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Abstract— With the development of deep learning (DL),
research on ship classification in synthetic aperture radar (SAR)
images has made remarkable progress. However, such research
has primarily focused on classifying large ships with distinct
features, such as cargo ships, containers, and tankers. The
classification of SAR fishing vessels is extremely challenging
because of two main reasons: 1) the small size and minor
interclass differences of fishing vessels make learning fine-
grained features difficult and 2) determining fishing vessel types
is difficult, resulting in a lack of labeled data. Hence, after
designing a process framework for vessel tagging, we construct
a high-resolution fine-grained fishing vessel classification dataset
(FishingVesselSAR), which contains 116 gillnetters, 72 seiners,
and 181 trawlers. We then propose a novel DL model (FishNet)
that aims to strengthen feature extraction and utilization. In Fish-
Net, we introduce four innovative modules to ensure superior
performance in SAR fishing vessel classification: a multipath
feature extraction (MUL) module, a feature fusion (FF) module,
a multilevel feature aggregation (MFA) module, and a parallel
channel and spatial attention (PCSA) module. Furthermore,
we design an adaptive loss function to achieve better classification
performance by mitigating the effects of class imbalance. In this
article, we report extensive ablation studies conducted to confirm
the efficacy of the five improvements listed above. Sufficient
comparisons with 33 advanced methods from the DL and

Manuscript received 9 June 2023; revised 28 August 2023; accepted
3 September 2023. Date of publication 7 September 2023; date of current
version 20 September 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 61971455, Grant 42106177,
Grant U2006207, Grant 62122091, Grant 62131019, and Grant 42206184;
in part by the Foundation of Equipment Pre-Research Area under Grant
80915020107; in part by the National Defense Science and Technology Basic
Enhancement Program under Grant 2022JCJQZD1470003; and in part by
the Shandong Provincial Natural Science Foundation of China under Grant
ZR2021QF093. (Corresponding author: Xi Zhang.)

Yanan Guan, Xi Zhang, Genwang Liu, Jie Zhang, and Chenghui Cao
are with the First Institute of Oceanography and the Technology Innova-
tion Center for Ocean Telemetry, Ministry of Natural Resources of China,
Qingdao 266061, China (e-mail: guanyanan@fio.org.cn; xi.zhang@fio.org.cn;
liu_genwang@126.com; zhangjie@fio.org.cn; caochenghui@fio.org.cn).

Siwei Chen is with the State Key Laboratory of Complex Electro-
magnetic Environment Effects on Electronics and Information Systems,
National University of Defense Technology, Changsha 410073, China (e-mail:
chenswnudt@163.com).

Yongjun Jia and Yi Zhang are with the National Satellite Ocean Application
Service, Ministry of Natural Resources, Beijing 100081, China (e-mail:
jiayongjun@mail.nsoas.org.cn; zhangyi@mail.nsoas.gov.cn).

Gui Gao is with the Faculty of Geosciences and Environmental Engi-
neering, Southwest Jiaotong University, Chengdu 611756, China (e-mail:
dellar@126.com).

Zhongwei Li is with the College of Oceanography and Space Infor-
matics, China University of Petroleum, Qingdao 266580, China (e-mail:
li.zhongwei@vip.163.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TGRS.2023.3312766, provided by the authors.

Digital Object Identifier 10.1109/TGRS.2023.3312766

SAR target classification communities demonstrate that FishNet
achieves an SAR fishing vessel classification accuracy of 89.79%,
which is 6.77% higher than that of the second-best method.

Index Terms— Fishing vessel classification, FishNet, high accu-
racy, synthetic aperture radar (SAR).

I. INTRODUCTION

F ISHERIES contribute to livelihoods, food security, and
human health worldwide, and their sustainable devel-

opment is of great significance to all humankind. However,
overfishing due to illegal, unreported, and unregulated (IUU)
fishing has resulted in a precipitous decline in key fish stocks,
threatening biodiversity, and disrupting ecosystems out of
balance [1], [2], [3]. Despite numerous initiatives to combat
IUU fishing, the UN’s Sustainable Development Goal (SDG)
Indicator 14.6.1, which aims to eliminate IUU fishing by 2020,
has yet to be achieved [4]. To realize the goal of sustainable
fisheries, effective and reliable monitoring of fishing vessels
in a fishing area is essential [5]. It should be noted that, due
to the different species being caught, different types of fishing
vessels have varying impacts on bycatch, habitat, and the rate
at which overfishing occurs. Therefore, identifying the types
of fishing vessels is a priority in fishery monitoring.

At present, the main technical tool for monitoring fishing
vessels is the automatic identification system (AIS), which
can transmit vessel-related information autonomously and
continuously. AIS messages can provide vessel identification
data, such as the name and Maritime Mobile Service Identity
(MMSI), as well as vessel type codes, such as “70” for cargo
ships, “80” for tankers, and “30” for fishing vessels. However,
the type code in AIS data only indicates whether a vessel
is a fishing vessel and not the type of fishing it performs.
Therefore, it is not possible to effectively monitor fishing
behavior based solely on the AIS information reported by
fishing vessels in real-time, let alone combat IUU fishing.

Researchers have discovered that different types of fishing
vessels exhibit significant variations in their fishing activities
and in their supportive equipment for the deployed fishing gear
on board. Variations in fishing behavior are mainly evidenced
by speed, heading, and trajectory, which can be obtained
through AIS data. Hence, the processing, analysis, and deep
mining of AIS data with high spatiotemporal multigranular-
ity represent the primary research direction for accurately
identifying fishing vessel types [6], [7], [8], [9]. However,
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the reported AIS data may be lost or erroneous for various
reasons, such as operators deliberately switching off transpon-
ders or falsifying data when entering fishery management
areas [10], [11], [12]. This poses a significant threat to fishing
vessel management, particularly in combating IUU fishing.
Therefore, there is an urgent need to develop new monitoring
methods.

Unlike AIS, which relies on the active cooperation of
ships, synthetic aperture radar (SAR) can capture targets
under all-day and all-weather conditions by actively sending
and receiving microwave pulses [13], [14]. Based on the
synergistic exploitation of SAR and AIS data, scholars have
conducted studies on the classification of SAR detections as
fishing or nonfishing vessels [15], the detection of dark fishing
fleets [16], [17], large-scale open ocean monitoring to track
human activity across the oceans [18], and so on. To the best of
our knowledge, however, there have been no previous studies
on the identification of fishing vessel types in SAR images.

Currently, research on ship classification in SAR images
mainly focuses on large ships with distinct features, such as
cargo ships, container ships, and tankers. Traditional SAR
ship classification methods are mainly implemented by extract-
ing handcrafted features and applying classifiers such as
sparse representation classifiers [19], [20] and support vector
machines (SVMs) [21], [22]. Some common handcrafted fea-
tures include geometric [23], [24], backscatter [25], histogram
of oriented gradients (HOG) [26], [27], texture [28], [29], and
scale-invariant feature transform (SIFT) features [30], [31].
In summary, traditional methods can achieve high performance
in some cases, but they require time-consuming and laborious
feature design and are weak in generalizability. However, the
above shortcomings can be satisfactorily resolved with modern
convolutional neural network (CNN)-based methods that have
become available in recent years.

