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A Novel Sketch-Based Framework Utilizing
Contour Cues for Efficient Point
Cloud Registration

Gang Ma"™ and Hui Wei

Abstract— Point cloud registration is a crucial part of 3-D
computer vision. Existing point cloud registration methods pri-
marily concentrate on utilizing features such as points, lines, and
planes, disregarding the valuable contour cues inherent in the
scene. In this article, we propose a novel sketch-based framework
for point cloud registration that incorporates contour cues to
enhance the point cloud registration task. To fully exploit the
abundant information provided by contour cues in the scene,
the point cloud is first abstracted into a sketch consisting of
contour cues obtained through the utilization of planar features,
which greatly preserves the inherent contour information. Sub-
sequently, a local contour geometric descriptor is introduced to
encode the contour cues in the sketch. Finally, a voting-based
contour point pair feature (CPPF) framework is employed to
fuse planar features, local contour geometric features, and point
pair geometric features, enabling precise estimation of the pose
transformation between pairwise point clouds. Extensive experi-
ments conducted on two large-scale outdoor point cloud datasets
and two indoor point cloud datasets validate the effectiveness
of the proposed sketch-based method. Our proposed method
successfully suppresses rotation and translation errors, ultimately
achieving state-of-the-art performance.

Index Terms— Contour point pair feature (CPPF), local con-
tour geometric descriptor, point cloud registration, point cloud,
sketch-based registration.

I. INTRODUCTION

EGISTRATION of point clouds captured by 3-D scanner

devices is an active research area, whose applications
in 3-D computer vision and robotics [1] include 3-D scene
reconstruction [2], simultaneous localization and mapping
(SLAM) [3], indoor modeling [4], and virtual reality [5].
Given a source cloud P and target cloud O, point cloud
registration is dedicated to estimating a 6-Degree-of-Freedom
(DoF) transformation T' = [R|¢] € SE(3) to transform P into
the target coordinate system of Q [6].

The iterative closest point (ICP) [7] is widely used to align
point clouds, alternately conducting correspondence search
and pose transformation estimation, and it has several vari-
ants [8], [9], [10]. ICP, a local point cloud registration method,
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is often trapped in local minima due to its sensitivity to
initialization. Correspondence-based methods offer a global
approach, can effectively reduce point cloud size [11], and
have gained significant attention. They typically involve the
steps of correspondence establishment and pose transformation
estimation [12]. Two widely adopted approaches are based
on point correspondence [13], [14] and primitive correspon-
dence [15], [16]. Point correspondence methods establish
correspondences through local point features [17], [18], while
primitive correspondence methods consider higher level geo-
metric features for alignment, such as lines [19], planes [15],
and spheres [16]. Outlier removal-based methods, both guaran-
teed [20], [21], [22] and nonguaranteed [11], [23], [24], have
been shown to effectively filter noise in correspondences based
on point features.

Learning-based methods, which can be categorized as
correspondence-based [25], [26], [27], [28] or end-to-
end [29], [30], [31], have recently emerged for point cloud
registration tasks and can achieve high-precision pose trans-
formations. Learning-based methods rely on computing power
and have not fully realized their potential for registration
tasks in unseen scenes, leading to limited generalization abil-
ity, as typified by two recent methods: PointDSC [27] and
RegTR [31].

Pose-estimation methods typically rely on features such
as points, line segments, and planes, often disregarding the
informative contour cues present in scenes. We overcome
this limitation through a sketch-based point cloud registration
framework that effectively incorporates contour cues, mitigat-
ing rotation, and translation errors with improved precision.

The main contributions of this work are summarized as
follows.

1) We propose a preprocessing scheme for point cloud
sketching and a planar local contour geometric feature
descriptor, which is specifically designed for nonclosed
contours while preserving the essential properties of
rotation, translation, and scale-invariance.

A voting-based pairwise registration method is pro-
posed, which effectively integrates planar features, local
contour geometric features, and point pair geometric fea-
tures, to enable comprehensive global modeling of point
pair geometric information and optimize the registration
pose in a locally reduced search space.

2)
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3) In experiments on several datasets, our method effec-
tively suppressed rotation and translation errors, surpass-
ing the performance of baselines.

The remainder of this article is structured as follows.
Related work is discussed in Section II. Pairwise alignment
is explained in Section III. Section IV discusses experiments
using the proposed framework. We summarize this article in
Section V.

II. RELATED WORK

We review methods for point cloud registration from
correspondence-based and correspondence-free approaches.
We focus on rigid registration between two point clouds and
do not consider registration in dynamic scenes.

A. Correspondence-Based Point Cloud Registration

1) Point Feature-Based Methods: Algorithms in this cat-
egory usually have the stages of keypoint detection, feature
descriptor, and correspondence selection.

Keypoint detection is accomplished using algorithms such
as intrinsic shape signature (ISS) [32] and 3-D Harris [33].
Local point feature descriptors are then used to encode the
local features of keypoints to distinguish them [16], [34],
such as those based on signatures or histograms derived
from statistical geometric properties [14]. The spin image
algorithm [35] projects neighboring points around a key-
point onto a 2-D plane, encodes density information, and is
sensitive to data resolution variation and noise. Fast point
feature histogram (FPFH) [17] constructs reference frames
from local shapes for selected point pairs, making it fast
and discriminative. Rotation projection statistics (RoPS) [36]
integrates the central moment and entropy of the projected
2-D maps of many rotated local surfaces into a 1-D vector.
It is not descriptive for data with uneven point distributions
and is time-consuming. Inspired by RoPS, Yang et al. [18]
proposed the rotation contour signatures (RCSs), which have
the advantages of strong robustness and a compact structure,
but their complexity results in low computational efficiency.
Features based on signatures or histograms have been widely
used in point cloud registration tasks. In the correspondence
selection stage, the encoded point feature descriptors are
utilized to establish point pair matching between the keypoints
in the source and target scenes. The correspondence selection
method usually employs a feature similarity score [13], [37],
the nearest neighbor similarity ratio (NNSR) [14], [36], and
3-D Hough voting (3DHV) [38] to determine the correspond-
ing point pairs. Fast global registration (FGR) [13] is an
optimization-based method that uses FPFH features for point
cloud registration. Yang et al. [14] proposed a voting-based
2.5-D scene registration scheme, combining RCS features with
NNSR matching.

