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Abstract— Groundwater depletion is one of the serious geoen-
vironmental issues causing ground subsidence, which damages
buildings, infrastructures, and causes loss of life. The quan-
titative and qualitative evaluation of groundwater variability
requires multiple approaches to measure hydraulic head level
and geodetic deformation. In this study, we have made efforts
to integrate multiple hierarchical space-borne data, including
Gravity Recovery and Climate Experiment (GRACE), Sentinel-1
interferometric synthetic aperture radar (InSAR), and geological
and hydrological data, to quantify subsidence in Chandigarh
city and its surroundings. First, we conducted New-Small
BAseline Subsets (NSBASs) and pointwise persistent scatterer
(PS) InSAR techniques in parallel, using three-year Sentinel-1
data showing a vertical subsidence up to 120 mm/year around
fluvial sediment deposits. Furthermore, correlation analysis of
hydraulic/climatic measurements clearly shows the subsidence
associated with the groundwater depletion. The pattern of PS
points shows the instability of structures associated with the
ground subsidence over the central city areas. The monumental
architectures designed by Le Corbusier in the northern sec-
tors are outside of the main subsidence area. In the target
area, the magnitude of subsidence and surface deformation
due to groundwater depletion depends on the subsurface geo-
physical environment and the anthropogenic activities within
the region and surroundings. The results provided a case of
monitoring scheme using multiresolution satellite data about
the subsidence and associated consequences due to groundwater
depletion.

Index Terms— Groundwater depletion, interferometric syn-
thetic aperture radar (InSAR), risk assessment, subsidence, time
series analysis.

I. INTRODUCTION

GROUNDWATER is one of the main natural resources
governing human civilization during the industrializa-
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tion of developing countries. It is primarily used to sustain
growing population pressure and agricultural productivity need
in developing countries such as India. However, increasing
consumption of groundwater for drinking, industry, and irriga-
tion without recharge can cause serious water problems, such
as water quality, increased salinity, ground subsidence, and
even earthquakes [1], [2], [3]. Among these problems, ground
subsidence is a slow deformation associated with the loss
of groundwater that causes widespread structural instability
in human settlements in many megacities [4], [5], [6] and
water basins [7], [8], [9]. Detecting and monitoring the slow
deformation associated with groundwater depletion will help
the authorities to take appropriate measures to minimize the
risk of subsidence.

Ground subsidence due to groundwater withdrawal and
depletion has been estimated using numerical modeling, and
various approaches to predict subsidence in vulnerable areas,
including aquitard drainage [10], poroelasticity [11], and poro-
viscosity [12], and semiempirical/empirical models [13], [14].
Such efforts enable the implementation of modeling through
software tools; for instance, modular three-dimensional finite-
difference ground-water flow model (MODFLOW)-interbed
storage package (IBS). However, as available initial condi-
tions, such as hydraulic pressures, porosity, and storability of
the target area, are only occasionally available, it is difficult
to predict the propagation of ground subsidence by ground-
water depletion using numerical modeling alone. Also, in situ
monitoring using GPS and water levels needs to establish a
data network with sufficient spatiotemporal density. Therefore,
interferometric synthetic aperture radar (InSAR) has been used
as a powerful method to detect and monitor ground subsidence
induced by groundwater depletion as reviewed by Galloway
and Hoffmann [15]. In several cases, InSAR successfully
investigated ground subsidence by groundwater depletion [16],
[17], [18], especially with the development of time series
analysis techniques that enable the continuous monitoring of
ground subsidence.

In this study, we investigated a regional ground subsi-
dence in a parts of the Himalayan groundwater storage
(HGS) system [19]. The HGS is a massive terrestrial water
aquifer system in the Himalayan River basin [Fig. 1(a)].
Nearly one-fifth of the accessible freshwater is stored in
the Himalayan region covering Indus and Ganges plains
(IGPs) [20]. Due to orographic effects, seasonally variable
monsoon climate has created a large water aquifer, especially
around the Northern Punjab and Haryana provinces during the
Holocene epoch [21]. However, excessive irrigation to feed
the huge demands of the Northern Indian plains’ agricultural
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Fig. 1. (a) Location of target area and surroundings geographical/geological
environments. (b) Sectors in Chandigarh city, roadways, and major interesting
places.

complex caused the overexploitation of the HGS. Recently,
Gravity Recovery and Climate Experiment (GRACE) data
have been used in the northwestern parts of India, which
have revealed depletion of groundwater storage (GWS) [2],
[22] as well as involved ground deformation [23], [24]. Due
to the limited spatial resolution of GRACE, the detailed
distributions of groundwater depletion and consequent ground
subsidence have not been well understood but are within
the resolving scope of recent InSAR surveys [25], [26].
In recent years, the groundwater in the northern Indian cities,
New Delhi [27] and Jagadhri [28], has been affected by
subsidence, which was mapped by the InSAR time series
analysis.

Our InSAR observation in the northwestern parts of India
has shown a highly intensive ground subsidence around
the Chandigarh city, which is not well investigated by any
in situ or space geodetic methods. Together with the spe-
cial location of Chandigarh in the cultural and economical
context, it is important to investigate the spatiotemporal
characteristics of ground subsidence in the region. We have
conducted the InSAR campaign with two main objectives:
1) to study the geological/climatic contexts in comparison
to long-term InSAR time series analysis to confirm the
association with groundwater depletion and 2) the employ-

ment of two different time series InSAR techniques, i.e.,
persistent scatterer interferometry (PSI) [29] and New-Small
BAseline Subsets (NSBASs) [30] to evaluate the potential
hazard on the constructions assigned as historical heritages in
Chandigarh.