CNN-based methods can automatically extract rich features
of targets although these features tend to be too abstract to
be understood by humans [32]. However, these abstractions
may be more consistent with the inherent logic of nature [33],
which greatly improves classification performance. In 2017,
Bentes et al. [34] used four classifiers to classify maritime
targets, including cargo ships, tankers, windmills, platforms,
and port structures. The results indicated that CNN-based
models performed much better than traditional classifiers.
Wang et al. [35] built a ship classification model based on
very deep convolutional networks. The network model was
pretrained using transfer learning and fine-tuning to achieve
an average classification accuracy of 95% for bulk carri-
ers, containers, and tankers. However, long pretraining times
result in poor efficiency. OpenSARShip, a high-quality dataset
dedicated to Sentinel-1 ship interpretation, was released by
Huang et al. [36] as a basis for developing deep learning (DL)
models for SAR ship recognition. Based on this dataset, many
research results have emerged. For example, Wu et al. [37]
proposed a joint convolution network with a generator and
a classifier block to classify three kinds of ships. Using a
deep metric learning scheme, He et al. [38] proposed a
densely connected triadic CNN to expand the interclass

distance and achieved satisfactory classification results for
ships in medium-resolution SAR images. Arguing that the
robustness of individual CNN models is weak for SAR
ship classification, Zheng et al. [39] proposed an automated
method for heterogeneous deep CNNs based on two-stage fil-
tering. In addition, Hou et al. [40] released the high-resolution
FUSAR-Ship dataset collected from the Gaofen-3 (GF-3)
satellite. Due to the availability of large-scale datasets, the
design of CNN-based SAR ship classifiers has recently
attracted increasing attention from scholars [41], [42], [43].

While vigorously developing new CNN models, researchers
have also attempted to develop better SAR ship classification
methods by fusing traditional features with the abstract fea-
tures extracted by CNNs. Wang et al. [44] proposed a deep
framework for target classification utilizing multiple CNNs
by incorporating the intensity and edge information of SAR
images. Zhang et al. [45] designed a novel CNN that incor-
porates traditional HOG features. Afterward, these authors
integrated dual polarization features and geometric features
into CNNs [46]. Experimental results have shown that such
CNN models with traditional features embedded can achieve
preferable results in large ship classification.

Overall, the above studies on the classification of SAR
ships with distinguishable characteristics and significant inter-
class differences have achieved satisfactory results. However,
it remains challenging to classify different types of fishing
vessels. First, different types of fishing vessels seem relatively
similar in appearance. There are minor differences caused by
the fishing gear and supporting facilities deployed on board,
but these differences are far less significant than those between
merchant ships, such as containers and tankers. Furthermore,
compared to merchant ships, fishing vessels are smaller, espe-
cially offshore fishing vessels, which are typically less than
40 m in length. Due to this, obtaining detailed features and
internal structures of fishing vessels from SAR images is more
challenging. In addition, the SAR imaging mechanism makes
such images more vulnerable to speckle noise [47], [48], and
the defocusing and motion blur phenomena are more seri-
ous. Thus, the key to achieving high-precision fishing vessel
classification in SAR images is to determine how to extract
more effective information despite the interference of these
unfavorable factors and, thereby, capture the discriminative
features among different types of fishing vessels.

In addition, annotated and high-quality datasets are the basis
for SAR ship classification. However, as discussed earlier,
fishing vessel types cannot be directly determined from AIS
information. Consequently, constructing a fine-grained fishing
vessel type dataset is more complex, difficult, and time-
consuming than constructing other ship datasets.

To address the abovementioned problems, we first propose
a process framework for labeling fishing vessel targets in
SAR images. After cropping the SAR chips corresponding
to fishing vessels, we use an AIS-based fishing vessel type
identification model to determine the type of each fishing
vessel. This process helps us construct a high-resolution SAR
fishing vessel dataset named FishingVesselSAR. Second, dif-
ferent from previous SAR ship classification methods based on
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TABLE I
DETAILS OF THE GF-3 SAR DATA PROCESSED IN THIS ARTICLE

image preprocessing or network layer stacking, we propose
a novel DL model named FishNet from the perspective of
strengthening feature extraction and utilization. In FishNet,
four innovative modules are designed to ensure excellent
classification performance for SAR fishing vessels. These
modules are: 1) a multipath feature extraction (MUL) module;
2) a feature fusion (FF) module; 3) a multilevel feature aggre-
gation (MFA) module; and 4) a parallel channel and spatial
attention (PCSA) module. In addition, we propose an adaptive
loss function to address the class imbalance problem in SAR
fishing vessel classification, further improving the accuracy.
To confirm the effectiveness of these five improvements,
we conducted extensive ablation studies. Compared to 33 other
advanced models, FishNet achieves the highest accuracy of
89.67% in SAR fishing vessel classification, which is 6.77%
higher than the second-best model.

The main contributions of this article are given as follows.
1) The identification of fishing vessel types in SAR images

is addressed for the first time.
2) A high-resolution SAR fishing vessel dataset

(FishingVesselSAR) is constructed, which lays the
foundation for SAR fishing vessel classification.

3) A novel DL model called FishNet is proposed for SAR
fishing vessel classification.

4) In FishNet, four modules and a proprietary loss function
are designed to ensure superior classification perfor-
mance for SAR fishing vessels.

5) Compared with 27 advanced DL models and six
advanced SAR target classification models, FishNet
achieves a considerable advantage in classification
accuracy.

The rest of this article is organized as follows. Section II
describes the creation of the FishingVesselSAR dataset.
Section III introduces the principles and implementation of
FishNet in detail. Section IV introduces the details of the
experiments and reports the results. Ablation studies are pre-
sented in Section V. Finally, Section VI concludes this article.

II. SAR FISHING VESSEL DATASET

A. GF-3 SAR Data

GF-3 is China’s first civilian C-band SAR satellite [49].
With a 29-day revisit period, it circles the Earth in a Sun-
synchronous orbit at an altitude of 755 km. The GF-3 satellite
is designed with 12 imaging modes, offering the advantages
of high resolution and a large imaging width.

In this article, GF-3 SAR images acquired in multiple modes
in the offshore waters of China (17.53◦N–40.89◦N, 108.37◦E–
125.40◦E), with ground resolutions ranging from 3 to 10 m,

are utilized to undertake a study of fishing vessel type iden-
tification. A total of 386 GF-3 images were obtained from
April 2019 to April 2022. The details of these scenes are
summarized in Table I, and their geographical distribution
is shown in Fig. S1 in the Supplementary Material. For the
preprocessing of GF-3 SAR images, we employ SNAP 3.0 [50]
to perform geometric correction and radiometric calibration.

B. AIS Data

The AIS data sent by a shipboard communication device
can provide near-real-time messages containing static infor-
mation (e.g., name, MMSI, and call sign), dynamic navigation
information (e.g., position, speed, and heading), and voyage-
related information (e.g., draft and destination) [51]. The AIS
data used in this study were purchased from commercial
companies (http://www.boloomo.com/, accessed on May 25,
2023), covering the period from 2019 to 2022.

For each SAR image, the corresponding AIS messages from
the same zone were retrieved in a 10-min window centered on
the SAR acquisition time. Thus, we obtained the original AIS
records covering all space–time regions of the 386 GF-3 SAR
scenes.

With the goal of constructing SAR fishing vessel samples,
we retained the AIS data of all fishing vessels (that is, data
with the unique type code “30”) and deleted all the rest
to facilitate subsequent SAR-AIS coregistration. Furthermore,
data cleaning operations were performed to eliminate duplicate
and incorrect records.