Different from the above, the proposed method combines
planar features and local contour geometric features and
integrates them into a voting-based scheme.

2) Primitive Feature-Based Methods: In 3-D scenes,
besides point features, there are various primitive features
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such as lines, planes, cylinders, cones, and spheres. A pop-
ular approach nowadays involves determining the registration
pose of a point cloud by matching corresponding primi-
tives [16], [19], [39], [40].

To obtain the coarse registration pose of urban point clouds,
Xu et al. [19] introduced a framework that relies on two-line
congruent sets. Similarly, Liu et al. [39] and Yu et al. [40]
developed registration frameworks tailored for point clouds
of rock mass, focusing on line and planar features, respec-
tively. Chen et al. [15] proposed the PLADE method, which
employs plane-line descriptors to establish correspondences
between source and target point clouds and has enhanced
resilience to point cloud resolution and noise. Unlike PLADE,
Zhang et al. [16] took a different approach by extending the
set of primitives from planes to include geometric primi-
tives, such as cylinders, cones, and spheres. They constructed
descriptors based on hybrid structures, ultimately achieving
successful registration.

The combination of line and planar features is advan-
tageous in computational geometry. Reyes-Aviles et al. [5]
proposed a registration method that leverages geometric con-
straints extracted from parametric primitives within a 3-D
parametric model, providing closed-form solutions for reg-
istration involving three types of correspondences: lines to
lines, lines to planes, and planes to planes. Furthermore, line
and planar features have gained popularity in the field of
SLAM [41], [42], [43], [44], as evidenced by various works.

Primitive-based methods are generally more robust than
point-based methods, particularly relating to noise and initial
positioning. However, the accuracy of these methods relies
heavily on the accurate extraction of primitive features and
the precise estimation of corresponding primitive features.

3) Outlier Removal Methods: At present, point cloud reg-
istration methods that use outlier removal employ either
nonguaranteed [11], [13], [23], [24] or guaranteed [20],
[21], [22] mechanisms.

FGR [13] is a well-known nonguaranteed outlier removal
method that utilizes a global approach combining straight line
processing with robust estimation to enhance the optimiza-
tion process. Despite being highly efficient, it can produce
inaccurate results in complex registration scenarios. Similarly,
Li et al. [23] proposed a robust, efficient method employing
nonguaranteed outlier removal based on topological graphs
and Cauchy weighted /,-norm, which transforms point match-
ing into graph edge matching and uses an edge voting strategy
to differentiate between potential correct matches and mis-
matches. This method can still achieve accurate results even
in scenarios with extremely high outlier rates.

The guaranteed outlier removal mechanism is designed
to eliminate all of the outliers [22], which renders outlier
optimization unnecessary. GORE [20], [21] uses a novel
rotation search outlier removal technique based on simple
geometric operations. Each correspondence is initially treated
as an inlier, and upper and lower bounds on the consensus
size are determined. If the bounds conflict, the correspondence
is deemed a true outlier and removed [22], [24]. GORE is
highly effective in removing true outliers, but its efficiency
is somewhat limited due to the use of a Branch-and-Bound
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(BnB) algorithm [45], [46]. Teaser++ [47] reformulates the
registration problem through a truncated least squares (TLS)
cost and uses a versatile graph-theoretic framework for outlier
removal. It is highly efficient, but its performance may degrade
significantly and require substantial memory resources when
there are a large number of correspondences. Graph Reliability
Outlier Removal (GROR) [22] utilizes an outlier removal
strategy that depends on the reliability of correspondence
graphs. It introduces the concept of reliability for graph nodes
to facilitate optimal candidate selection and reliability for
graph edges to determine the global maximum consensus set.
GROR enables efficient and accurate outlier removal, even in
scenes with high outlier ratios.

The abovementioned methods rely on point-corresponding
outlier removal techniques. Integrating these methods with
advanced primitive features present in the scene can potentially
enhance the accuracy of the results.

4) Learning-Based Methods: The rapid progress of deep
learning has led to the emergence of numerous learning-
based local point cloud features [48], [49], [50], [51].
Notably, FCGF [49] has become one of the exten-
sively employed learning-based features. The first step
in correspondence-based point cloud registration methods
involves utilizing precomputed features to establish point
correspondences. Subsequently, these methods employ a
learning-based outlier filtering module for correspondence
filtering [25], [27], [52], [53], which enhances the accuracy
of estimated poses. DGR [25] presented a novel approach
incorporating a 6-D sparse convolutional network to effec-
tively capture global context for correspondence classifica-
tion and weighted Procrustes for accurate pose estimation.
PointDSC [27] introduced deep spatial consistency to the
registration framework, enhancing performance by pruning
outlier correspondences. RoReg [52] is an innovative point
cloud registration framework that maximizes the utilization of
orientation descriptors and estimated local rotations. Through
labeling and training processes, the aforementioned learning-
based methods have achieved exceptional results on several
point cloud registration datasets.

B. Correspondence-Free Point Cloud Registration

1) ICP-Based Methods: The ICP [7] and its variants are
widely used for point cloud registration tasks. ICP directly
performs the closest point correspondence search on two point
sets, requiring proper initialization to avoid getting stuck in
local extrema. Generalized-ICP [8] improves distance metric
by modeling the local planar surface structure of source
and target point clouds through a plane-to-plane approach
that exhibits stronger robustness. Sparse ICP [54] preserves
the simplicity of ICP while applying computationally effi-
cient sparsity-inducing norms to registration optimization,
demonstrating excellent performance with outliers and incom-
plete data. Fast ICP [10] employs an Anderson acceleration
method and a robust error metric based on Welsch’s function
to improve accuracy and efficiency on noisy and partially
overlapping datasets. VGICP [55] is a voxelization-based gen-
eralized ICP algorithm that avoids expensive nearest-neighbor
searches. Despite their advantages, the aforementioned are
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local methods that are sensitive to initialization and prone to
becoming stuck in local extrema. To address this issue, Go-
ICP [9] uses the BnB method [45], [46], but this approach
may introduce computational complexity, with the worst case
being exponential.