II. TEST SITE

Chandigarh is a planned city constructed in the foothills of
the Siwalik Range of the western Himalayas between Punjab
and Haryana states [Fig. 1(a)]. Based on the innovative city
planning concept introduced by Le Corbusier who built a
major agenda of modern architecture and city planning, the
city is built over a concrete base, intersected roadways in
highly regular patterns, and ferroconcrete buildings [Fig. 1(b)].
Such city structures formed peculiar SAR scattering patterns
and were applied in this study. Many architectures have been
treated as monuments of modern building design. Among
them, the Palace of Assembly was assigned as a UNESCO
world heritage. Considering the ground subsidence associated
with the water depletion, the safety of monumental buildings
attracted our attention and became the main motivation of
this study using InSAR analysis. The industrial sectors are
located in the southern part of the central city area and several
factories (paper, metal, and machinery) are in the area. The
groundwater is used by the existing facilities and one million
population. Furthermore, water is also used from Sukhna lake,
an artificial lake damming a seasonal river, so-called Sukhna
Choe that originates from the Siwalik Range. Over-water
consumption and frequent depletion of seasonal inflow led
to the shrinking of both Sukhna lake and possibly connected
groundwater aquifer as well. The city is located in the southern
piedmont of Siwalik Range, part of the sub-Himalaya, which
is folded into an anticline topography overriding the Main
Frontal Thrust (MFT) in the north of Chandigarh [31] that
resides as the source of the fluvial water flow and sediments
in the IGP. The young Holocene alluvium soils around two
major “Rao (seasonal inflow channel)”, i.e., Sukhna and Patiali
Raos within Chandigarh city area [Fig. 1(a)] [32]. The alluvial
aquifer system around the Chandigarh city area is highly
complex, composed of alternating coarse and fine sands, silts,
and occasionally clays, deposited within a sequence of channel
and interchannel deposits. The complexity of the alluvial
aquifer system is largely driven by the proximal–distal changes
in fluvial processes over a variety of scales and typologies [33].
In particular, the Pleistocene and Holocene alluvium seen in
the Chandigarh city area show significant sedimentological
differences over short distances [33] that are characterized by
a significantly higher proportion of finer alluvium sediments
due to low-energy fluvial systems and relatively large distances
between active river channels which limit the proportion of
sands and gravels, to silts and fines. The proportion of the
finer alluvium sediments increases swiftly toward the distal
part away from the Siwalik Range. Such a fluvial system
around our study area demonstrates dependence on the local
groundwater supplies and economical processes.

Chandigarh is a typical subtropical area, dominated by
the 70%–80% precipitation during the monsoon season (late-
June–mid-September). The average high temperature is around
38 ◦C during the summer season. Over the year, the average
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Fig. 2. Overall processing steps of InSAR time series analysis.

temperature is about 20 ◦C. This is important as we have
made efforts to avoid InSAR data during the monsoon season
due to the errors caused by the enhanced water vapor in the
interferograms and thermal response of the structures.

III. METHOD AND DATASETS

In order to carry out a detailed analysis and to investigate the
cause of ground deformation around Chandigarh, we followed
the steps, as shown in Fig. 2. Furthermore, to understand the
deformation based on a broader context, not only the center of
Chandigarh city but also we have investigated the surrounding
cultivated area in the process. Considering the capability to
extract densified observations in vegetated areas as well as to
achieve precise observation in the central city area, we used
two different InSAR time series analyses. The results were
integrated for further analysis.

A. PS and NSBAS InSAR Processing Method

The differential InSAR (D-InSAR) technique developed to
trace surface change is based on the relation as follows:

8obs = 8int + 8topo + 8E (1)

where 8obs is the observed phase angle difference by InSAR
pair, 8int is the phase angle difference by surface deformation,
8topo is the phase angle contribution by base topography which
can be simulated and subtracted by base digital elevation
model (DEM), and 8E is the phase error by various error
factors. Therefore, 8int is convertible to the surface deforma-
tion once after 8topo, and 8E is corrected on the condition that
other systematic noise is negligible.

The major challenge is to achieve precise InSAR analysis
after evaluating error analysis. Error components are asso-
ciated with the observed phase angle difference using the
following equation:

8E = 8a + 8t + 8o + 8n (2)

where 8a is the error term of the change of atmospheric
condition, 8t is the base DEM error even after compensating
8topo, 8o is the orbital error, and 8n is the phase noise of
systematic component.

To address error components, InSAR processing used time
series analysis by stacking multiple interferograms. There are
mainly two different time series approaches. One is to trace
the temporal behaviors of strong reflectors, i.e., PS points
by time series pairs formed by a single reference to multi-
comparison image geometry, known as PSI [29]. In PSI, 8E
is iteratively estimated into atmospheric phase screen (APS)
over the PS point network. In contrast, SBAS [34] techniques
form a series of intensive phase angle difference maps on
small scattering objects, known as distributed scatterers (DSs),
using multireference-to-multicomparison geometry. It should
be noted that the concept of DS is valid even if a single
reference geometry is applied in the stacking process. It cor-
responds to a linear system consisting of a small baseline
combination matrix, phase values, and mean phase velocities.
Singular value decomposition (SVD) together with low-pass
(LP) and high-pass (HP) filters are used on a linear system
to obviate the spatial and temporal components of the noise
and to extract the error-reduced deformation. The resultant
deformation velocity estimated from such linear operation has
reduced the atmospheric, orbital, and base DEM noise, which
are compensated by LP and HP filtering [35].