C. Establishment of the FishingVesselSAR Dataset

Despite the large number of GF3 images available for
use, the small number and size of the fishing vessels make
it necessary to complete the entire process of constructing
SAR fishing vessel samples by hand to ensure the accurate
extraction of each fishing vessel from each SAR image.
Therefore, we develop a process framework for labeling SAR
fishing vessel targets, which mainly consists of two phases:
cropping SAR fishing vessels and identifying fishing vessel
types.

1) Cropping SAR Fishing Vessels: Establishing reliable
links between AIS messages and the fishing vessels in SAR
images is a prerequisite for cropping SAR fishing vessels.
In fact, the acquisition time of an SAR image may not
completely coincide with the reporting time of the most
closely corresponding AIS data, and Doppler shifts may
lead to positional differences between SAR vessels and the
associated AIS messages. To overcome the former challenge,
we interpolate the AIS data to derive the vessel positions at the
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Fig. 1. Flowchart of the process of cropping SAR fishing vessel chips.

Fig. 2. Flowchart of the process of identifying fishing vessel types.

time of SAR acquisition. To address the latter, we calculate
the Doppler shifts [52] based on the velocity vectors in the
AIS messages to correct the dead reckoning positions of the
vessels. Fig. 1 illustrates the detailed operational flow. After
achieving the optimal spatiotemporal matches, we obtained
SAR chips corresponding to 511 fishing vessels subject to
strict quality control. All chips were saved as single-precision
floating-point amplitude images.

2) Identifying Fishing Vessel Types: Gillnetters, seiners, and
trawlers are the main types of fishing vessels in Chinese
waters, and their combined fishing production accounted for
78.30% of the total fishing in 2019. The employment of
different fishing methods results in distinct differences in the
trajectories of these fishing vessels plotted by AIS data (see
Fig. S2 in the Supplementary Material), and a detailed descrip-
tion of these differences is provided in the Supplementary
Material. Therefore, we can identify the type of fishing vessel
by tracking its AIS trajectory 15 days before and after the
corresponding SAR acquisition time. Fig. 2 shows the type
identification model used in the above process. Based on AIS
data, the identification model can reliably identify the fishing
type of each vessel by comprehensively mining the differences
that characterize different fishing vessel types. For detailed
principles and the implementation process, please refer to [8].

For the construction of the FishingVesselSAR dataset, the
identification model identifies 511 fishing vessels as 116 gill-
netters, 72 seiners, 181 trawlers, and 142 fishing vessels
of uncertain type. Thus, the final FishingVesselSAR dataset
contains SAR chips corresponding to 369 fishing vessels of
known types. Among them, the SAR chips of 267 fishing
vessels have resolutions better than 8 m, accounting for

approximately 91.32% of the total samples. The detailed
statistics of the FishingVesselSAR dataset are shown in Fig. S3
in the Supplementary Material.

III. METHOD AND MODEL

In this section, we first introduce the overall structure of
the proposed FishNet and describe the feature maps involved.
After that, four important modules and the proprietary loss
function in FishNet are introduced, namely, the MUL module,
the FF module, the MFA module, the PCSA module, and the
adaptive loss function.

A. Overview of the Model

Due to the small size of the targets and the noise of SAR
images, capturing the interclass differences among fishing ves-
sels is challenging. To this end, we have developed a novel DL
model named FishNet that maximizes feature extraction and
utilization to fully obtain SAR fishing vessel discriminative
features. The overall architecture of FishNet is shown in Fig. 3.

Four innovative modules and a novel loss function are
designed in FishNet for solving fishing vessel types of identifi-
cation in SAR images. FishNet’s construction process is given
as follows.

First, the MUL module is designed to fully extract features
from input images so that subtle differences between fishing
vessels can be captured to the greatest extent. FishNet’s
basic backbone for feature extraction is formed by connecting
multiple MUL modules with Transition modules. As shown in
Fig. 3, the Transition module uses average pooling layers with
a stride of 2 (marked @2) to achieve a size reduction of feature
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Fig. 3. Network architecture of FishNet.

maps extracted by the previous MUL module. As a result, the
network parameters of FishNet can be compressed, while the
feature receptive field of the subsequent MUL module can be
increased.

Second, fishing vessels are relatively small, and to improve
classification accuracy, it is crucial to emphasize details and
local information while fully extracting deep features. We have
designed the FF module to fuse the features at different
levels extracted by the backbone since high- and low-level
features capture sufficient semantic and detailed information,
respectively. Furthermore, we have designed the MFA module
based on the FF module to achieve multilevel FF. By jointly
applying the FF module and the MFA module, the high-
efficiency fusion of the features in different receptive fields
contributes to improving the spatial information contained in
the features, enabling FishNet to obtain more comprehensive
feature information from fishing vessels.

To suppress background features caused by interference
phenomena such as speckle noise while highlighting interclass
differences, we design the PCSA module to perform channel
and spatial attention (SA) processing on the fused features in
parallel.

Then, after attention-based feature recalibration by the
PCSA module, the fused feature maps are integrated as the
elements to be input to the fully connected layer for better
classification results.

Finally, an adaptive loss function is proposed to address the
data imbalance problem for SAR fishing vessels and is used
to guide the training process.

Considering the statistical distribution of the pixel sizes (see
Fig. S3 in the Supplementary Material), SAR images must
first be scaled to a uniform size of 56 × 56 pixels before
being input into FishNet. Table II displays the main modules
in FishNet and the names and sizes of their outputs.

B. MUL Module

Due to the small interclass differences and the limited
number of SAR fishing vessel samples available for model
training, a prerequisite for improving classification accuracy
is to extract as much effective feature information as possible.
Taking this into account, we design the MUL module that
consists of a MUL-DenseBlock for enhanced feature extraction
and a ConversionBlock for feature compression, as shown
in Fig. 4.

As shown in Fig. 4(a), to extract sufficient features, the
input feature maps that enter the MUL module are first
processed by the MUL-DenseBlock, which generates more
than twice the feature maps. Inspired by DenseNet’s [53] dense
connection mechanism, we introduce the DenseBlock module
with a feature reuse function in each branch of the MUL-
DenseBlock to extract features from the input feature maps.
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TABLE II
DESCRIPTION OF THE COMPONENTS OF FISHNET

Fig. 4. MUL module: (a) overall architecture, (b) four-layer DenseBlock, and (c) ConversionBlock.

Parallel DenseBlocks with similar depths greatly enhance
the network architecture, enabling MUL-DenseBlock to learn
richer information about SAR fishing vessels.

As illustrated in Fig. 4(b), a DenseBlock comprises L layers,
each producing k feature maps, where k represents the growth
rate of the network. Furthermore, each layer implements a
nonlinear transformation Hl(.), where l is the index of the
layer. Hl(.) denotes a composite function consisting of batch
normalization (BN), a rectified linear unit (ReLU) activation
function, a convolution (Conv), and a dropout layer with a
rate of 0.1, as shown in Fig. 4(c). To strengthen feature
propagation, encourage feature reuse, and, thus, extract more
global and meaningful features of the fishing vessels, the

output of each layer of the DenseBlock is combined with the
outputs of all preceding layers in the channel dimension to
serve as the input to the next layer. However, the distribution
of data obtained by the model after training at each layer is
different. Therefore, it is necessary to first normalize the input
elements in the next layer using BN, which is implemented as
follows:

BN(z) = λ
z − µ(z)√

σ 2(z)
+ γ (1)

where µ denotes the mean of the input feature maps,
σ 2 denotes the variance, and λ and γ are network parameters,
which are updated during the training process. The BN layer
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increases network stability while speeding up the model’s
convergence to some extent.