2) Learning-Based Methods: Some recent learning-based
approaches [26], [29], [30], [31] have introduced a fresh
perspective on 3-D point cloud registration. Instead of estab-
lishing explicit correspondences between source and target
point clouds, they compare their holistic representations to
effectively solve rigid transformations. PointNetLK [30] is
a pioneering method in this domain, utilizing PointNet [56]
to extract global features from both the source and target
point clouds. By analyzing the disparity between these global
features, a modified Lucas—Kanade (LK) algorithm [57] is
employed to estimate the rigid transformation. RegTR [31]
is an end-to-end correspondence set prediction network that
utilizes an attention mechanism and a network architecture
comprising self-attention and cross-attention transformation
layers to predict the probability of each point lying in an
overlapping region and its corresponding position in other
point clouds. Although learning-based methods have shown
the potential for point cloud alignment, they usually require
sufficient labeled data for training and may be ineffective on
unseen scenes.

III. METHODOLOGY

The pipeline of the proposed voting-based registration
method is depicted in Fig. 1. First, planar primitive fea-
tures are extracted from the source and target point clouds,
followed by the utilization of planar primitive contours to
outline the sketch of each point cloud. Then, a local contour
geometric descriptor, histogram entropy of angular distribution
(HEAD), is employed to encode each planar contour in a
sketch. Finally, a novel voting-based method, contour point
pair feature (CPPF), leverages the integration of the local
contour geometric feature HEAD with the point pair geometric
feature to accurately estimate the transformation between the
two sketches.

A. 3-D Scene Sketching

Sketching is a simple way for humans to describe and
express information [58]. Consequently, we sketch point
clouds by extracting planar primitives.

When abstracting scenes into a set of planar primitives,
we employ an iterative “fit and remove” strategy based on
RANSAC [59] to extract planar primitive features in each
scene. The contours of all of the planar primitives are obtained,
which plays a pivotal role in the proposed framework for
pairwise registration. From a point cloud, the set of extracted
planes is denoted as P = {m,...,7n}, and the set of
corresponding planar contours is C = {Cy,...,Cy}. N is
the number of planar primitives in the scene, and C signifies
the sketch corresponding to the given scene. As illustrated
in Fig. 2, the process of abstracting a point cloud into a
sketch using planar contours preserves the contour cues to a
significant degree while reducing the overall size of the point
cloud.
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Fig. 1. Pipeline of the proposed sketch-based pairwise alignment method.
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Fig. 2. Snapshots consist of an initial point cloud of a scene, along with
the planes present and their corresponding sketch data. The initial point cloud
comprises 18958 883 points, while the sketch data consists of 260461 points.
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Fig. 3.  Description of HEAD for nonclosed contours. (a) Red point x;
is a reference point, black points distributed in red-dashed circle are related
points x;(j € [1, k]), and green point y; indicates barycenter of related points,
u; =y;X; and v; = y,—x; (b) Histogram of orientation angular distribution,
accumulating || u; +v; || (j € [1, k]) for each bin if || (u;, v;) || is mapped
to this bin.

B. Planar Contour Geometric Descriptor

Representing 3-D scenes using sketches poses a significant
challenge, which we address by constructing a 2-D contour
shape feature characterization from planar contours. Drawing
inspiration from a 2-D contour descriptor [60], we propose the
HEAD descriptor, which is well-suited for nonclosed contours,
while ensuring rotation, translation, and scale-invariance. The
entropy of the HEAD descriptor reflects the distribution of
local contour points, and the magnitude of the entropy intu-
itively indicates the significance of points on the contour.

C € C is a planar contour of a sketch C. Let X = {x;}(i €
[1, n]) indicate a set of points from the planar contour C. x; is
the reference point, whose local geometric feature is related to
neighbor points in the field of radius r, called related points,
with size k. y; indicates the barycenter of the related points
for reference point x;.

As illustrated in Fig. 3(a), the constant vector u; is from y;
to x;, and v;(j € [1, k]) denotes the vector from y; to x;.

i
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L(ui,vy))(j €1, k]) for the reference point x; is defined as
6/, and all of the angle values with respect to the point x;
are denoted as @; = (6}, ...,05T. In Fig. 3(b), the range
[0°, 180°), divided into m bins, has m disjoint intervals. G[j is
mapped to a bin, and each bin accumulates || u; + v; || of
related point x; if 6/ is mapped to it. Thus, the value of the
dth bin is calculated as

k
=" llui+v | QAFE) —d (1)
j=1
where F(-) maps an angle into the bin index. [-] is an
indicator function, taking the value 0 when F(6/) # d and
1 otherwise. In this way, a new feature vector of the reference

point x; is obtained as H; = (¢!, ¢, ..., ™7, whose each
column is normalized to keep the shape scale-invariant
u; v; H,'
Uy=-——, ¥ =-—, P = 2
Il u; | dv; | H; |

where dv; is the maximum distance between y; and x;(j €
[1, kD).

Furthermore, entropy of the feature vector H;, denoted as
£, is defined as

i j H/

E=— —m '10g2<—11>' 3)
j=1 Z;rlzl Hi Z;ﬂ:l Hi

& € [0,1og5'], and m is the size of bins in Fig. 3(b). The
entropy of feature vector H; reflects the distribution of related
points. If the related points of reference point x; are distributed
on a straight line, then & = 0. The keypoints on a contour,
inflection points, or points with large curvature tend to have
large entropy values, but points in the smooth area on the
contour do not.

C. Voting-Based Registration

The point pair feature (PPF) [61] is extensively applied in
shape-based object recognition and combines global modeling
and local matching. We present a voting-based method, the
CPPF for sketch-based point cloud registration, which builds
upon the PPF framework while incorporating the entropy
of local contour geometric features. By introducing entropy
channels, CPPF descriptors provide enhanced discriminability
compared with traditional PPF, facilitating a more effective
characterization of planar contour points.
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B. Global Model Description

Hash table

F
(Key to the
hash table)

D. Pose Clustering
Cluster Pose

&
Obtain Final
Pose

Aligned Result

Outline of voting mechanism for pairwise registration mainly containing four parts: CPPF, global model description, voting scheme, and pose

clustering. (a) Extract local contour geometric feature HEAD. (b) Fuse local counter geometric feature and point pair geometric feature.

{m;, &;}

Fig. 5. CPPF is defined by contour orientated points (m;,n;,E;) and
(mj,nj,E;). Bach dimension is determined by the Euclidean distance
between m; and m;, angles between point normal and distance vector, and
two entropy channels of HEAD descriptors for two points. r is the domain
radius associated with the local contour geometric feature HEAD.