The density of DS processed by ordinary SBAS is not suffi-
cient to monitor continuous deformation since the surrounding
area is covered by the paddy field. The paddy field and
natural vegetation together with other decorrelation factors,
such as reconstructions and changes in topography, misregis-
tration and day-to-day weather variability, lead to occasional
breaks in connection of correlation covering all observations.
Therefore, the inverted deformation by SBAS was limited to
provide highly densified observations in time series analysis to
trace regional deformation, which may be induced by ground
subsidence. We have used NSBAS, an improved version of
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SBAS technique, to avoid associated errors. NSBAS [30], [36]
algorithm is used for the densification of reliable scatterers
as shown from the intercomparison with other time series
algorithms as discussed by Gong et al. [37]. Together with its
capability of manipulating partially connected scatterers and
producing superior observation point density, the NSBAS time
series technique was applied.

Since the target area is covered by highly variable phase
delay originated from atmospheric water vapor from oro-
graphic and monsoon precipitation, the atmospheric error
in phase difference needs to be prescreened. Although
it was usually solved by PSI and SBAS algorithms,
the introduction of external APS datasets was imple-
mented to remove the errors [38]. European Centre for
Medium-range Weather Forecasts (ECMWF) Reanalysis-
Interim [39] was used by Jolivet et al. [40] as the source
of APS; they identified that the effects of such APS
model employing ECMWF ERA is efficient to enhance
time series analysis. Error compensations of each interfer-
ogram product were performed by subtracting APSs [41],
[42]. In this study, we developed APSs using Generic
Atmospheric Correction Online Service (GACOS) (http://ceg-
research.ncl.ac.uk/v2/gacos/), which is developed on the
ECMWF ERA-Interim model [43]. The APS was applied
to each interferogram produced by the ESA Sentinel-1 tool-
box (https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1)
and minimum cost flow (MCF) unwrapping algorithms [22]
combined with in-house batch processing wrapper. The pro-
cessed interferograms and phase coherence were delivered
to the NSBAS routine, so-called Looking into Continents
SBAS (LiCSBAS) [44], by our own in-house data conversion
wrapper. It should be noted that we used our own interfer-
ogram products instead of the products provided in Looking
into Continents from Space with Synthetic Aperture Radar
(LiCSAR) [43] service (https://comet.nerc.ac.uk/COMET-
LiCS-portal/), which is originally distributed for the default
use of LiCSBAS. There are two reasons to replace LiCSAR
products with our own interferograms: 1) in comparison to
LiCSAR products with 100-m spatial resolution, our own
interferograms achieved 30-m spatial resolution; thus, the
regional deformations could be traced with a better quality
and 2) we were able to extend temporal coverage beyond
that of the LiCSAR products, which covered only 2016–2017.
The orbital error compensation is also necessary as described
by Biggs et al. [45] and Wang and Jonsson [46]. Assuming a
polynomial type of orbital error, the orbital inaccuracy caused
the erroneous phase contributions to interferograms errors, and
its consequent distortions can be approximated as follows:

f (R, A) =

2∑
i=0

2∑
j=0

ai j Ri A j (3)

where R and A are the range and azimuth, respectively, ai j
is the coefficient set which can be found through the least
squared solution, and f is the error residual in the range
(R) and Azimuth (A) domains. By adding this correction
component, it is possible to remove the orbital inaccuracy
of the phase angle. We checked first and second polynomial
orbital errors and applied first-order correction considering

the relatively narrow processing domain of our interferograms
generated using the internal filtering stage of LiCSBAS.
The influences of Sentinel-1 orbital errors on the InSAR
processing are discussed by Yagüe-Martínez et al. [47] and
Yague-Martinez et al. [48]. The use of DS-based analysis on
the building stability of Chandigarh city area, especially for
monumental buildings, is not adequate because the SBAS and
NSBAS algorithms exploiting DS depend on only filtering
for the eradication of 8t term, which can be induced by
the height difference between base DEM and actual vertical
building profiles, since part of them can be compensated by the
angular diversity of perpendicular bases. Although there are
some algorithms to combine PS and SBAS mainly to increase
the density of observations [49], [50], we used simultaneous
processing of PS and NSBAS in order to achieve both merits
of PS and NSBAS for the observations of local/structural
instabilities. A detailed investigation on the difference between
SBAS and PSI is given in Sections IV and V.

The application of the PS algorithm begins with the discrim-
ination of persistent scatterers (PSs) by measuring amplitude
dispersion as follows:

Disp(amp) = 1 −
M(amp)

Std(amp)
(4)

where M(amp) is the mean deviation of amplitude, and
Std(amp) is the standard deviation of amplitude in time series.
The PS point network with Disp(amp) > 0.75 was constructed
and iteratively estimated error components by nonlinear equa-
tions. In the adjusted model residual, each pair’s APS was
established and removed. After APS is eliminated, networks
of PS points are extended until up to the final APS estimation.
During this stage, two errors, i.e., DEM error between the base
topography and the building roofs or facet together with the
thermal expansion components are estimated simultaneously
using the following relation [51]:

1H = αH01T (5)

where H0 is the height of object, 1T is the temperature
change, α is the coefficient of linear expansion, and 1H is
the change of building height caused by thermal expansion.