A nonlinear transformation is then implemented using the
ReLU activation function, and its output is computed as
follows:

Act(BN(z)) = max(0, BN(z)). (2)

Afterward, the convolution layer extracts feature maps by
introducing filters with a size of 3 × 3 as follows:

o[m, h] =

3∑
g=0

3∑
f =0

z(m − g, h − f ) ∗ w(g, f ) (3)

where z denotes the convolutional input, w denotes the filter,
and o indicates the output feature map.

Finally, the dropout layer is employed to prevent overfitting
in the model. Dropout is a regularization strategy that reduces
the reliance of each neuron on others by randomly switching
off some neurons. This improves the robustness and general-
ization ability of the network model.

Therefore, the output of the lth layer (1 ≤ l) is

xl = Hl
([

x0, x1, x2, . . . , x(l−1)

])
(4)

where [x0, x1, x2, . . . , x(l−1)] represents the concatenation of
the features produced in layers 0, . . . , l − 1.

The output of the DenseBlock for a single path is

yi = x0 + H1(x0) + H2(x1) + · · · + Hl
(
x(l−1)

)
. (5)

Then, the final output of the MUL-DenseBlock in the j th
MUL module of FishNet can be expressed as

Y j = y j1 + y j2 + · · · + y jn (6)

where n represents the number of parallel DenseBlocks, that is,
the number of paths in the MUL-DenseBlock, and “+” denotes
the concatenation operation.

With the above formulas, various feature maps from differ-
ent channels can be assembled, which is helpful for modeling
the feature correlations of the channels and extracting strong
features in the following steps.

Here, we set the parameter L of the DenseBlocks in the
MUL-DenseBlock of each of the four MUL modules to 6,
12, 24, and 16, respectively, and we set the growth rate k
to 16. The above parameters are determined based on the
successful experience of DenseNet; the details can be found
in [53]. Moreover, for the most important parameter in the
MUL-DenseBlock, namely, n, we set it to 3 in accordance
with the experimental results (see Section V-A).

The application of Mul-DenseBlock enables adequate
extraction of features for the fine-grained classification of fish-
ing vessels while also resulting in a substantial increase in the
number of model parameters. Therefore, the ConversionBlock
is designed to process the output of the MUL-DenseBlock
before it is forwarded to the TransitionBlock. As shown in
Fig. 4(c), the ConversionBlock consists of three composite
layers containing 1 × 1, 3 × 3, and 1 × 1 convolution
filters, respectively. The ConversionBlock not only decreases
the number of feature maps (while preserving the spatial
dimensions) but also filters information and learns intermediate
features.

C. FF Module

CNN models extract features of the target by layer-by-layer
abstraction. Most existing CNN-based classification models
utilize only the last layer of the network, which in FishNet
is only fM4 for the SAR fishing vessel classification task.
However, higher level features with larger receptive fields can
represent richer semantic information but lack finer details due
to their coarser resolution. In contrast, lower level features
capture sufficient geometric details but offer weaker semantic
representations.

SAR fishing vessel classification requires high-level features
that retain strong semantic information and low-level features
with high resolution that can be mined for more detailed infor-
mation to differentiate the nuances of different fishing vessel
types. For this reason, the FF module fuses the feature maps
extracted at different levels to realize feature-level fusion with
the purpose of exploring the intrinsic connections between
features to produce feature maps with more powerful semantic
representations.

Before fusing the high-level feature maps Fhigh
(H × W × C1) and the low-level feature maps
Flow(2H × 2W × C2, C2 < C1), the size and dimensions
of both need to be consistent. To minimize the loss of
discriminative information on the fishing vessels and ensure
that the fused feature maps possess more comprehensive
information and greater classification power, the size of
the fused feature maps output by the FF module is set
to 2H × 2W × C1. Specifically, the FF module has two
branches, as illustrated in Fig. 5.

In one branch, 2-D nearest-neighbor upsampling is applied
to Fhigh to retain as much semantic information as possi-
ble, resulting in fused feature maps with both robust spatial
information and strong semantic information. In addition,
a 3 × 3 convolution is implemented on each upsampled map
to reduce the aliasing effect of upsampling. The above process
can be expressed as follows:

F ′

high = BN
(
Conv3×3×c1

(
fupsample2

(
Fhigh

)))
(7)

where fupsample2 represents the operation of 2-D nearest-
neighbor upsampling.

In another branch, the first 3 × 3 convolutional layer
increases the dimension of the feature map Flow to C1, and
the second convolutional layer further processes the feature
map after the number of channels is increased to obtain more
feature information. Thus, the series of operations performed
on Flow can be expressed as follows:

F ′

low = BN
(
Conv3×3×c1

(
ReLU

(
BN

(
Conv3×3×c1(Flow)

))))
.

(8)

In short, the function of one branch is to obtain the
characteristic information of the fishing vessel under a larger
receptive field from the higher level features, and the function
of the other is to increase the dimension of the lower level
features while preserving details.

Finally, we consider different methods of combining F ′

low
and F ′

high: the elementwise product and the elementwise sum.
Experimental results show that the elementwise sum provides
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Fig. 5. FF module.

Fig. 6. MFA module.

better accuracy (see Section V-B). Thus, the process of obtain-
ing the final feature maps F ′ can be expressed as follows:

F ′
= ReLU

(
BN

(
Conv3×3×c1

(
F ′

low ⊕ F ′

high

)))
(9)

where ⊕ denotes the elementwise sum.

D. MFA Module

Based on the FF module, a new top-down MFA module
has been implemented in the FishNet model. By inserting FF
modules between layers in FishNet’s basic backbone, the MFA
module reduces the loss of feature information during feature
extraction due to resolution reduction. The architecture of the
MFA module is shown in Fig. 6.

As shown in Fig. 6, the MFA module uses the feature maps
{ fM4, fM3, fM2, fM1} from the top-down pathway that are
output from each MUL module at different levels. Unlike in
most previous methods [54], the output of each FF module in
the MFA module is used as the input to the next FF module
in order to extract sufficient feature information to efficiently
differentiate SAR fishing vessels. The specific implementation
processes are given as follows. The top-level features fM4
and the third-level features fM3 are simultaneously input into
the MFA module, and fM4 is upsampled and merged with
fM3 to obtain the fused features fF1. Then, the second-level
features fM2 are input into the MFA module and fused with the
upsampled fF1 to obtain the fused features fF2, and a similar
process is repeated to obtain fF3.

By fusing multilevel information from low- and high-level
feature maps, the MFA module aggregates both detailed spatial

information and contextual semantic information for small
fishing vessels, thereby improving the feature description
capabilities of FishNet.

E. PCSA Module

Compared to large ships, fishing vessel classification recog-
nition requires addressing the difficulty of feature extraction
caused by minor differences while attenuating interference
caused by unfavorable factors such as scattered noise in SAR
images. By designing the MUL module, FishNet can extract
feature maps containing a great deal of information about SAR
fishing vessels, and the FF and MFA modules further enrich
the feature maps. Therefore, highlighting the more relevant and
representative interclass differences of fishing vessels from so
much feature information is a crucial task to improve SAR
fishing vessel type identification.