{m;, &}

We assume that the model and scene data come from the
source sketch and the target sketch, respectively. They are
both denoted as finite sets of oriented points with normal
and entropy information. Points in the model are denoted as
m; € M and s; € S for points in the scene. As shown in
Fig. 4, the proposed voting-based method mainly contains
four parts: CPPF, global model description, voting scheme,
and pose clustering.

1) Contour Point Pair Feature: The CPPF vector Fcppr €
R® is illustrated in Fig. 5 and is defined as

Fcppr = CPPR(m;, m;, n;,n;, &, &)
= (Id I, LGy, ), Lny, d), Lmiom)), €, ) (@)

where distance component || d |,=| m; — m; |, RF
represents the distance between points m; and m;. Angle
components are angles between the vector d and surface nor-
mal vectors n; and n;. Entropy component (&;, £;) indicates
the HEAD features for two points. As described by (4), the
proposed CPPF effectively integrates planar primitive features,
point pair geometric features, and local contour geometric
features.

2) Global Model Description: The CPPF is used to build
a global model description. When there are N,, points in the
sketch point cloud M, N,, x N,, CPPFs are computed and
saved for later feature matching. The hash table technique is
used due to its fast query operation [61], [62], [63]. To use the
CPPF as the key for the hash table, we quantize the feature

vector as follows:

K = HashKey(F cppr, 0, ¥, T)

12

Lé(ni,d)

!

v
L(nj,d)
v
L(nj, n;)
v
&i
T
&

T
where 0 € R, ¥ € R, and v € R are respective quantization
levels for the distance, angle, and entropy of contour feature

vectors. The hash key K € Z is encoded by the BitEncode
function defined as

J (&)

K = BitEncode(K) (6)

where IC € Z is a 64-bit key, with the 64 bits (8 bytes) allo-
cated as follows: the first dimension, the distance component,
is two bytes; each dimension of angle and entropy components
is one byte; and the last byte is reserved and zeroed.

Algorithm 1 describes the process of building the global
model description. Given model data M with N,, points
from the scene sketch point cloud as an input, the algorithm
outputs the hash keys H with intermediate angle array .A.
Given a model point cloud data M, we first calculate HEAD
features and CPPF features of all of the point pairs. Then,
for each CPPF feature, we map it to a discrete space to
obtain feature vector k. BitEncode is used to encode k
into a 64-bit numerical value to perform hash mapping.
To quickly calculate the transformation pose of matching point
pairs, the PlanarRotAngle function is adopted to calculate
o, as described in (8)—(10), during hash table construction.
Finally, the algorithm returns the hash table H and the matrix
A of related angles.

3) Voting Scheme: With the hash table we have built,
the CPPF correspondences between scene and model can be
quickly established. Assuming that a correct match of CPPFs
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Algorithm 1 Building Global Model Description

Input: M

H <« 0N,,,><Nm

A <Oy, xn,

for i < 1toN,, do

for j < 1toN,, do

if i # j then

&E" < HEAD(p!")
5;" < HEAD(p)
F < CPPF(p, p’j’.’, n}, n?“
k < HashKey(F, o, ¥, 1)
< BitEncode(k)

a,, < PlanarRotAngle(n}", p?", p;“)
H(, j) <

A, J) < o

LEMLEM)

end

end
end
Output: H, A

between scene and model point clouds is found, as explained
in Fig. 6, the alignment of matched points {s,, m,} contains
a 3-DoF translation, while the alignment of matched normals
{n, n } contains a 2-DoF rotation. Hence, only a 1-DoF rota-
tion o € R around the x-axis of the intermediate coordinate
system must be determined. Once o« is calculated by two
vectors m; — m, and s; — s,, the 6-DoF transformation from
local model coordinate to scene coordinate [61] is defined by
si=T.,

T,., € SEQ3)

T,_, €SEQ3)

R(a) € SO(3)

R(Ol) Tm~>gmi

(N

where R, («) rotates around the x-axis of the intermediate
coordinate system with angle «. To evaluate (7) more quickly,
« is split into two parts [61], ¢, and o, depending only on
the model and scene, respectively. Then, we obtain

Ry (o) = Ry (=) Ry ()

R.™'(—a) = Re(ery) (8)
and
W= Ry (a,)T;_gs;
= Re(y)Tpom; € Rx + R}y 9)

where w lies on the half-plane defined by the x-axis and the
nonnegative part of the y-axis in the intermediate coordinate
system. Finally, « is simply defined as

(10)

o= oy — O

where «,, is precomputed and saved in the model descriptor
(see Algorithm 1) and «; is calculated only once when voting
for the pose (see Algorithm 2).

Once « is computed, a vote is cast for the local coordinate
(m;,a) to obtain a 6-DoF transformation, as described in
Algorithm 2. Given model M, scene S, hash table H, and
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ng

m,
7
A  owrmy ™,
t ‘ J
X
Tpeg € SE(3)
Fig. 6.  Transformation between two coordinates from model and scene.

T, translates m, into the origin and rotates its normal n)" onto the x-axis.
T, does same for scene point pair. R(c) around the x-axis with angle o
is required to match s; and m; [61].

angle matrix A for «,,, each point pair (p;, p}) is from scene
S. The CPPF of the point pair is computed and searched in the
hash table keys H(i,). If i, is not null, then the corresponding
key is found, and N;, is the number of duplicated keys.
Subsequently, the poses for each correspondence are computed
by looking up H(r;), culminating in the final pose set P.

Algorithm 2 Voting for Pose
Input: M, S, H, A
for i < 1toNg do
for j < 1toN; do
if i # j then
&’ < HEAD(p})
&} < HEAD(p?)
F < CPPF(p?, pj,nf,nj,é’is,
k < HashKey(F, o, ¥, 1)
< BitEncode(k)
o, < PlanarRotAngle(n;, p?, p‘;.)
i, < Search(H,)
if i, # null then
Ny < [H,)I
for h < 1toNy, do
oy <~ A,)
o < Oy — O
P <«
ComputePose(T s g, T g, @)
P« PU{P}
end

&)

end
end

end
end
Output: P

4) Pose Clustering: The retrieved poses are clustered to
eliminate incorrect poses by enforcing a predefined threshold
on the differences in rotation and translation among all of the
poses within a cluster. The score of each cluster is computed
as the sum of scores for individual poses, whose scores
correspond to the number of votes they receive. Once the
cluster with the highest score is identified, the poses within
it are averaged to produce the final pose. Pose clustering
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generally enhances algorithm stability by filtering out isolated
poses with low scores, and averaging improves the accuracy
of the final pose [61], [62].