The construction of a reliable PS point network is a
challenge in the case of nonlinear deformation as discussed
in the earlier PS study [52], especially together with the
consideration of thermal expansion. Therefore, we simply
assumed linear deformation and introduced additional interpre-
tations to analyze the differences between actual and modeled
deformation.

To consider PS and DS simultaneously and conduct inter-
comparison, we used a certain relation between PSI and
NSBAS. The straightforward approach was the delivery of ref-
erence points from NSBAS to PSI. The delivery of a reference
point that was automatically created by LiCSBAS taking into
account multiple scatterers’ characteristics to the PSI process
would guarantee the intercomparison of two different outputs
with a controlled data range. Among multiple combinations of
reference points in ascending and descending modes, which
are created by LiCSBAS routines, we chose the reference
points set that minimizes the deformations in the northern
target area, in which no deformations were observed [25], [26].
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Fig. 3. Connection graphs of employed. (a) Sentinel-1 InSAR ascending
for PSI. (b) Sentinel-1 InSAR ascending for NSBAS. (c) Sentinel-1 InSAR
descending for PSI. (d) Sentinel-1 InSAR descending for NSBAS. In total,
111 ascending and 84 descending pairs were employed for time series analysis
as shown in (e). Black dotted box represents the time domain used for
decomposition.

The integrated InSAR was assessed and interpreted in com-
parison to geological/climatic/hydraulic information following
the processing steps as shown in Fig. 2.

The groundwater withdrawal causes subsidence, in both the
horizontal (H) and vertical (V) directions. However, vertical
deformation is dominant for the most of subsidence due to
compressibility, if the target area is not related to faults or
fractures [15]. Upon line-of-sight (LOS) geometry of the SAR
sensor, it is feasible to decompose horizontal/vertical defor-
mation from the combination of ascending and descending
InSAR outputs. The contribution of north–south directional
deformation is considered minor as the orbits of Sentinel-1 is
almost parallel to the north–south direction [53].

The V/H decomposition is obtained by following the
relationship given by Fialko et al. [54]:∣∣∣∣ LOSasc

LOSdes

∣∣∣∣ =

(
−sinθ asccosαasc cosθ asc
−sinθdescosαdes cosθdes

)∣∣∣∣ DH
DV

∣∣∣∣ (6)

where LOSasc and LOSdes are the measured LOS surface
deformations in ascending/descending mode InSAR process-
ing, respectively, DH and DV are the horizontal and vertical
deformations, θasc and θdes represent the incidence angles, αasc
and αdes are the heading angles, asc and des represent the
ascending and descending geometries, respectively,. It should
be noted that incidence angles have differences for whole
image domains; thus, we used gridded incidence angles for
the decomposition.

We only considered the ascending/descending LOS compo-
nents within an overlapped time span, as shown in Fig. 3(e),
for decomposition. We have applied a least squares quadratic
fit with a second-order polynomial form to synchronize
ascending/descending observation in common timings together
with a offset to adjust little temporal mismatch between
selected ascending/descending time coverage as developed
by Yun et al. [55]. The referenced time frame is descending
mode; thus, ascending mode datasets were interpolated.

TABLE I
SPECIFICATIONS OF EMPLOYED SENTINEL-1 IMAGES

B. Datasets Description

Owing to the availability in required spatiotemporal
domain and open data accessibility, the Sentinel-1 SAR
constellation was chosen as the InSAR data source. The wide
coverage (Swath >250 km) and considerably good spatial
resolution (20 m in azimuth and 4 m in range) acquired
by Interferometric Wide-swath mode (IW) operation [56]
are found to be the advantages of the Sentinel-1 images.
A high temporal resolution of 12-days revisiting time enables
to use a total of 112 and 85 images (Fig. 3 and Table I),
respectively, acquired in ascending and descending modes
for 3–4 years. The connections and temporal coverages
were shown in Fig. 3. The orbit ephemerides files by
Precise Orbit Determination (POD) service for Sentinel-1
(https://s1qc.asf.alaska.edu/aux_poeorb/) were applied to
all Sentinel-1 images for better quality registration. Our
target area was covered by only the second subswaths
(IW2) of the corresponding Sentinel-1 frame and relative
orbits for both ascending and descending modes, so it
was straightforward to process these images. For the
construction of base topography, we considered both 1-arcs
Shuttle Radar Topography Mission (SRTM) and Copernicus
DEMs (https://spacedata.copernicus.eu/explore-more/news-
archive/-/asset_publisher/Ye8egYeRPLEs/blog/id/434960).
The test shows no considerable height difference (>1 m)
areas between the two DEMs. As we have no information
regarding Copernicus DEM accuracy, the 1-arcs SRTM
DEM was employed for InSAR processing. For the
validation of PSI data, we used a Landsat-8 multispectral
image of October 2020. All available groundwater
level (GWL) is taken from the Central Ground Water
Board (CGWB) (http://cgwb.gov.in/GW-Year-Book-
State.html) and the water resource information system
(https://indiawris.gov.in/wris/) to interpret InSAR in terms of
piezometric contexts. A 0.25◦ resolution precipitation data
(https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_
Data_Download.html) which is available from the Indian
Meteorological Department for four years, i.e., 2017–2020
was used as complementary of groundwater datasets [57].
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IV. PROCESSING RESULTS AND ANALYSIS

A. PS and NSBAS Results

NSBAS processing produced highly similar LOS defor-
mation maps in both ascending and descending modes
[Fig. 4(a) and (c)], indicating that the deformations were
mostly induced by vertical subsidence. The average phase
coherence maps shown in Fig. 4(b) and (d) provide infor-
mation about the densified scatterer distribution over the
Chandigarh city area as well as background paddy fields due to
regularly populated villages and buildings, which are optimal
as landmarks for NSBAS inversions.

