Fig. 3, we visualize the spatial distributions of
the height in different datasets. The ARG dataset is collected
from the Overhead Geopose Challenge (OGC).3 In addition,
we have also analyzed the histogram of height distribution in
six different datasets. In Fig. 4, we can see that the height
distributions of all the six datasets obey long-tail distribution.
It can be seen that the differences among these six datasets
are clearly apparent. This also clearly indicates the domain
shifts between different cities and the difficulty of cross-dataset
transfer setting.

2https://www.ahn.nl/hoe-werkt-het-inwinnen-van-hoogtegegevens
3https://www.nasa.gov/overhead-geopose-challenge
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TABLE I
COMPARISON BETWEEN THE PROPOSED DATASETS AND OTHER EXISTING MHE DATASETS

Fig. 4. Height distributions of six different MHE datasets, including GTAH,
AHN, JAX, OMA, ATL, and ARG.

IV. METHODOLOGY

In this section, we will introduce the proposed transformer-
based frameworks for MHE. The whole network architecture
is shown in Fig. 5. Specifically, we will first introduce
some existing vision transformers and their limitations for the
MHE task. Then, an adaptive-structure convolution module
is introduced to improve the performance and transferability
of MHE. Finally, based on the constructed synthetic dataset,
a few-shot cross-dataset transfer learning method is designed.

A. Vision Transformer for Height Prediction

Compared with CNN-based deep architectures, Transform-
ers enable relationship modeling between input tokens and
can capture relative height information through the self-
attention mechanism. To predict the pixelwise height value
from monocular images accurately, it is beneficial to make use
of the relative height relationships between neighboring pixels.
For the MHE task, this advantage makes Transformer-based
architectures more effective in improving both the performance
and the transferability of deep models.

B. Scale-Deformable Convolution for Few-Shot
Cross-Dataset Transfer

For real-world applications, few-shot cross-dataset perfor-
mance is a more faithful evaluation metric than training
and testing on datasets with the same biases. Compared
with the MDE task, the cross-dataset evaluation for MHE is

more challenging. The reason is that remote sensing imagery
captured at different heights will be greatly different due to the
change in resolutions. However, the height values of objects
on the ground should not change with different camera poses.
This inconsistency makes MHE an extremely challenging task,
especially in cross-dataset evaluation settings.

The Swin Transformer (Swin-T) can greatly reduce the
computational complexity by computing self-attention maps
within local windows. The window size is an important
hyperparameter for the window-based Transformer models.
However, for images with significantly different resolutions,
aggregating context information in fixed-size windows has
an obvious limitation: the spatial context for objects with
different scales will be inconsistent. This makes the standard
window-based Transformer less effective for handling the
scale-variation problem. Consequently, the severe scale-
inconsistent problem in remotely sensed images (as shown in
Fig. 2) makes the fixed window size for image partitioning
ineffective.

Considering this limitation, in this work, we propose an
SDC module to adjust the spatial context of each pixel for the
Transformer model in a learnable way. We achieve this goal by
designing a deformable convolution operation with learnable
dilation rates to adjust the context in a structured way.
Given the input feature map X ∈ Rc×h×w and kernel weight
w ∈ Rco×c×k×k , the standard convolution can be formulated as

V p0
=

∑
pn∈�

w
(

pn
)
· x( p) (1)

where V p0
∈ Rc denotes the output features at pixel p0.

Indexes of the 2-D spatial offsets for the convolution operation
are denoted by �. For a point p0 in the output feature map, the
coordinates used for convolution computation are p = p0+ pn .

To adjust the spatial context, the deformable convolu-
tion [51] was proposed to learn additional offsets to get
a more flexible receptive field for each pixel. Although
deformable convolution can learn adaptive context by offsets,
we argue that merely using the offsets is still inefficient
to adjust the receptive field with significant scale variation.
For the traditional deformable convolution, usually, multiple
deformable convolution layers are required to gradually adjust
the context by the learned offsets. While using a learnable
multiplier for the receptive field would be more effective,
especially in the few-shot transfer settings. Thus, in this work,
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Fig. 5. Whole pipeline of the proposed “SwinUper + SDC.” First, the height-related visual semantic feature is extracted by Swin-T. Then, adaptive scale
modeling for covering a dynamic receptive field is achieved by the SDC module. Finally, the model is trained for height estimation using different types of
loss functions for both the classical and cross-shot transfer settings.

we further extend the deformable convolution with learnable
dilation rates. Based on this idea, the coordinates of point p
becomes

pi
= pi

0 + ηi pi
n + 1 pi

n

p j
= p j

0 + η j p j
n + 1 p j

n (2)

where η = {ηi , η j
} are the learnable dilation rates, which

can be used to control the receptive field for each pixel
in a structured manner. The 2-D offsets of the deformable
convolution are expressed by 1 pn = {1 pi

n, 1 p j
n}.