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

The proposed method was evaluated on benchmark datasets,
including the synthetic indoor dataset ICL-NUIM [64], the
real indoor dataset 3DMatch [48], and the outdoor datasets
ETH3D [65] and ETH-TLS [66]. Experiments were carried
out on a desktop PC equipped with an Intel Core i7-10700
CPU @ 2.90 GHz with 16-GB RAM.

1) Registration Metrics: The pairwise registration results
are evaluated by adopting widely used metrics: rotation error
S8 and translation error &, [13], which are defined as

1
S = arccos 5 (tr(Rth . Resl) - 1)

S = Tgr — lest l

Y

where R and ¢ are the rotation matrix and the translation
vector, respectively.

2) Parameters Setup: The key parameters of our proposed
method are the quantization steps of CPPF, as described in
Section III-C2. These include the quantization steps for dis-
tance, angle, and entropy of the contour feature vector, denoted
as o, ¥, and 1, respectively. Only the distance step is affected
by the resolution of the point cloud. In our experiments, we let
¥ = 0.20 and T = 0.20, with 0 = 0.05 m for indoor scenes
and o = 0.25 m for outdoor scenes.

B. Performance on Indoor Datasets: ICL-NUIM and
3DMatch

1) Datasets and Baselines: We first evaluated our method
on two indoor datasets: ICL-NUIM [64] and 3DMatch [48].
ICL-NUIM has approximately 300000 points per point
cloud and is widely used in indoor scene reconstruction.
We chose four scenarios: Livingroom0, Livingroom1, Office0,
and Officel. We randomly selected ten groups of pairwise
registration experiments from each. 3DMatch has around
500 000 points per point cloud and is popular in learning-based
research. We selected four scenes: Kitchen, Home, Hotel, and
Studyroom. Again, we randomly selected ten groups of data
for each scenario.

In the challenging indoor experiment, we compared the
registration performance of the proposed method against
the FGR [13], VGICP [55], PLADE [15], Teaser++ [47],
GROR [22], PointDSC [27], and RegTR [31] methods.
FGR and VGICP are basic iterative optimization methods;
Teaser++ and GROR are guaranteed outlier removal methods.
PLADE leverages plane-line-based descriptors to establish
structure-level correspondences between point clouds. In addi-
tion, PointDSC and RegTR are learning-based methods, whose
weights were trained on the 3DMatch dataset. PointDSC and
RegTR were executed on a server equipped with an Intel Xeon
4210R CPU @ 2.40 GHz with 32-GB RAM and a GeForce
RTX3090 GPU with 24-GB RAM.
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Fig. 7. Challenging example of point cloud registration. The matched planar
pairs between target cloud P and source cloud Q are {P;, Q1} and {P>, Q2}.
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Fig. 8.  Comparison of the proposed method with several baselines on
example in Fig. 7. Errors in registration results are highlighted with red circles.
(a) Proposed. (b) PLADE. (c) Teaser++. (d) FGR. (e) RegTR. (f) DGR.

TABLE 1

ROTATION ERROR &g (deg) AND TRANSLATION ERROR §; (m) FOR THE
CHALLENGING EXAMPLE OF POINT CLOUD REGISTRATION IN FIG. 7

Method OR Ot

FGR [13] 2.1666  0.0759
PLADE [15] failed failed
VGIP [55] 3.9909 0.7341
Teaser++ [47] 2.3328  0.3640
GROR [22] 0.4948  0.0055
DGR [25] 1.0441  0.2588
PointDSC [27] 0.1713  0.0093
RegTR [31] 0.6978  0.0361
Proposed 0.0407  0.0011

2) Qualitative Evaluation on Pairwise Registration: Fig. 7
shows a challenging experiment of pairwise registration,
emphasizing the crucial role of sketch in the proposed method
for 3-D registration. Fig. 8 and Table I present the experimental
results obtained from the proposed algorithm and several
comparative methods on this challenging example. In this
experiment, the target point cloud is composed of three planes,
while the source contains only two. Accordingly, a maximum
of two pairs of nonparallel planar correspondences can be
matched between the two point clouds. From these correspon-
dences, only 3-DoF for rotation can be deduced theoretically,
leaving 3-DoF for translation indeterminate. As shown in
Fig. 8, it is clear that the primitive-based PLADE [15]
fails to achieve accurate alignment directly between the two
point clouds. Notably, Teaser++ [47] and DGR [25] exhibit
the highest translation error. It is evident that RegTR [31]
and FGR [13] demonstrate translation errors at the cen-
timeter level. However, compared with baselines in Table I,
our proposed method achieves a remarkably accurate 6-DoF
pose, indicating that sketch contours are highly beneficial to
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extraction results, sketches, and alignment results, respectively.

accurately determining 3-DoF for translation. The results of
our proposed method demonstrate that point pair geometric
information and the proposed local contour geometric feature
HEAD in 3-D registration can effectively suppress translation
errors.

Fig. 9 shows several experimental outcomes of each module
of the proposed method, encompassing plane extraction, point
cloud sketching, and voting-based point cloud registration. The
first three rows show the results obtained from three groups
of data from the ICL-NUIM dataset, while the last three
correspond to 3DMatch. The remarkably low rotation and
translation errors observed in the registration results provide
compelling evidence for the effectiveness of our proposed
sketch-based method for point cloud registration.

Source & Target Primitives
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Results of main steps of the proposed method. First column: initial point clouds of source and target scenes. Second to fourth columns: planar

3) Quantitative Comparison With Baselines: Fig. 10
presents some registration results obtained by the proposed
method and baselines on the ICL-NUIM and 3DMatch
datasets. The first eight rows show the results obtained from
ICL-NUIM, and the last eight rows correspond to 3DMatch.
To quantitatively evaluate the registration performance, the
rotation error 6 (deg) and translation error §; (m) are
counted. Fig. 11 compares rotation and translation errors
for the proposed method and baselines on ICL-NUIM and
3DMatch, considering each group of data. Tables II and III
present the error statistics of each scene in ICL-NUIM and
3DMatch, respectively. Table II demonstrates that the proposed
method outperforms baselines, with the lowest rotation and
translation errors on all of the scenes in ICL-NUIM, and the
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Fig. 10. Visualization of some alignment results obtained using the proposed method and baselines on ICL-NUIM and 3DMatch datasets. The experimental
results of 16 groups of data represent eight scenes from the two datasets. For each scene, two groups of data are selected for visualization.

performance of GROR is second only to ours. In Table III,
RegTR, a learning-based method, performs best on three
scenes of 3DMatch, and the proposed method is the second
best. Although PointDSC performs well on Redkitchen, it
does not perform as well as the proposed method in the
other three scenarios. Furthermore, PointDSC fails to produce
satisfactory results for certain groups of data in the Studyroom
scene.