PS processing with the delivered reference points from
NSBAS routines was shown in Fig. 5(a) and (b). We also
observed similar deformation patterns in both ascending and
descending modes. PS and NSBAS were highly correlated and
the details of intercomparison between PS and NSBAS were
further discussed in the following section. Phase coherences
and standard deviation of velocities presented in Supplement
S.1 show a portion of unstable scatterers populated outside
of Chandigarh city. Overall InSAR time series processing
qualities were reliable as implied in maps of phase coherence
and standard deviation of velocity.

B. Regional Classifications

As discussed in Section III-A, we further conducted verti-
cal/horizontal decomposition using (6). The vertical deforma-
tion is found to be the dominant component (Fig. 6) compared
with the horizontal deformation, which shows weaker migra-
tion compared with the vertical deformation (Supplement S.2).
Therefore, we concentrated on vertical deformation, and this
is identified as subsidence hotspots around Sohana, Kharar,
and Dera Bassi (Fig. 6).

The deformation within Chandigarh city boundary is ana-
lyzed through the ten regions of interest (RoIs), as shown
in Fig. 6; here, underground water pumping was the main
water supply for the use. As no GIS data correctly assigns
seasonally activated rivers and creeks that might indicate
Paleocene/Holocene hydrologic activities and their sedimen-
tary deposits, we also defined the hydrological channels based
on topography, optical image, and local information (Fig. 6).

The RoIs consist of three groups on the interpretation of
deformations that are shown in Fig. 7(a)–(c) as follows.

1) RoIs(h): The cores of major vertical deformation,
defined as “hot spots,” and acronym defined as h, over
Sohana, Kharar, and Dera Bassi.

2) RoIs(w): In-between hot spots, a few relatively weak
subsidence places named as Sohana (weak—short form
defined as w), Kharar(w) and Dera Bassi(w).

3) RoIs(ch): Fours RoIs within Chandigarh city areas as
named Ch. areas 1–4.

Their temporal behaviors in terms of GWL and
consequences in the structural instability are further analyzed.

V. DISCUSSION

A. Interpretation to the Climatic/Hydrological Factors

The ground water level is being monitored by the CGWB
over the whole India. In the study area, data are sporadically

available in the spatiotemporal domain. Therefore, we intro-
duced GWS derived from the GRACE satellite to validate the
InSAR observation. The change in GRACE GWS is derived
from

1GWS = 1TWS − (1SM + 1SR) (7)

where TWS is the change of total water storage in GRACE,
SM is the soil moisture, and SR is surface runoff extracted
from Global Land Data Assimilation System (GLDAS) Noah
model [58]. See Supplement S.3 for the detailed procedure
in GRACE GWS. The analysis of GRACE data has shown a
pronounced declining of groundwater in the northwestern parts
of India [21], [22], [60]. Although there are numerous studies
using GARCE GWS and the InSAR signals comparatively on
the water depletion area [22], [59], we considered the poor
resolution of GRACE data (resolution 50 000–200 000 km2)

[60] and InSAR observation area (1000 km2) in the present
target area. Therefore, GRACE GWS around Chandigarh
is first compared with the average GWL data obtained
from CGWB and rainfall data over the Chandigarh city
area.

Instead of the unavailable time series GWL, as the CGWB
data are sporadic to be directly compared with InSAR data
(see Supplement S.4), we mainly used monthly rainfall data
in 0.25◦ resolution as a comparison time series.

Fig. 8(a) shows a declining trend of water storage from
2009, a pronounced decline was observed since 2016. The
trend of GRACE GWS of 20 years is correlated with rainfall
and GWL. It is known that the decline of rainfall after
2016 leads the unrecovered damage in groundwater aquifers
[Fig. 8(a)]. The correlation between GRACE GWS and under-
ground water level is 0.507 while GRACE GWS and rainfall
during monsoon season is 0.638 with roughly half year time
lag. Therefore, it indicates that GRACE GWS can be feasible
as a GWL designator. The comparison with the InSAR LOS
deformations in the whole area and the main subsidence area
in RoIs(h), in Fig. 8(b) and (c) respectively, showing the
validity of InSAR and the clues of the involved mechanism.
In the full test area, InSAR LOS deformations followed the
GRACE GWS (correlation value is 0.655 in ascending mode
and 0.705 in descending mode) and show a partial relaxation in
ground subsidence rate after the monsoon season. Thus, it fits
our observation in Fig. 7. However, we also identify the InSAR
LOS deformations in the main subsidence areas, i.e., RoIs(h),
that have been continuously accumulated following the linear
trend of GRACE GWS [Fig. 8(c)] and maintains even higher
correlations (correlation value is 0.764 in ascending mode and
0.811 in descending mode). It implies that a strong driver
of different subsidence patterns has different regional subsur-
face sedimentary architecture as explained beforehand. The
involvement of in situ GWL with InSAR deformations is not
clear as shown in Supplement S.4 which employed different
quantities, such as LOS velocity and GWL fluctuations. It is
mainly because the measurements of GWL were often contam-
inated with artificial water recharged while the observations
itself is very sporadic. We applied the analyses using spatial
analyses based on the GWL trend data which is available in the
Indian water resource information system (IWRIS), as shown
in Supplement S.5. However, the miss-match between InSAR
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Fig. 4. (a) LOS deformation by NSBAS descending mode. (b) Phase coherence map of NSBAS descending mode. (c) LOS deformation by NSBAS ascending
mode. (d) Phase coherence map of NSBAS ascending mode. Note that the reference points in ascending and descending modes were delivered to PS processing.