In practice, the dilation rates η and offsets 1 pn are typically
fractional. To enable their end-to-end optimization, we adopt
differentiable bilinear sampling to perform SDC, which can
be defined as

V c
p0

=

H∑
u

W∑
v

xc(u, v) max
(
0, 1 − | pi

− v|
)

max
(
0, 1 − | p j

− u|
)

(3)

where p0 ∈ {1, 2, . . . , H W } is the index of output feature
maps, and c ∈ [1 . . . C] is the index of feature channels. For
the sake of simplicity, the coordinate p0 will be omitted in
the following formulas. The coordinates of input feature maps
are denoted by u, v. Note that coordinates ( pi , p j ) and (u, v)

are normalized in the range of [−1, 1]. During backward
propagation, we need to compute the partial derivatives with
respect to xc(u, v), pi , p j , 1 pi

n , p j
n , ηi , and η j . Based on (3),

the partial derivatives for xc(u, v) can be easily obtained by

∂V c

∂xc(u, v)
=

H∑
u

W∑
v

max
(
0, 1 − | pi

− v|
)

max
(
0, 1 − | p j

− u|
)
. (4)

Next, the partial derivatives of pi can be computed by

∂V c

∂ pi
=

H,W∑
u,v

xc(u, v) max
(
0, 1 − | p j

− u|
)

g
(
v, pi) (5)

where g(v, p j ) is a piecewise function that can be formulated
as

g
(
v, pi)

=


0, if |v − pi | ≥ 1
1, if v ≥ pi

−1, if v < pi .

(6)

The partial derivative (∂V c
k/∂ p j ) is similar to that of pi .

Furthermore, the partial derivative of ηi can be obtained by
applying the chain rule

∂V c

∂ηi
=

∂V c

∂ pi

∂ pi

∂ηi

∂ pi

∂ηi
= pi

n. (7)

The computation of partial derivatives (∂V c/∂η j ) is similar
to that of (∂V c/∂ηi ). Finally, we follow the same formulas
described in deformable convolutional networks (DCN) [51]
to compute the partial derivatives (∂V c/∂1 pn).

C. Scale-Invariant Training Loss

Different from the MDE task, the MHE datasets may
contain images captured at diverse camera poses, e.g., different
camera heights. Due to the fact that the range of object
heights may vary greatly for different camera poses, as shown
in Fig. 2, it will be difficult to learn consistent deep
representations for the MHE model across different camera
poses. In this situation, better deep representations can be
learned by training MHE models with consideration to relative
height relationships. Thus, during the training stage, the loss
functions consist of two components. The first loss term is the
regular height map regression loss, which is defined with a
pixelwise MSE loss. The second loss term is the scale-invariant
training loss between different pixel pairs. Let yh denote the
ground-truth height map, and ŷh be the predicted height map.
Then the final loss function can be defined as

L = Lmse
(

ŷh, yh
)
+ Lrh

(
ŷhi , yhj

)
(8)

where Lmse denotes the MSE loss function. Lrh represents
the relative height consistency loss. In the following part,
we introduce three different implementations of the scale-
invariant loss term including Lsi, Lr , and Lmsg. These loss
functions are initially proposed for the MHE task; in this work,
we adapt them for the MHE task for performance comparison.

To handle the varying scale problem in training depth
estimation models, Eigen et al. [52] designed a scale-invariant
loss

Lsi
(

ŷh, yh
)

=
1
n

∑
i

R2
i −

1
n2

(∑
i

Ri

)2

(9)
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TABLE II
NUMBER OF TRAINING SAMPLES FOR

FEW-SHOT CROSS-DATASET TRANSFER

TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON THE GTAH

DATASET. THE BEST AND SECOND-BEST RESULTS ARE
IN BLUE AND GREEN

where Ri is the difference between the prediction and ground
truth at pixel i , and Ri = yhi − ŷhi . Note that for MHE, we use
the original height value instead of the log space, as a large
portion of the height values are zero.