Existing studies have proven that feature discrimination can
be improved by integrating attention mechanisms into the
network model to help capture spatial and channel correlations
between features. Therefore, to minimize the interference of
redundant information and increase the differentiation of the
features used for final classification, we propose the PCSA
module. In this module, attention mechanisms are applied to
the spatial and channel dimensions simultaneously, guiding
FishNet to pay more attention to the subtle interclass dif-
ferences among fishing vessels while limiting the influence
of unnecessary information to achieve a better classification
effect for SAR fishing vessels. The architecture of the PCSA
module is shown in Fig. 7.
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Fig. 7. PCSA module.

In the attention mechanism applied by the previously pro-
posed convolutional block attention module (CBAM) [55],
the feature maps are processed by a channel attention (CA)
module before being fed to an SA module. However, this can
lead to some level of bias in the feature information learned
by the later SA module. The deviation caused by the serial
connection of the CA and SA modules can lead to instability
of the effect of the overall attention module, compromising
the classification performance for fine-grained fishing vessels.
Therefore, in the proposed PCSA module, as shown in Fig. 7,
the CA and SA modules are applied in parallel instead. Con-
sequently, each attention module can learn directly from the
original feature maps, ensuring superior processing results for
SAR fishing vessel feature maps. Therefore, the PCSA module
consists of three parallel channels, with the CA module and
SA submodule at its core.

Given an intermediate feature map F as input, a 1-D CA
map Mc(F) and a 2-D SA map Ms(F) are inferred by the
CA module and the SA module, respectively. Finally, the
two attention maps are directly multiplied in an elementwise
manner with F to obtain the final refined output F ′. The
refined feature map F ′ is computed as follows:

F ′
= Mc(F) ⊗ F ⊗ Ms(F) (10)

where ⊗ denotes the elementwise multiplication.
1) CA Module: When the image is processed by a multi-

layer convolution layer, the feature matrix of multiple channels
can be obtained. However, not all channels contain impor-
tant information. For SAR fishing vessel identification, some
channels are extremely valuable, while others may be of little
value or even detrimental. In view of this, the PCSA module
is designed with a CA module that can enhance the weight
of useful information and suppress the weight of useless
information in the feature channel.

The CA module exploits the interchannel relationships
among the features to generate a CA map, which directs the
model’s attention to the meaningful content in the input data.
In the CA module, the input features are processed separately
with average and maximum pooling to calculate the statistical
characteristics of the feature map for each channel, which are

then sent to a shared fully connected layer. The output feature
vectors are then merged through concatenation, and a 1 × 1
convolutional layer is applied. After the sigmoid activation
function is applied, the global weight descriptor is generated.
In short, the CA map is computed as follows:

Mc(F) = σ(Conv1×1(concat[ξ(GAvgPool(F)),

ξ(GMaxPool(F))])) (11)

where σ(.) denotes the sigmoid function, MLP(.) is the multi-
layer perceptron (MLP), Conv1×1(.) represents convolution
with a kernel size of 1 × 1, concat(.) represents concatenation
in the channel dimension, and GAvgPool(.) and GMaxPool(.)
represent the average pooling and the maximum pooling,
respectively.

2) SA Module: As previously mentioned, SAR images of
fishing vessels are prone to background features caused by
interference phenomena such as speckles. Therefore, it is
necessary to design the SA module to make the model focus on
the areas in the SAR image that is meaningful for identifying
fishing vessels. Unlike the CA module, the SA module gener-
ates an SA map by applying average and maximum pooling
processes along the channel axis using a convolutional layer.
In short, the SA map is computed as follows:

Mc(F) = σ(Conv7×7(concat[GAvgPool(F),

GMaxPool(F)])). (12)

As shown in Fig. 3, the output of PCSA modules, expressed
as { fP1, fP2, fP3, fP4}, are used to obtain the final SAR fishing
vessel classification decision.

F. Adaptive Loss Function

The cross-entropy loss function calculates a value between
0 and 1 to indicate whether the model is learning to make
accurate predictions. The cross-entropy loss for multiclass
classification is defined as follows:

Loss = −

C−1∑
i=0

yi log(pi ) (13)

where p =
[

p0, . . . , pC−1
]

is the predicted distribution, with
pi representing the probability that the sample belongs to
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class i ; y =
[
y0, . . . , yC−1

]
is the one-hot encoding of the

true labels, with yi = 1 when the sample belongs to class i
and yi = 0 otherwise; and C is the total number of samples.

The cross-entropy loss is a measure of the difference
between the probability distributions of the real values y and
the predicted values p.d In other words, the smaller the loss,
the better the model performs. As shown in (13), this loss
function is evaluated with the same weight for each class.
As a result, training a model on an imbalanced dataset can
bias the learning process toward the majority of classes. As a
consequence, the model may perform poorly for minority
classes, even when the cross-entropy loss reaches a small value
during training. Therefore, employing the cross-entropy loss
as the loss function for FishNet would be negatively impacted
by the class imbalance of the SAR fishing vessel samples,
resulting in an adverse effect on the model’s learning.

Based on our preliminary experiments, we discovered that
the numbers of samples of various types of fishing vessels
in each training batch were unbalanced. Furthermore, due to
the differences in quantity among the different classes, it is
challenging to determine the proportions of the various classes
appearing in each minibatch, even after random disruption
of all samples. As a solution to these issues, we propose an
adaptive loss function defined as follows:

Loss = −

C−1∑
i=0

yi e−
Nk
N log(pi ) (14)

where e−(Nk/N ) is the weight of a sample of class k in the
minibatch, N denotes the total number of samples in the
minibatch, and Nk denotes the number of samples of class
k in the minibatch.

The proposed adaptive loss function can adjust the weight
of each sample in each minibatch based on the class to
which it belongs, thus balancing the contribution of each class
to the overall loss. Consequently, the adaptive loss of each
sample is not only dependent on the sample itself but also
related to the total number of samples of the same class in
the batch. Implementing the adaptive loss function balances
the parameter offset in the learning process and mitigates the
adverse effect of class imbalance on the training of FishNet,
ultimately resulting in better SAR fishing vessel classification
performance.

IV. EXPERIMENTS AND ANALYSIS

Our experiments are run on a personal computer with an
Intel E5-2678 v3 CPU and an NVIDIA RTX A2000 GPU. Our
codes are written based on the PyTorch framework, and CUDA
11.4 and cuDNN 8.2 are used to call the GPU to accelerate
training.

To prevent overfitting due to the limited amount of labeled
data and improve the generalizability of the model, various
data augmentation methods, such as flipping, panning, and
rotation at varying angles, are utilized to expand the dataset.
In addition, there are fewer seiners in the FishingVesselSAR
dataset than trawlers and gillnetters, creating a class imbalance
problem. Such imbalance will lead to poor performance for the
minority classes in the model. If the same data augmentation

methods are to be used for each type of fishing vessel, the
imbalance in the dataset would be exacerbated. For this reason,
we increase the number of gillnetters and seiners by using
geometric transformation methods. After data augmentation,
there are 1160 gillnetters, 1080 seiners, and 1268 trawlers in
the SAR fishing vessel dataset.