Fig. 5. LOS deformation estimated by PSI. (a) Ascending mode. (b) Descending mode. See Supplement S.1 for maps of phase coherence and standard
deviation of PS velocities.

deformation and GWL trend around Sohana needs to be
interpreted more. Also, we were not able to precisely interpret
temporal behaviors of InSAR LOS involving GWL due to

the deficiency and contamination of observation. Therefore,
we further applied the modeling of periodicity and geological
analyses.
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Fig. 6. Mean vertical deformation velocity estimated by NSBAS decompo-
sition (2017/10–2020/10).

B. Periodicity Model
The group of RoIs possessed different periodicities. For

instance, RoIs(w) is represented in orthogonal polynomial
fitting [Fig. 7(b)] for a one-year period with the maximum
subsidence during June–August and minimum subsidence dur-
ing February–April. We analyzed temporal responses of RoIs
with the involvement of hydraulic contexts. Compared with
monthly local rainfall data of 0.25◦ resolution, we found that
the introduction of a six-month time lag in order to respond
to the heavy rainfall into the relaxation of subsidence was
able to justify the observed periodicity and the time lag in
RoIs(w). The periodicities in RoIs(h) or RoIs(ch) are not very
clear. However, as shown in Fig. 7(a) and (c) for RoIs(h)
and RoIs(ch), respectively, the prompt but partial restoration
of subsidence in the monsoon season was observed. Here,
we proposed a model: 1) RoIs(ch) consisting of weak yearly
periodicity of poor and strong monsoon seasonal prompt
subsidence, which were referred to as yearly lag subsidence
(YLS) and pulse response subsidence (PRS); 2) RoIs(w) is
mainly dominated by YLS component; and 3) RoIs(h) is under
combined influences by both YSL and PRS.

The model is further validated by the introduction of peri-
odicity decompositions as shown in Fig. 9. The methodology
of periodicity decompositions was based on seasonal and
trend decomposition (STL) using locally estimated scatterplot
smoothing (LOESS) [61]. We used a simple additive model
as given in the following equation:

D[t] = DT [t] + DS[t] + DE [t] (8)

where D[t] is the time series of deformation, DT [t] is the
trend of the deformation time series, DS[t] is the seasonal
component of the deformation time series, and DE [t] is the
error residual of the STL model. LOESS was initially used for

Fig. 7. (a) Vertical deformation profiles over three subsidence hot spots, i.e.,
RoIs(h). (b) Vertical deformation profiles over three weak RoIs, i.e., RoIs(w).
(c) Vertical deformation profiles over four Chandigarh RoIs, i.e., RoIs(ch).
Since the deviations of observations are high, we used window moving average
and a sixth-order orthogonal polynomial fit for the further analyses.

the smoothing of datasets and iteratively optimized the trends
and the seasonal components.

Once we applied STL over vertical migrations of RoIs,
the clear periodicities were revealed, which fit our assumed
models. We employed linear models in trend data and orthog-
onal polynomial regressions in seasonal data to understand
patterns. In Sohana, RoIs(h) showS strong vertical deformation
up to 130–150 mm/year for two years, strongly contrast to
the relaxation trends in Kharar and Dera Bassi [Fig. 9(a)].
Perhaps the groundwater pumping from the shallow aquifer
(static water level is close to 9.7 m according to the IWRIS)
for cooling systems in Sohana is the main cause for enhancing
vertical deformation. The seasonal periodicity represented as
the form of sinusoidal wave with one-year period and half-
year time lag to the monsoon, the YLS is clearly observed
in the case of RoIs(w) [Fig. 9(b)] with 50–100-mm/year
magnitudes, which is also observed in the second regressions
of RoIs(h) and RoIs(ch) with 40–80-mm/year magnitudes
although those are overlapped with PRS. PRS can be identified
by the seasonal decomposition in both RoIs(ch) and RoIs(h)
with 100 mm during the 4–5 months’ monsoon period in
comparison to their second-order regressions presenting YLS.
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Fig. 8. (a) GRACE GWS/GWL/Rainfall time series for 20 years. There
was no time lag between the signals. (b) Cumulative deformation/GRACE
GWS/GWL time series over the whole test area. A time lag in six-month
was found between the upward deformation of LOS and GRACE GWS.
(c) Cumulative deformation/GRACE GWS/GWL time series on major ground
subsidence area (see Fig. 9). LOS deformations follow GRACE GWS and
are continuously accumulated. Here, the GWL unit is a meter-to-ground level
(m · bgl).

The interpretations of such periodic behaviors of deformations
were discussed in the following.

C. Geological Interpretation

The characteristic behaviors of ground subsidence (Fig. 6)
in different RoIs are discussed for three different geological
and hydrological environments.

The alluvial stratigraphy shows a high degree of spatial
variability of the Indo–Gangetic plains from west to east,
and the thickness of the alluvial sediments and bedrocks also
vary at the local scale [33]. This corresponds to the strong
spatial heterogeneity of groundwater depletion, discharge of
river sediments, and geomorphology [62]. In particular, the
test sites around Chandigarh city center are characterized by
high variability in GWL due to the limited and highly het-
erogeneous distribution of aquifer sediment in the subsurface
and with the population density consuming more water [54],
[55]. In Chandigarh, groundwater is being tapped from deep
aquifers that are confined to nature. This is in contrast to the
surrounding regions of Kharar, Sohana, and Dera Bassi tapped
from shallow and deep aquifers. Here, the groundwater occurs
under phreatic conditions in shallow aquifers, whereas leaky
confined-to-confined conditions exist in the deeper aquifers

[63]. In spite of strongest vertical deformation associated with
heavy and delayed compaction of aquitard, it is difficult to
track the GWL trend (as shown in Fig. 9) around Sohana due
to artificial recharges, geological, and hydrological variability.