Tables IV and V present the statistical results of rotation and
translation errors for ICL-NUIM and 3DMatch, respectively,

which corresponds to the box plots shown in Fig. 12. Exam-
ining Table IV and Fig. 12(a), (b), and (e), it is evident
that the proposed method achieves the best results on ICL-
NUIM, with remarkably low rotation and translation errors that
significantly outperform the baseline methods. GROR delivers
the second-best performance on this dataset. According to
Table V, the proposed method performs the second best
on 3DMatch, surpassed only by the learning-based method
RegTR. However, it is worth noting that the contrast in error
between the proposed method and RegTR is relatively small.
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TABLE I

ROTATION ERROR 8g (deg) AND TRANSLATION ERROR §; (m) FOR DIFFERENT REGISTRATION METHODS ON FOUR SCENES FROM THE ICL-NUIM
DATASET. EACH COLUMN DISPLAYS THE TOP-RANKING ENTRY IN BOLD, AND THE SECOND-RANKING ENTRY IS UNDERLINED

Livingroom0 Livingroom1 Office0 Officel

Method SR 51 or 5 SR 5 SR 5

FGR [13] 1.4945  0.0477 29123  0.0691 0.8445 0.0249  1.8923  0.0563
PLADE [15] 23161  0.0228 9.2877 02211 6.7174 0.0536  8.2320 0.1419
VGICP [55] 3.5419 02359 16.133 03740 03083 0.1652 5.6291 0.5238
Teaser++ [47] 0.8671  0.0329 12296 0.0421 0.6129 0.0238 1.1671  0.0944
GROR [22] 0.1694 0.0060 0.2088 0.0058 0.1298  0.0069 0.2254  0.0060
PointDSC [27]  0.2620  0.0072  0.6407 0.0165 0.1500  0.0085 0.5386  0.0192
RegTR [31] 1.1506  0.0622  0.5730 0.0207 13.118 0.8005 1.4244 0.0514
Proposed 0.0471  0.0017  0.0637 0.0028 0.0323 0.0019 0.0439 0.0018

TABLE III

ROTATION ERROR 8 (deg) AND TRANSLATION ERROR §; (m) FOR DIFFERENT REGISTRATION METHODS ON FOUR SCENES FROM THE 3DMATCH
DATASET. EACH COLUMN DISPLAYS THE TOP-RANKING ENTRY IN BOLD, AND THE SECOND-RANKING ENTRY IS UNDERLINED

Redkitchen Home Hotel Studyroom
Method Sr 5 o 50 on 50 o oo,
FGR [13] 22147 00469 29920 0.0741 7.3666 0.1687 8.0715 0.2360
PLADE [15] 11.155 04965 41734 0.8742 41.174 1.0479 67353  0.1931
VGICP [55] 24739 0.6467 42018 12029 63431 12822 22831 0.7873
Teaser++ [47] 14207 0.0425 2.0516 0.0697 2.0669 0.0544 2.8408 0.1034
GROR [22] 7.1134  0.0653 45022  0.1130 21315 0.0537 22161  0.0983
PointDSC [27] 0.9631 0.0221 1.1370 0.0331 1.5348 0.0348 9.2753 0.1180
RegTR [31] 1.1144  0.0253 0.8143  0.0257 1.3720 0.0331 0.7884  0.0326
Proposed 1.0866 0.0283 0.8447 0.0293 1.4334 0.0363 1.0267 0.0367
N ST e TABLE IV
* : i ; ROTATION ERROR 8 (deg) AND TRANSLATION ERROR §; (m) FOR REGIS-
I il SRS EBAAE R SRS SR SRE S S RE = TRATION METHODS ON THE ICL-NUIM DATASET
: “ E B » * : ORr ot
Method Mean Median Mean Median
L@ FGR [13] 17850 12718 00495  0.0392
PLADE [15] 6.6383 03891  0.1098  0.0171
A . : y VGICP [55] 6.4030 1.1147 03252  0.1016
e PAGA VTN A W = Teaser++ [47]  0.9692  0.8231  0.0483  0.0300
SASBESESS GRS = SR ORGSR DOSSES R A GROR [22] 0.1833  0.1629  0.0062  0.0055
= = e T PointDSC [27] 03978  0.2325 0.0129  0.0084
" RegTR [31] 40666 0.8294 02347  0.0328
(b) Proposed 0.0468  0.0347 0.0020  0.0015
e : ' ,
{ W, N A TABLE V
L e S o S sy byt 4y. 6N x, g..m'w' ! : ’. ROTATION ERROR 8z (deg) AND TRANSLATION ERROR §; (m) FOR REGIS-
h S o = z'oN % % 3 p TRATION METHODS ON THE 3DMATCH DATASET
(©) OR 0t
Performance on 30Match dataset Method Mean Median Mean Median
. : FGR [13] 51612 28635 0.1314  0.0685
: INARNNL AU NG PLADE [15] 38255  20.179  0.9798  0.6165
N e A I S e e e = S e o s VGICP [55] 6.4030  1.1147  0.3252  0.1016
Al B e = o G4 v e e vy Teaser++ [47]  2.0950  1.8082  0.0675  0.0572
’ N N N ’ N GROR [22] 3.9908 14997  0.0826  0.0419
@ PointDSC [27] 32275 1.1173  0.0520  0.0337
RegTR [31] 1.0223 09784  0.0292  0.0246
Fig. 11.  Rotation and translation errors for the proposed method and Proposed 1.0979 09424  0.0326  0.0295

baselines on two indoor datasets. (a) and (b) Rotation and translation errors
on ICL-NUIM, respectively. (c) and (d) Rotation and translation errors on
3DMatch, respectively.