As described in Section III, the SAR fishing vessel images
are resized to 56 × 56 pixels for input to FishNet, which is
trained from scratch without pretraining. Stochastic gradient
descent (SGD) [56] is used to train FishNet for 200 epochs
with a batch size of 16. The Nesterov momentum and
weight decay parameters of SGD are set to 0.9 and 0.0001,
respectively. The learning rate is initially set to 0.0001 and
is dynamically adjusted using the cosine annealing method.
All the following experiments are conducted with the same
parameter settings to ensure fair comparisons. In addition,
the experimental results are obtained through fivefold cross-
validation, and the mean and standard deviation of each
evaluation index are calculated by taking the optimal results
of each experiment.

A. Evaluation Indices

In this article, accuracy, precision, recall, and F-score are
used to evaluate model performance.

As the most important evaluation metric, accuracy repre-
sents the percentage of correct samples relative to the total.
Precision is the percentage of true positives among the samples
judged to be positive by the classifier. Recall is defined as
the ratio of correctly predicted positive cases to total positive
cases. The F-score is the harmonic mean of the precision and
recall values, with a maximum value of 1 and a minimum
value of 0. These metrics are defined as follows [57]:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F − score =
2(Precision × Recall)

Precision + Recall
(18)

where TP, FP, TN, and FN represent the numbers of true
positives, false positives, true negatives, and false negatives,
respectively. Moreover, the confusion matrix [58], the receiver
operating characteristic (ROC) curve [59], [60], and the area
under the ROC curve (AUC) [61] are used to further evaluate
the classification performance.

B. Classification Results

Table III shows the performance evaluation results of Fish-
Net. The average accuracy is 89.79%, and the other evaluation
indices reach approximately 90%, indicating the superior
performance of FishNet for SAR fishing vessel classification.
Moreover, FishNet exhibits relatively robust stability of its
classification performance, as evidenced by its standard devi-
ation of less than 1.00% for each evaluation index.

To intuitively demonstrate the classification ability of Fish-
Net, we visualize the SAR fishing vessel samples before and
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TABLE III
PERFORMANCE EVALUATION OF FISHNET USING THE FIVEFOLD CROSS-VALIDATION PROCEDURE

Fig. 8. Visualizations of (a) input fishing vessel samples and (b) corresponding output of the FishNet model using t-SNE, where samples represented in the
same color belong to the same class.

after processing by FishNet using the t-distributed stochas-
tic neighbor embedding (t-SNE) algorithm [62], as shown
in Fig. 8.

Fig. 8(a) shows that the visualization results for the input
sample set are disordered and chaotic, and the classes are
almost impossible to distinguish. In comparison, after being
processed by FishNet, samples with the same category labels
are closer together, while samples with different category
labels tend to be separated from one another [see Fig. 8(b)].
The proposed FishNet model shows superior classification
performance in Fig. 8(b).

1) Visualization of Feature Maps: To observe the pro-
cessing of SAR images by FishNet, we visualize some of
the output feature maps of each key innovative module (see
Fig. 9). The blue arrows in Fig. 9 indicate the direction of
information transfer within the model.

Fig. 9(a) shows an original SAR fishing vessel sample
inputted into the model, and Fig. 9(b)–(e) shows some of
the feature maps outputted by the MUL modules at different
levels, with dimensions of 56 × 56, 28 × 28, 14 × 14, and
7 × 7, respectively. The extracted features in the different
feature maps are clearly distinct, but they are all valid in that
they focus on the hull rather than the sea surface. In addition,
as the network depth increases, the extracted fishing vessel
features gradually transition from local texture features to
higher levels of abstraction. Although these features are too
abstract to be interpreted explicitly, the high accuracy achieved
by FishNet reflects its powerful ability to extract features
without any human participation.

Fig. 9(f)–(h) shows some of the output feature maps from
the FF modules, with dimensions of 56 × 56, 28 × 28,

and 14 × 14, respectively. Compared with Fig. 9(d) and (e),
the feature maps outputted from FF module F1 retain not
only semantic information that is useful for classifying fish-
ing vessels but also discriminative detailed features such as
contours and textures. With this combination of high-level
semantic and low-level physical information, these features are
more representative. Therefore, the model can acquire subtle
features from SAR images of fishing vessels that are more
representative of the vessel type to achieve better classifica-
tion results. This is particularly evident in the feature maps
outputted by the F3 module [see Fig. 9(f)], which integrates
all levels of feature information.

The feature maps in Fig. 9(i)–(l) are obtained by processing
the feature maps of Fig. 9(e)–(h), respectively, with the PCSA
module. They show that the proposed PCSA module can
accurately focus on the target and produce precise attention
results.

2) Interclass Euclidean Distances: Inspired by the work of
Zeiler and Fergus [63], we describe the classification perfor-
mance in terms of the Euclidean distances between the feature
vectors extracted from different classes of fishing vessels. This
way, the improvement in classification performance caused by
each key innovative module can be quantified.

Here, we input the fishing vessel samples from the test
set for each experiment as specified in Table III into the
well-trained FishNet model for that specific experiment. Then,
we calculate the Euclidean distance between the feature vec-
tors extracted by each module for each pair of types of SAR
fishing vessel samples. The means and standard deviations
of the interclass Euclidean distances obtained from the five
experiments are shown in Fig. 10. A red or green arrow
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Fig. 9. Visualization of feature maps: (a) input; output feature maps from MUL modules: (b) M1, (c) M2, (d) M3, and (e) M4; output feature maps from
FF modules: (f) F3, (g) F2, and (h) F1; and output feature maps from PCSA modules: (i) P1, (j) P2, (k) P3, and (l) P4.

represents an increase or decrease, respectively, in the
Euclidean distance calculated in this module compared to
the previous module. This is done to facilitate the evaluation
of changes in the classification performance of the model.
When there is more than one upstream module, as shown in
Fig. 10(e), only the smallest change value is displayed for each
distance.

The MUL module is proposed to extract more sufficient
target features. As seen in Fig. 10(a)–(c), with the deepening
of the backbone, the three interclass Euclidean distances grad-
ually increase. However, they decrease after the deepest M4
module [see Fig. 10(d)]. This phenomenon may possibly result
from the fact that, as the receptive field of the model increases
with depth, detailed information such as the structures of
fishing vessels may vanish entirely in the extracted feature
vectors, reducing the ability to classify fishing vessels. This
problem can be solved to some extent by using the FF and
MFA modules, as evidenced by the gradual increases in the
three interclass Euclidean distances for the feature vectors
output by the F1 [see Fig. 10(g)], F2 [see Fig. 10(f)], and F3
[see Fig. 10(e)] modules. By integrating features at different
levels, the FF and MFA modules enhance the information
richness of the features considered for classification, thus
making them more discriminative.

The PCSA module is designed to suppress background
features caused by interference phenomena such as speckle
noise while enhancing the representativeness of useful fea-
tures. In FishNet, the PCSA modules P1, P2, P3, and P4 are
used to process the feature maps output from F3, F2, F1, and
M4, respectively. As seen in Fig. 10(h)–(k), the Euclidean

distances are increased by 2.30%–11.94% compared to the
previous module, thus proving the effectiveness of the PCSA
module.

Finally, all feature vectors inputted into the classification
module are integrated into one output for the final fishing
vessel classification. In Fig. 10(l), the Euclidean distances
between the three classes as calculated from the integrated
feature vectors reach their maximum values, indicating that
FishNet can achieve superior classification performance for
gillnetters, seiners, and trawlers.