The northern RoIs(ch) with a quick, strong but short aquifer
response suggests the role of the proximal piedmont with high
hydraulic conductivity (cobble, pebble, and boulder, associated
with sand, silt, and clay). This should facilitate swift percola-
tion of water which readily recharges the shallow aquifer in
the proximal part (piedmont of the Siwalik range) correspond-
ing to the northern RoIs(ch). Further south corresponding
to RoIs(w) region, the weak response suggests a significant
reduction of hydraulic conductivity by several orders (Fig. 9).
This would indicate a systematic and gradual thinning of the
shallow aquifer further away from the recharge zone of the
Siwalik range. As suggested above, the thinning of the shallow
aquifer zone which is a proxy to the paleotopography where
the percentage of coarse components reduces away from the
Siwalik range [64]. This explains the PRS in the RoIs(ch)
and the absence of PRS further south corresponding to the
RoIs(w). Thus, the PRS signal in RoIs(h) is indicative of a
highly variable aquifer geometry, locally producing a strong
response.

The YLS signal does not directly relate to the recharge
by monsoon; instead, the response is delayed by around six
months (Fig. 9). A similar pattern is observed in all three RoIs
that suggests that the involved aquifers are replenished over a
period of six months following the monsoon (i.e., only during
the winter seasons). This shows lag response over a large area
indicating a linkage with a large and deeper aquifer system.
In the RoIs(ch) region, the deep aquifers are confined in nature,
whereas, in the RoIs(w) and RoIs(h) region, the deep aquifer
is leaky confined to confined in nature [63]. The groundwa-
ter drawdown in the RoIs(ch) is mainly limited to human
consumption and limited industrial use. This is significantly
lower compared with RoIs(h) and RoIs(w) (Kharar and Dera
Bassi blocks) which are overexploited blocks. It is notable
that the groundwater draft for agriculture has decreased over
time but the draft for industrial and domestic usage has
increased tremendously [63]. This is also in-line with the
rapid urbanization trend in the whole of Punjab state, where
built-up area has increased by 372.27 ha (112.04%) [65].
The difference in groundwater drawdown matches well to a
weak YLS corresponding to RoIs(ch), whereas a strong YLS
corresponds to RoIs(h) and RoIs(w). However, the variability
in the InSAR signal from RoIs(h) and RoIs(w) is similar to
the response of pumping from the distal part of a narrow set
of aquifer bodies that may lead to greater depletion in adjacent
areas that lack such abundant and thick aquifer bodies [66].
An uplift area up to 25 mm/year in Chandigarh and another
in Panchkula (Fig. 6) was observed due to recharges by
incised channels from Siwalik range, which was also presented
in GWL trends of Fig. 9. The elastic rebound as a major
mechanism of such uplift is discussed by Chen et al. [67] and
Neely et al. [68].

D. Building Stability Analysis Using PS
The building stability check in ground subsidence area has

been a long-time topic of PSI technique [69], [70]. Despite
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Fig. 9. Periodicity decomposition over RoIs. (a) Trend, seasonal, and residual points over RoIs(h) and their second regression models. (b) Trend, seasonal,
and residual points over RoIs(w). (c) Trend, seasonal, and residual points over RoIs(ch). Note that we used a linear model in trend data and a sixth-order
orthogonal polynomial regressions in seasonal data.

high-density PS observation, the tasks, in the case of Chandi-
garh, were problematic due to issues such as thermal expansion
and an abnormal population of scatterers. The correlation
analysis between PS and NSBAS is shown in Fig. 10. The
LOS velocities estimated from PS and NSBAS were highly
correlated by linear forms [shown in Fig. 10(a) and (b)].
The correlation in decomposed V velocities was identified,
but H velocities of NSBAS and PS are not found to be
correlated. To clarify the relationship between NSBAS and
PS, we concentrated on the deviated scattering points which
are detected by a criteria of standardized regression error
(>1.0 in this case). Presumably, those PS points deviated
from the clear linear relationship became the candidates of
our further analysis, because the velocity deviation of PS
points from NSBAS regional components was likely induced
by the independent structural migration. The deviated PS and
NSBAS points in both ascending and descending modes were
projected in the spatial domain and identified in strong vertical
deformation areas observed in NSBAS over Chandigarh to
Sohana and Kharar belt [Fig. 10(e) and (f)].

In parallel to the PS–NSBAS correlation analysis, we intro-
duced another quantitative approach based on PS point clas-
sification [71]. We considered the time series deformation
trends of these PS points into account, as well as the spatial
clustering of PS points, to classify all PS points into categories.
To implement the classification, the data were aggregated
and summarized into a space-time cube. The 3-D cube was
made up of space-time components to the base constructed
by the planimetric coordinates of the PS points covering
Chandigarh, and the vertical dimension was formed by the
acquisition dates of each Sentinel-1 image. The trends of

displacement recorded in these spatial clusters were further
evaluated using the Mann–Kendall trend test [72]. We have
further classified the trends as “stable” as those fit the dis-
tributions of no-subsidence/no-deviated PS points and mainly
considered negative directional classes as “unstable” (refer to
Supplement S.6 for details of identified classes of PS points
and their characteristics).