The difference in average rotation error between the two
methods is no more than 0.08°, while the difference in average
translation error is less than 0.006 m. It should be emphasized
that the RegTR method, trained with network weights specif-
ically on the 3DMatch dataset, achieves the lowest rotation

and translation errors, thus attaining the highest accuracy on
this dataset. However, when evaluated on the untrained ICL-
NUIM dataset, RegTR exhibits significantly higher rotation
and translation errors compared to our proposed method
(see Table 1V). Despite performing worse than RegTR on
the training 3DMatch dataset, PointDSC, another learning-
based method, shows superior performance on the untrained
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Fig. 12.  Performance evaluation of algorithms on two indoor datasets.
(a) and (b) Rotation and translation performance, respectively, on ICL-NUIM.
(c) and (d) Rotation and translation performance, respectively, on 3DMatch.
(e) and (f) Joint distributions of rotation and translation errors for ICL-NUIM
and 3DMatch datasets, respectively. Algorithms with distributions closer to
the lower left corner show better performance; those farther away indicate
worse performance.

ICL-NUIM dataset and is surpassed only by our proposed
method and GROR, with a notably lower error compared
with RegTR. These findings suggest that PointDSC has better
generalization performance than RegTR. GROR, an outlier-
removal algorithm based on computational geometry, shows
remarkable alignment capability for most scenes from both
ICL-NUIM and 3DMatch. On the ICL-NUIM, it achieves the
second-lowest rotation and translation errors, only after the
proposed method. On 3DMatch, the performance of GROR
is comparable to that of the proposed method, RegTR, and
PointDSC, with only a few instances of alignment failures,
as demonstrated in Fig. 12(c), (d), and ().

In summary, our proposed method showcases its effective-
ness in leveraging contour cues in the scene to significantly
reduce rotation and translation errors, as illustrated in Fig. 7,
and it performed well against baselines in experiments con-
ducted on two indoor datasets. The outlier removal algorithm
GROR ranks second only to our method overall. Notably,
both the learning-based algorithms, PointDSC and RegTR,
demonstrate superior performance on the trained 3DMatch
dataset but struggle on the untrained ICL-NUIM dataset.

C. Performance on Outdoor Datasets: ETH3D and ETH-TLS

1) Dataset and Baselines: We also evaluated the proposed
method on two large-scale outdoor point cloud registration
datasets: ETH3D [65] and ETH-TLS [66]. We chose nine
groups of data, six groups of data from ETH3D and three
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TABLE VI
ROTATION ERROR §g (deg) FOR REGISTRATION METHODS ON Two ETH

DATASETS. EACH ROW DISPLAYS THE TOP-RANKING ENTRY IN BOLD,
AND THE SECOND-RANKING ENTRY IS UNDERLINED

ID Proposed GROR [22] Teaser++ [47] VGICP [55] PLADE [15] FGR [13]

1 0 0 5.3600 1.0930 0.1013 1.0434
2 0.0446  0.0430 0.3374 1.2680 170.62 1.2689
3 0.0771 0.0610 176.87 2.6030 0.1720 176.21
4 03090  0.2010 2.5698 95.900 0.2260 20.349
5 0.1500 1.2659 1.3126 4.6540 0 0.1855
6 0.0530  0.0926 1.2938 0.3220 49.533 2.3641
7 0.0530 0.1543 19.291 25.071 116.99 4.3685
8 0.0370 0 0.5718 2.7731 8.0657 0.2317
9 0.2457 179.48 0.5294 11.314 0.1222 177.15
TABLE VII

TRANSLATION ERROR §; (m) FOR REGISTRATION METHODS ON Two ETH
DATASETS. EACH ROW DISPLAYS THE TOP-RANKING ENTRY IN BOLD,
AND THE SECOND-RANKING ENTRY IS UNDERLINED

ID Proposed GROR [22] Teaser++ [47] VGICP [55] PLADE [15] FGR [13]

1 0.0055 0.0172 1.8478 6.4223 0.0247 0.3036
2 0.0075  0.0045 0.2706 13.105 12.730 2.0614
3 0.0296  0.0200 26.174 26.063 0.0281 26.259
4 0.0023 0.0171 0.1083 4.0347 0.4693 2.4877
5 0.0024  0.0582 0.0150 0.7226 0.0082 0.0065
6 0.0062 0.0159 0.1027 2.5892 9.9881 1.0937
7 0.0124  0.0216 0.6615 14.109 21.529 0.4692
8 0.0066 0.0251 0.3786 17.887 12.381 0.4887
9 0.0161 11.942 0.0330 11.745 0.0155 12.004
TABLE VIII

ROTATION ERROR 4y (deg), TRANSLATION ERROR §; (m), AND AVERAGE
TIME (s) FOR REGISTRATION METHODS ON TwO ETH DATASETS.
EACH COLUMN DISPLAYS THE TOP-RANKING ENTRY IN BOLD,
AND THE SECOND-RANKING ENTRY IS UNDERLINED

g Ot .
Method Mean RMedian Mean  Median Avg Time
FGR [13] 42.57 2.364 5.019 1.094 351
PLADE [15] 38.42 0.226 6.353 0.469 276
VGICP [55] 16.11 2.773 10.74 11.74 43.8
Teaser++ [47]  23.13 1.313 3.288 0.271 1.12
GROR [22] 20.14 0.093 1.347 0.020 17.8
Proposed 0.107 0.053 0.012 0.007 64.7

from ETH-TLS, each encompassing point clouds containing
approximately 20-30 million points.

In this demanding task of large-scale outdoor point
cloud registration, FGR [13], VGICP [55], PLADE [15],
Teaser++ [47], and GROR [22] were again used as baselines.
However, the learning-based PointDSC and RegTR fail to
register on these datasets. PointDSC requires an allocation of
over 3 TB of memory when calculating the distance between
a set of feature point pairs, which far exceeds the capabilities
of existing devices, and RegTR demands computing resources
that exceed the 24-GB memory capacity of a single RTX3090
during registration.