Chen et al. [53] proposed to analyze the ordinal
relationships and enforce the model to learn relative depth

Lr =


log

(
1 + exp

(
− ŷik

+ ŷ jk

))
, rk = +1

log
(
1 + exp

(
ŷik

− ŷ jk

))
, rk = −1(

ŷik
− ŷ jk

)2
, rk = 0.

(10)

This relative constraint loss Lr encourages the pre-
dicted depth map to agree with the ground-truth ordinal
relationships.

Ranftl et al. [32] proposed to use gradient matching loss [54]
to train the depth estimation models in the zero-shot cross-
dataset transfer setting. In this work, the multiscale gradient
matching loss is adapted to the MHE task by

Lmsg
(

ŷh, yh
)

=
1
M

K∑
k=1

M∑
i=1

(
|∇x Rk

i | + |∇y Rk
i |

)
(11)

where Rk
i is the difference between the predicted height map

and the ground-truth height map at scale k. The number of
pixels in a predicted height map is denoted by M . In this work,
four different scales [1, (1/2), (1/4), (1/8)] are used. We also
combine the gradient matching loss Lmsg with a standard MSE
loss to form the final training loss.

V. EXPERIMENTS

This section begins by introducing the experimental settings.
Then, the evaluation metrics are defined in brief. Finally, the
few-shot synthetic-to-real transfer experiments are conducted,

TABLE IV
QUANTITATIVE RESULTS OF SWINUPER + SDC (GTAH) FOR ZERO-SHOT

CROSS-DATASET TRANSFER FROM GTAH TO REAL CITIES

based on the existing deep semantic models and the proposed
method.

A. Experimental Settings

In this section, a series of experiments are set up to evaluate
the transferability of MHE models comprehensively.

1) Benchmark Experiments on the GTAH Dataset: Exten-
sive experiments are conducted on GTAH to compare
the effectiveness of different existing deep architectures,
relative height loss functions, and the proposed method
in this work.

2) Few-Shot Cross-Dataset Transfer Experiments: Exper-
iments under the few-shot cross-dataset setting are
performed to examine the transfer performance from the
GTAH to real datasets when only a few annotated target
samples are available. In addition, to better understand
the effect of the proposed SDC module, we visualize and
analyze the module’s scale-adaptive ability for obtaining
the adaptive spatial context.

3) Pretraining Comparison Experiments: Finally, to verify
the superiority of the GTAH to ImageNet for pretraining
the MHE models, their training losses and visualization
of model weight distribution are provided intuitively.

B. Implementation Details

All the deep models are implemented in PyTorch. For the
GTAH dataset, 100 epochs are used to train the deep models
used for transfer learning in this work. For the CNN-based
U-Net model with the ResNet-34 backbone, we use the code4

from [41]. Adam [56] is used for optimizing the model with
an initial learning rate of 1e − 4. For the SwinUper backbone,
the tiny version of the Swin-T is used and the UperNet [57]
is used for the decoder. The optimizer AdamW [58] is
used with an initial learning rate of 6e − 5 for training
all the Transformer-based deep models. Adabins [59] and
DenseViT [33] are the state-of-the-art MDE models selected
for performance comparison on the proposed GTAH dataset.
The detailed hyperparameters for model training can be found
in the publicly available code.5

In the few-shot cross-dataset transfer experiments, we ran-
domly select 1% and 5% of the training data for each of the
five real-world datasets (cities), as presented in Table II. Then
15 epochs are used to fine-tune the deep models initialized

4https://github.com/pubgeo/monocular-geocentric-pose
5https://github.com/EarthNets/3D-Understanding
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TABLE V
EXPERIMENTAL RESULTS ON THE AHN DATASET IN THE FEW-SHOT CROSS-DATASET TRANSFER SETTING. THE RESULTS OF USING

1% AND 5% TRAINING DATA ARE REPORTED. THE BEST RESULTS ARE IN BLUE, AND THE SECOND-BEST ONES ARE IN GREEN

Fig. 6. Visualization of some height estimation samples on a few RGB
images randomly selected from Google Earth. The MHE model is pretrained
on the GTAH dataset, and then directly used to predict the normalized height
maps of these images without fine-tuning.

with ImageNet or GTAH pretrained parameters. Finally, for
each dataset, the full test set is used for evaluating the fine-
tuned models. Other details of the proposed method can be
found in the publicly available code.