C. Comparisons With Advanced Models

Two experiments are conducted to comprehensively verify
FishNet’s superior classification performance. One comparison
is made with advanced models from the DL community
that has achieved remarkable success in image classification.
Another comparison is made with advanced models from the
SAR target classification community.

1) Comparison With Advanced Models From the DL Com-
munity: Table IV shows the performance comparison of the
proposed model with 27 advanced DL models. The other DL
models are implemented based on the original proposals. The
classification accuracies of all the models in Table IV exceed
60%, which indicates the feasibility of identifying fishing
vessels from SAR images.

Compared to other DL models with excellent classification
performance in other fields, FishNet, which is specifically
designed to address the difficulties encountered in SAR fishing
vessel classification, such as the small size of the targets
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Fig. 10. Interclass Euclidean distances between the feature vectors output by MUL modules: (a) M1, (b) M2, (c) M3, and (d) M4; FF modules: (e) F3,
(f) F2, and (g) F1; PCSA modules: (h) P1, (i) P2, (j) P3, and (k) P4; and (l) feature vectors used for final fishing vessel classification in the classification
module. ∗∗∗ “D1” denotes the interclass Euclidean distance between gillnetters and seiners, “D2” denotes the interclass Euclidean distance between gillnetters
and trawlers, and “D3” denotes the interclass Euclidean distance between seiners and trawlers.

and the subtle interclass differences between classes, achieves
an accuracy of 89.79%, which is 6.77% higher than the
second-best model and much higher than those of the others.
In addition, the overall precision, recall, and F-score values
outperform those of currently popular advanced DL models.

2) Comparison With Advanced Models From the SAR Target
Classification Community: To the best of our knowledge,
no previous research has been conducted on the type classifi-
cation of fishing vessels in SAR images. Several DL models
have been widely used in SAR target classification and have
produced excellent classification results. Their performance
for SAR fishing vessel classification is shown in Table IV.
Therefore, we choose six advanced methods specially designed
for SAR target classification to compare with our FishNet
model in this section.

In Table V, A-ConvNets [74], capsule [75], and
Zhang et al. [76] are small-sample classification methods
based on the Moving and Stationary Target Acquisi-
tion and Recognition (MSTAR) dataset; GSESCNNs [77],
Hou et al. [78], and HOG-ShipCLSNet [45] are ship classi-
fication methods developed based on the OpenSARShip and
FUSAR-Ship datasets, which focus on large ships such as
tankers.

As shown in Table V, regardless of whether the methods are
based on the large-ship or MSTAR datasets, their classification
results for SAR fishing vessels are much lower than those of
FishNet, with the maximum difference in accuracy reaching
42.20%. There are two main reasons why the other models
may fail to perform well in classifying fishing vessels. On the
one hand, these models are smaller than the DL models in
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TABLE IV
PERFORMANCE COMPARISON WITH 27 ADVANCED DL MODELS

TABLE V
PERFORMANCE COMPARISON WITH ADVANCED METHODS FROM THE SAR TARGET CLASSIFICATION COMMUNITY

Table IV in terms of both depth and width, and as a result, they
fail to extract sufficient effective discriminative features from
SAR fishing vessels to capture the small interclass differences,
resulting in poor classification. On the other hand, most of
them do not utilize all of the features extracted in previous
layers and, instead, rely solely on the features extracted in the
last layer.

Furthermore, the HOG-ShipCLSNet model fuses traditional
manual features with CNN-based abstract features, which is
a popular approach in SAR ship classification research, but
its accuracy reaches only 47.59% for the classification of
fishing vessels. To explore possible reasons for this, we select a
cargo ship and a gillnetter from the OpenSARShip dataset and

the FishingVesselSAR dataset, respectively, and extract and
visualize their HOG features, as shown in Fig. 11. Compared
to the gillnetter [see Fig. 11(c)], the cargo ship [see Fig. 11(a)]
is larger and has a more pronounced superstructure. As shown
in Fig. 11(b), the HOG features extracted from the cargo ship
can describe the shapes and edges of local targets, which is
beneficial in identifying ship types. Therefore, the addition
of HOG features to the HOG-ShipCLSNet model results in
more effective classification of SAR ships in Zhang et al.’s
work [45]. However, the HOG features extracted from the
gillnetter are unable to represent its geometric features [see
Fig. 11(d)]. A CNN-based model incorporating such HOG
features might be less effective. As a result, a DL model that
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Fig. 11. Visualizations of a cargo ship in (a) OpenSARShip and (b) its HOG features and of a gillnetter in (c) FishingVesselSAR and (d) its HOG features.

TABLE VI
PERFORMANCE COMPARISON WITH DIFFERENT VALUES OF n

can freely extract features from targets may be a more effective
method of achieving high-precision classification for fishing
vessels with unclear features.

3) ROC and AUC Metrics: An objective evaluation of the
different models’ classification performance is presented in
this section in terms of the ROC curve and AUC. Fig. 12
shows the ROC curves and the corresponding AUCs of the
various classification methods. The performance of a model is
better when the ROC curve is steeper. The AUC is defined as
the area under the ROC curve and above the coordinate axis.
In general, the larger the AUC is, the better the classification
ability. Compared with the others, the proposed FishNet model
achieves a higher true positive rate (TPR) while maintaining
a lower false positive rate (FPR) [see Fig. 12(a)], resulting in
the highest AUC value [see Fig. 12(b)]. This finding confirms
its excellent classification performance for fishing vessels.

V. ABLATION STUDY

A. Ablation Study on the MUL Module

We perform a series of experiments to verify the effective-
ness of the MUL module and to determine the influence of the
hyperparameter n. The results are listed in Table VI. Note that,
when n = 1, the MUL module is replaced with a primitive
DenseBlock. This means that the backbone network of FishNet
consists of DenseBlocks and TransitionBlocks instead of MUL
modules and TransitionBlocks.

As seen in Table VI, FishNet with the MUL module (n > 1)

achieves better classification performance for SAR fishing
vessels, with the classification accuracy being improved by at
least 1.10%. When n = 3, the accuracy is improved by 3.32%
to a maximum value of 89.79%, thus proving the effectiveness
of the MUL module.

Theoretically, the feature extraction ability of the MUL
module should be further improved as n increases. However,
the classification accuracy of FishNet for SAR fishing vessels
decreases instead when n > 3, as shown in Table VI.
As mentioned above, due to the small size of SAR fishing
vessels and the subtle interclass differences, the effective
features that the model can extract are limited. It appears
that the degradation in classification accuracy when n exceeds
3 indicates that, at this point, the feature extraction capacity of
the model is already excessive for SAR fishing vessel samples.
In this case, numerous irrelevant and redundant features may
be extracted by the model, which can adversely affect the
final classification performance. Therefore, for the SAR fishing
vessel classification task, the optimal value of the parameter
n in the FishNet model is 3.

B. Ablation Study on the FF Module and the MFA Module

To verify the effectiveness of the FF module and the MFA
module and investigate the influence of some detailed network
settings, we perform two groups of experiments. Experiment 1
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Fig. 12. (a) ROC curves and (b) corresponding AUC values of the different methods.

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT COMBINATION METHODS

is conducted to verify the effects of using different feature
combination methods in the FF module. Experiment 2 is
conducted to study the effects of different levels of features
on classification accuracy.