2) Performance and Comparison With Baselines: Fig. 13
shows the experimental outcomes of each module of the
proposed method on two ETH datasets, encompassing plane
extraction, point cloud sketching, and voting-based point cloud
registration. It has been observed that abstracting point clouds
into sketches using planar primitives significantly reduces
the number of points in the point cloud while remarkably
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Fig. 13.

preserving contour cues. This effectively validates the effec-
tiveness of the proposed sketch module. Furthermore, we visu-
alize the results obtained from nine groups of data on two ETH
datasets using the proposed method and baselines in Fig. 14.
To quantitatively assess the registration results obtained from
all of the algorithms on two large-scale point cloud datasets,
we count the rotation error 8z and the translation error &,
for each group of data, as depicted in Tables VI and VII,
respectively. Fig. 15 shows boxplots illustrating the statistical
results of the rotation and translation errors for each algorithm
on the two ETH datasets, complementing the information
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Results of main steps of the proposed method on two ETH datasets.

provided in Table VIII. From the quantitative evaluation
results, we observe the following.

1) The proposed method demonstrates superior perfor-
mance, with the smallest average rotation and trans-
lation errors, as evidenced by the results presented in
Tables VI-VIII and Fig. 15.

The GROR algorithm is second only to the proposed
method. As shown in Tables VI and VII, GROR per-
forms well on the other eight groups of data on ETH,
with the last group of data registration failures.

2)
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Proposed

Source Target Aligned

Fig. 15. Quantitative evaluation results for the proposed method and
baselines on two ETH datasets: (a) rotation performance and (b) translation
performance.

3) Fig. 15 shows that the PLADE method performs better
on rotation than on translation since correct planar prim-
itive correspondences help suppress rotation errors [43].
The proposed algorithm shares similarities with PLADE
in utilizing the normal information of the planes. How-
ever, our algorithm goes a step further by incorporating
three channels in the point pair feature of the CPPF
module to comprehensively integrate the plane’s normal
information, which is the potential reason why the
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Teaser++

proposed method suppresses rotation errors (as shown in
Tables VI and VIII). Different from all of the baselines,
the proposed method incorporates local contour geomet-
ric features to effectively suppress translation errors (as
verified in Figs. 7 and 8) and achieves remarkably low
translation errors (as shown in Tables VII and VIII).

In general, the proposed method outperforms the baselines
in obtaining high-precision 6-DoF poses on the two large-
scale outdoor datasets. The advantage of the proposed method
lies in its independence from additional training processes and
expensive hardware resources, such as GPU memory, ensuring
compatibility with affordable devices.

D. Ablation Study on Components

We evaluated the effectiveness of the sketch, HEAD, and
CPPF modules in the pairwise alignment pipeline through five
sets of comparative experiments conducted on Kicker in the
ETH dataset, Livingroom1 in ICL-NUIM, and Redkitchen in
the 3DMatch. We combined the proposed sketch with the
proposed CPPF, classic ICP [7], and outlier-removal-based
GROR [22], and measured the rotation and translation errors
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TABLE IX

ABLATION STUDY FOR THE PROPOSED PAIRWISE ALIGNMENT PIPELINE: SKETCH, HEAD, AND CPPF MODULES.
IN EACH COLUMN, THE TOP-RANKING ENTRY IS BOLDED

Method Kicker Livingroom1 Redkitchen

Or (deg) 6: (m) time(s) Op (deg) & (m) time(s) Odr (deg) &t (m)  time (s)
ICP 96.99 2.854 1091 14.02 0.323 12.07 11.11 0.352 16.19
Sketch+ICP 96.17]. 3.1491  2.272) 12.07{ 0.3591 0.2414 10.17] 0.343]  0.454]
GROR 0.201 0.017 3.044 0.209 0.006 3.538 7.113 0.065 3.647
Sketch+GROR 116.11 6.6481  0.145] 3.9471 0.0201  0.1104 8.1031 0.2241  0.420]
Sketch+CPPF(Ours)  0.309 0.002 9.690 0.064 0.003 2.190 1.087 0.028 6.241

Method Redkitchen

LivingRoom1

ICP

Sketch+ICP

5= 0105
0.004m

GROR

Sketch+GROR

5, = 0,002

Sketch+CPPF (Ours) ¥

Fig. 16.  Visualization of alignment results for ablation study on Kicker,
Livingroom1, and Redkitchen. 6 and §; denote rotation and translation errors,
respectively. Some errors in alignment results are highlighted by red circles.

of each scheme on three scenes. According to the results
in Table IX, the combination of the sketch with ICP shows
a slight decrease in overall rotation and translation errors,
while the combination of the sketch with GROR shows a
significant increase in these errors. However, when CPPF is
combined with sketch, our proposed method achieves signif-
icantly lower rotation and translation errors compared with
the other schemes. Moreover, the combination of the sketch
module with the ICP and GROR algorithms results in a
significant reduction in the running time of the algorithm,
which is attributed to the sketch module’s ability to reduce
the point cloud size while preserving important contour clues
in the scene. Fig. 16 visualizes the alignment results for
the ablation study, clearly demonstrating that our proposed
pipeline significantly outperforms the other four comparison
schemes. The ablation study highlights the significant role of
each module in our pipeline and validates the effectiveness of
our proposed method.

E. Failure Case

The abovementioned experiments confirm the performance
of our proposed method on artificial scenes, which typically
contain a large number of planar features. However, when

Source & Target Scenes

Source & Target Sketches

Failure Alignment

Fig. 17. Failure example of the proposed method. The rotation error 8z is
35.61°; the translation error §; is 13.78 m.

applied to nonartificial scenes, it encounters challenges. For
example, Fig. 17 presents a group of data involving two scenes
abundant with trees, which makes it difficult to accurately
extract planar features. As a result, the method encounters
obstacles in achieving precise alignment between the two point
clouds.

V. CONCLUSION

We demonstrated a framework for sketch-based point cloud
registration utilizing contour cues. The proposed method
abstracts the scene into a sketch by planar features and
incorporates local contour geometric feature descriptors into a
voting-based pipeline, combining planar features, local con-
tour geometric features, and point pair geometric features
to estimate the 6-DoF transformation between the target
point cloud P and the source point cloud Q. Experimental
results on multiple datasets validate the effectiveness of our
approach in suppressing both rotation and translation errors.
The proposed method demonstrates promising performance
on artificial scenes; future research efforts will be directed
toward enhancing its performance on nonartificial scenes.
This article underscores the significance of contour cues in
point cloud registration tasks, paving the way for the explo-
ration of reinforcing the role of contour features in such
tasks.
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