C. Evaluation Metrics

Different from the MDE task, the area with height value
0 accounts for a large percentage of the image. To evaluate
the effectiveness of the proposed methods, we propose to use
four metrics on each dataset for performance evaluation: mean
absolute error (MAE), root mean squared error (RMSE), scale-
invariant RMSE (SI-RMSE) [52], and multiscale gradient error
(MSG). Of these, MAE and RMSE are measurements that
are widely used for the evaluation of regression tasks. MAE,
defined as MAE = 1/n ∗

∑
|yi − ŷi |, is used to measure the

mean absolute difference between the predicted height values
and the ground-truth values in the whole dataset. RMSE,
defined as RMSE = (6(yi − ŷi )

2/n)1/2, is more sensitive
to large height values. We also propose to use SI-RMSE and
MSGE to measure the relative relationships in the predicted
height maps. SI-RMSE is defined as

SI-RMSE =
1
n

∑
i

R2
i −

1
n2

(∑
i

Ri

)2

. (12)

For computing the multiscale gradient matching error,
we adopt the same formula as in (11)

MSGE =
1
M

K∑
k=1

M∑
i=1

(
|∇x Rk

i | + |∇y Rk
i |
)
. (13)

Compared with MAE and RMSE, the metrics SI-RMSE and
MSGE are more concerned with the correctness of relative
relationships in height maps, which are useful complementary
metrics for the evaluation of transferable MHE models.

D. Experiments on GTAH Datasets

To verify the applicability and effectiveness of the proposed
GTAH dataset and evaluate the proposed SDC module fairly,
eight experiments are conducted on GTAH for performance
comparison. First, following the work in [41], the U-Net [60]
architecture with a CNN-based feature extraction backbone
(ResNet-34) is adopted as a CNN-based baseline model for
MHE. Then, Adabins [59] with ResNet-50 backbone and
DenseViT [33] with the Vision Transformer backbone are
selected as the state-of-the-art MDE methods for performance
comparison. Furthermore, Swin-T is used as a Transformer-
based feature extraction backbone for height estimation, which
can be viewed as another baseline. To further explore the
influence of the relative height loss functions on MHE, three
different types of loss functions, Lmsg, Lsi, and Lr , are added
to constrain the relative relationship between pairwise pixels.
The experimental results are provided in Table III.

When comparing the results of the two different baseline
methods: U-Net and Swin-T, it is clear that the Transformer-
based model significantly outperforms U-Net. Such results
indicate that under the full-supervision setting within an
unbiased dataset, the Transformer architecture can be more
effective on the MHE task, benefiting from its excellent
context modeling capability. Based on the Swin-T, the
performance of Lmsg is superior to the other two losses Lsi and
Lr , which reveals that a reasonable relative height constraint
is useful for improving the performance of MHE.

When integrating the proposed SDC module into the
Swin-T, a notable performance gain is obtained, which verifies
the effectiveness of the proposed SDC module for MHE due
to its adaptive context modeling ability. It is worth noting that
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TABLE VI
EXPERIMENTAL RESULTS ON THE JAX DATASET IN THE FEW-SHOT CROSS-DATASET TRANSFER SETTING. THE RESULTS OF USING
1% AND 5% TRAINING DATA ARE REPORTED. THE BEST RESULTS ARE IN BLUE, AND THE SECOND-BEST ONES ARE IN GREEN

TABLE VII
EXPERIMENTAL RESULTS ON THE OMA DATASET IN THE FEW-SHOT CROSS-DATASET TRANSFER SETTING. THE RESULTS OF USING

1% AND 5% TRAINING DATA ARE REPORTED. THE BEST RESULTS ARE IN BLUE, AND THE SECOND-BEST ONES ARE IN GREEN

there is great potential to combine Lmsg with our proposed
SDC, which may further boost MHE performance.