1) Experiment 1: Effectiveness of Different Combination
Methods: Table VII compares the performance achieved when
using different combination methods in the FF module. The
classification accuracy of the model is higher when the ele-
mentwise sum method is used to combine features of different
levels. This result suggests that the elementwise sum combina-
tion method is more beneficial for fishing vessel classification
in SAR images.

2) Experiment 2: Effectiveness of the FF Module and the
MFA Module: Table VIII shows the classification performance
results obtained using different levels of features in the FishNet
model. In case 1, only the fM4 feature maps are used, which
is equivalent to not using the MFA module and the FF
module. As seen in Table VIII, the accuracy increases with
an increasing number of features at different levels.

In case 4, FishNet adopts the full MFA module, using the
features from all levels for the final classification. In this case,
the model achieves the highest classification accuracy, which
is approximately 15.67% higher than that in case 1. Therefore,
the FF module and the MFA module have a significant
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TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT NUMBERS OF FEATURE LEVELS

TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT ATTENTION MECHANISMS

TABLE X
PERFORMANCE COMPARISON OF DIFFERENT LOSS FUNCTIONS

Fig. 13. Normalized confusion matrices of SAR fishing vessel classification with FishNet using (a) cross-entropy loss, (b) focal loss, and (c) adaptive loss.

impact on improving the performance of SAR fishing vessel
classification.

C. Ablation Study on the PCSA Module

We perform ablation studies to verify the effectiveness of
the PCSA module and to investigate the effects of other types
of attention mechanisms on SAR fishing vessel classification,
including the commonly used mechanisms such as SENet [78],
ECA [79], GAM [80], and CBAM.

As shown in Table IX, the classification accuracy for fishing
vessels improves with the addition of any attention mechanism.
Among them, the model using the PCSA module has the
highest accuracy, with an increase of 3.94%.

D. Ablation Study on the Adaptive Loss Function

This section compares the proposed adaptive loss with
previous loss functions, namely, the cross-entropy loss and the

focal loss [81]. Table X shows the accuracy results obtained
with the different loss functions. Our proposed adaptive loss
achieves higher accuracy than the others. Furthermore, for
SAR fishing vessel classification, the model that uses focal loss
has the lowest accuracy. One possible reason is that the focal
loss function is used to address a serious imbalance between
positive and negative samples in object detection. However,
the class imbalance is less of a problem in SAR fishing vessel
classification than in object detection. Therefore, using focal
loss as the loss function of FishNet results in decreased model
accuracy.

To further confirm the adaptive loss’s ability to address the
class imbalance problem in SAR fishing vessel classification,
Fig. 13 shows the normalized confusion matrices of a single
experimental realization for each loss function. In Fig. 13, the
diagonal elements of the normalized confusion matrices are
significantly greater than the other elements, indicating that
most fishing vessels can be classified correctly. However, the
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accuracy for seiners is generally lower than that for other
types, as shown in Fig. 13(a) and (b). With adaptive loss,
FishNet achieves high classification accuracy for all three
types [see Fig. 13(c)]. This indicates that the adaptive loss
reduces the impact of interclass imbalance on the classification
performance.

VI. CONCLUSION

CNN-based methods have achieved satisfactory classifi-
cation results for large ships with distinctive features and
significant interclass differences. However, the fine-grained
classification of fishing vessels in SAR images remains a
challenging task.

The interclass differences among fishing vessels caused by
the fishing gear and supporting facilities deployed on board
are relatively minor. Moreover, due to their small size, fishing
vessels in SAR images are highly susceptible to interference
phenomena such as speckle noise, which makes capturing such
minor interclass differences more difficult. Therefore, under
the above unfavorable conditions, a powerful model capable
of extracting key features that can effectively characterize the
interclass differences of fishing vessels is required to achieve
high classification accuracy for SAR fishing vessels. In addi-
tion, an accurate and annotated sample dataset is a prerequisite
for research on SAR fishing vessel classification. However,
determining fishing vessel type directly from AIS messages is
not possible, which makes constructing a fine-grained dataset
more complicated, difficult, and time-consuming.

In this article, we first propose a process framework for
labeling SAR fishing vessels and devote considerable effort
to image collection, data processing, and category labeling.
An SAR fishing vessel dataset containing 116 gillnetters,
72 seiners, and 181 trawlers is constructed, providing suitable
data for the realization of SAR fishing vessel classification.
Due to the relatively small number of fishing vessels and the
difficulty of confirming their types, the number of samples in
FishingVesselSAR is relatively small compared to other vessel
datasets. However, it has advantages in terms of the resolution
of samples, making it more conducive to the extraction of
feature information for fishing vessel classification in SAR
images.

Based on FishingVesselSAR, FishNet, a novel DL model,
is proposed for the classification of SAR fishing vessels. First,
to solve the problem that minor interclass differences result
in few useful features extracted by a generic classification
model, leading to poor classification results, we propose the
MUL module to achieve sufficient extraction of valuable
feature information for fishing vessels. Second, to address
the classification challenges presented by fishing vessels’
small size, the FF module is proposed for fusing feature
maps of different levels. Based on this, the MFA module
for aggregating multilevel features is developed. As a result,
low-level feature maps with detailed texture information and
high-level feature maps with strong semantic classification
information can be efficiently integrated, producing feature
maps with more powerful feature representation capabilities.
Third, the PCSA module is designed to adaptively recalibrate
the fused features to highlight critical features and suppress

invalid interference information. Fourth, the problem of class
imbalance in SAR fishing vessel classification is addressed
from two perspectives. Various data augmentation strategies
are employed at the data level to expand the dataset, preventing
model overfitting while decreasing data imbalance. At the
algorithm level, an adaptive loss function that can adaptively
adjust the loss of each sample during minibatch training is
proposed to further solve the class imbalance problem in SAR
fishing vessel classification.

Based on the results of the fivefold cross-validation exper-
iments, FishNet’s classification accuracy reaches 89.79%,
which is 6.77%-47.59% higher than the accuracy of 27 DL
models in the field of image classification and six advanced
methods in the field of SAR target classification. Moreover,
other evaluation indices, such as precision, recall, and F-score,
are also superior to those of these 33 modern methods.
In addition, by visualizing the feature maps and calculat-
ing the interclass Euclidean distances of the feature vectors,
we evaluate and demonstrate qualitatively and quantitatively
the improvement in classification performance enabled by each
innovative module. Finally, for each improvement in FishNet,
we present sufficient ablation studies to verify its effectiveness.

To the best of our knowledge, this study is the first to
address the identification of fishing vessel types in SAR
images, which is an essential step toward using SAR images
to improve fishery monitoring and management and, thus,
help enhance the ability to combat overfishing. For better
fishing vessel classification, the FishNet model is designed
with a deeper and wider network structure. This has resulted
in an increased number of trainable parameters, leading to
a longer training process compared to models with simpler
architectures. However, once the FishNet model is trained,
it enables quick and efficient prediction, making it a valuable
tool for fisheries monitoring. To shorten training time without
sacrificing the model’s performance, we will keep improving
the algorithm for the FishNet model in subsequent studies.
Moreover, due to the limited data available, the applicability
of our research results is presently confined to trawlers, gill-
netters, and seiners in C-band SAR images. To accommodate
a broader range of fishing vessel classifications, it is necessary
to acquire data with different radar frequencies and conduct
further studies on the identification of additional types of
fishing vessels. In the future, we will continue to collect
additional SAR fishing vessel samples while developing new
methods for effective SAR fishing vessel type identification.
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