To further explore the generalization of the pro-
posed method, we directly use the proposed method
“SwinUper+SDC” that is pretrained on GTAH to predict
the height of real-world images. Note that these images are
randomly selected from Google Earth Map, as illustrated in
Fig. 6. We can see that the pretrained model can reasonably
estimate the height maps of these images, especially for the
buildings with clear geometric information.

E. Experiments on Few-Shot Cross-Dataset Transfer

Few-shot learning has been studied heavily for image
classification and semantic segmentation. However, for the
dense regression task like MHE, there is still a lack of
research on few-shot cross-dataset transfer. In this work, we fill
in this gap by conducting cross-dataset transfer experiments
from GTAH to the five real-world datasets under the few-
shot setting. Before the few-shot cross-dataset transfer setting,
we first conduct zero-shot transfer experiments to show the
MHE results on real-city datasets using the GTAH pretrained
weights with no fine-tuning process. The results in Table IV
reveal that the MHE performance in the zero-shot transfer
setting is poor due to significant domain shifts.

In the few-shot setting, for each dataset, only 1% or 5%
of the training samples are randomly sampled for fast fine-
tuning. As presented in Table II, for 1% setting, only less
than 100 images are used for the model fine-tuning. The

Fig. 7. Some visualization examples of the proposed SDC module. The SDC
module can be observed to have learned to adjust the context information of
different pixels in the cross-dataset transfer settings.

experimental results of AHN, JAX, OMA, ATL, and ARG
are shown in Tables V–IX, respectively.

When we focus on the initialization strategy, it can be
seen that the results of all the different models including
U-Net, Adabins, DenseViT, and the SwinUper pretrained
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TABLE VIII
EXPERIMENTAL RESULTS ON THE ATL DATASET IN THE FEW-SHOT CROSS-DATASET TRANSFER SETTING. THE RESULTS OF USING

1% AND 5% TRAINING DATA ARE REPORTED. THE BEST RESULTS ARE IN BLUE, AND THE SECOND-BEST ONES ARE IN GREEN

TABLE IX
EXPERIMENTAL RESULTS ON THE ARG DATASET IN THE FEW-SHOT CROSS-DATASET TRANSFER SETTING. THE RESULTS OF USING

1% AND 5% TRAINING DATA ARE REPORTED. THE BEST RESULTS ARE IN BLUE, AND THE SECOND-BEST ONES ARE IN GREEN

on GTAH have a dramatic superiority to those pretrained
on ImageNet. Especially for the ATL dataset with higher
height distribution, ImageNet pretrained U-Net and Swin-T
experience a performance collapse, whereas these models
pretrained on GTAH maintain a stable performance. The
results demonstrate that our proposed GTAH dataset is more
suitable for MHE initialization.

Next, the results of the Swin-T model pretrained on GTAH
with relative constraint loss Lmsg show that the introduction of
Lmsg is not beneficial for improving performance in general.
The reason may be that introducing the relative constraint by
loss functions is not useful for improving the generalizability
of the MHE model across different datasets. In contrast,
the proposed SDC module is still effective in the few-shot
setting. The model “SwinUper + SDC (GTAH)” obtains the
best results on all the datasets. Compared with the baseline
method “SwinUper (GTAH),” the proposed model “SwinUper
+ SDC (GTAH)” shows virtue of its overall superiority with a
considerable performance gain, which verifies that the adaptive
scale modeling ability is helpful for the Swin-T by learning
an adaptive receptive field.

To intuitively illustrate the effect of the SDC module, some
visualization examples of the dynamic spatial context are
provided in Fig. 7. In Fig. 7, we can see that the low-frequency
region needs a larger receptive field to acquire enough context
information, while the high-frequency region only requires a
relatively smaller receptive field for the MHE task.

Some visualization examples on the five real-world datasets
under the few-shot transfer setting are presented in Fig. 8.

F. ImageNet Pretraining Versus GTAH Pretraining

To further study the effectiveness of model pretraining in
the cross-dataset transfer setting, we present and analyze the
loss trends of the model “SwinUper+SDC” during the few-
shot model fine-tuning stage. As shown in Fig. 9, from the
loss trend we can see that models with GTAH pretrained
parameters can converge faster. Especially on the JAX, OMA,
and ATL datasets, models initialized with the ImageNet
pretrained parameters are difficult to converge.

1) Visualization of the Loss Tendency: In Fig. 9, we can
observe that for the datasets of AHN and ARG, both
ImageNet and GTAH pretrained parameters can accelerate
model training, while using GTAH can result in a faster
convergence rate at the early stage. Taking into consideration
their test results in Tables V and IX, the Swin-T pretrained
on the GTAH dataset still outperforms that pretrained on
ImageNet. When we turn to the JAX and ATL datasets, the
model using GTAH pretrained parameters experiences a rapid
decline and shows a dramatic advantage to ImageNet. From
the perspective of loss tendency, our proposed GTAH dataset
can facilitate the training process of all the datasets, albeit to
different extents.

2) Visualization of the Weight Distribution: We also
visualize and compare the weight distributions of deep
models trained on ImageNet, GTAH, and real-world datasets,
respectively. As presented in Fig. 10, the weight distribution
of the last two layers (Layer1 and Layer2) of the SwinUper
method is visualized. For both the layers, the parameters
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Fig. 8. Visualization results of height estimation in a few-shot (1% of the training data) cross-dataset transfer setting. In this figure, the predicted height
maps of five real-world datasets OMA, AHN, ARG, ATL, and JAX are shown. It can be seen that our method “SwinUper+SDC (GTAH)” can obtain much
better results than other methods in the few-shot across-dataset transfer setting.

trained on GTAH have a more similar distribution to those
trained on real-world datasets than the ImageNet pretrained
parameters. Especially for Layer1, the distribution of weights
trained on GTAH is highly consistent with those trained on real
datasets. For Layer2, the differences in weight distributions
between ImageNet and real-world datasets become larger.
This is reasonable because the shallow layers mainly extract

the universal representations, while the final layer is usually
responsible for the dataset-specific predictions.

3) Comparison With Pretrained Weights on Remote Sensing
Data: In Table X, we also compare the performance of
weights pretrained on GTAH with other remote sensing
datasets. Considering that natural images in ImageNet are
different from remotely sensed images, we compare our
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Fig. 9. Training loss of the “Swin-SDC” (Swin-T followed by the SDC module) on five real-world MHE datasets after being pretrained on ImageNet and
GTAH. (a) AHN. (b) JAX. (c) OMA. (d) ATL. (e) ARG.

Fig. 10. Weight distributions of the Swin-T trained on ImageNet, GTAH, and the combination of real-world datasets, respectively. (a) Layer1-ImageNet.
(b) Layer1-GTAH. (c) Layer1-Real. (d) Layer2-ImageNet. (e) Layer2-GTAH. (f) Layer2-Real.

TABLE X
EXPERIMENTAL RESULTS ON THE AHN DATASET WITH DIFFERENT PRETRAINING METHODS. THE BEST RESULTS ARE

IN BLUE, AND THE SECOND-BEST ONES ARE IN GREEN

method with SSLTransformerRS [61] that are pretrained on
the Sentinel-2 dataset using self-supervised learning. As shown
in Table X, SwinUper (SSLTransformerRS) is slightly better
than SwinUper (ImageNet). Pretraining using GTAH can
achieve superior performance than others, which indicates the
effectiveness of the proposed dataset.

VI. CONCLUSION

In this article, we study the transferability of height
estimation models in a cross-dataset transfer setting. To start
with, a new large-scale synthetic dataset, named GTAH, for
height estimation from monocular remote sensing images
is constructed and released. GTAH contains highly accurate
high-resolution RGB/height image pairs captured under
different imaging conditions, which can be helpful to foster
research on MHE. Furthermore, we also collect and release
a large-scale real-world dataset termed AHN, for the MHE

task. Then, we study the transferability of deep learning
models for MHE in a cross-dataset setting, which is more
consistent with real-world applications. To achieve this goal,
a large-scale benchmark dataset for cross-dataset transfer
learning on the MHE task is constructed. Furthermore,
a new experimental protocol, few-shot cross-dataset transfer,
is designed to evaluate the generalizability of MHE models in
a cross-dataset setting. In addition, an SDC module is designed
to handle the severe scale variation problem. The experimental
results have verified the effectiveness of the proposed new
datasets and methods for the height estimation task.
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