We overlaid the classified PS points over the built-up
mask created by Landsat-8 built-up index (BI) combining
the normalized BI (NDBI) and normalized vegetation index
(NDVI) using the following relation [73]:

BI = NDBI − NDVI =
SWIR − NIR
SWIR + NIR

−
NIR − Red
NIR + Red

(9)

where SWIR is the short-wave infrared band (band 6 in
Landsat 8), NIR is the near-infrared band (band 5), and
Red is the red band (band 4). The threshold value of BI
was 0.28 referencing the outlines of incomplete building
footprint in OpenStreet map. By masking off nonbuilt-up
areas using BI, the class types of PS points over Chandigarh
were identified. It was found that southern Chandigarh mainly
included the class types which were assigned as unstable PSs
(refer to Supplement S.6 for the distribution of classified PS
points).

We have focused our study on the migrations of PS obser-
vations. As the instability in base topography causes the
weakness of the lower part of the building [74], [75], [76],
the horizontal deformation (so-called “tilting”) by decompo-
sition of ascending/descending PS represents the instability
of buildings. Our approach is to manage the decomposition
of ascending/descending PS within independent structures.
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Fig. 10. (a) NSBAS versus PS velocity in ascending mode LOS observation
(correlation value in two components is 0.958). (b) NSBAS versus PS
velocity in descending mode LOS observation (correlation value: 0.939).
(c) NSBAS versus PS velocity in vertical deformation (correlation value:
0.940). (d) NSBAS versus PS velocity in horizontal deformation (correlation
value: 0.582). (e) Spatial distribution of the deviated PS points [refer to
red crossed points in (a) and (b) whose standardized regression error >1.0]
extracted from ascending mode observation. (f) Spatial distribution of the
deviated PS points extracted from descending mode observation.

Then, we traced temporal behaviors of ascending mode LOS
deformations of target structures since the temporal coverage
of descending mode, as well as PS point density, was not

adequate to assess recent deformation patterns. The algorithm
to conduct structural PS decomposition is shown as follows.

1) Define labeled segments on the built-up mask mentioned
above by masking-off road networks with a buffer zone
(10–20 m according to the grade of roads).

2) Further mask-off on labeled segments with water, park,
and railways.

3) Overlay some available building footprints on the seg-
ments and define further structural segments. Therefore,
a total of 8024 structural segments were defined around
the Chandigarh city area.

4) Allocate DEM error points which extracted by PS
processors as follows [77]:

1H =
λ

4π

rsinθ

B
8topo (10)

where is the wavelength, r is the slant range, and B is
the perpendicular baseline.

5) Adjust the segment locations using the following
relation [78]:

1x = 1H cot θ cos α and 1y = 1H cot θ sin α (11)

where 1x and 1y are the EW and NS positional
adjustments.

6) Allocate PS points in ascending and descending modes
on the structural segments.

7) According to the number of PS points (N ), perform
gridding, i.e., inverse distance weighted (IDW) if N > 3;
otherwise, median value fill.

We have considered most of the structural segments, which
are filled with representing PS values in both ascending
and descending modes. Applying (6) together with incidence
angles on segments, we created vertical/horizontal (so-called
H and V) velocity maps, as shown in Fig. 11. The interesting
things in the analyses of Fig. 11 additionally in comparison to
PS point classifications and PS-NSBAS correlation analysis
are as follows: 1) the most significant H-valued areas such
as sectors 18, 34, and 45, exist along the boundaries of high
deformations area which are defined by NSBAS; 2) the devia-
tion points of PS-NSBAS fit part of high H values areas which
exists on high V migrations; and 3) PS point classification as
sporadic subsidence of ascending mode fit the H migration
of 1. There is no direct correlation between H and V velocities.
We concluded that the structural instabilities presented in
horizontal titling were often caused by sporadic subsidence
on the boundary of uplift and subsidence. On the other hand,
the central parts of vertical subsidence also cause instabilities
in the strictures. The structural instabilities in Sohana and
Kharar might be due to weak foundations of local housings
overlapped with strong vertical subsidence. It is worth noting
that the cooling system in Sohana induced strong structural
instabilities. After all, the decomposition analyses of PS using
structural segments demonstrated the concealed instabilities
from NSBAS. It is because PS captures and monitors the
scattering from a single object than the synthesized response
by NSBAS as demonstrated by Yan et al. [79].

The cumulative deformations and velocity patterns of PS
over the proposed structural instability areas, which corre-
spond to the sectors 18, 30, and 34, together with interested
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Fig. 11. (a) V migration of individual structures with classified PS points. (b) H migration of individual structures. Refer to Fig. 12 for the temporal behavior
of the specific structures. Also, refer to Supplement S.7 for the details.

Fig. 12. (a) Patterns of cumulated deformations and velocities in ascending LOS over the structures of cooling system. (b)–(f) Other structures of strong
H-trending structure (H velocity >10 mm/year). (g)–(i) Structures with stable trend (V and H velocities <5 mm/year) including Gandi Bhavan and Palace of
Assembly. Note that the locations of structures can be seen from Fig. 11. The NSBAS profiles were taken from buffered (<150 m) zones of PS structures
but excluded other structures.

places, such as cooling system, industrial sectors, monumen-
tal buildings (i.e., Gandhi Bhavan and Palace of Assembly)
were shown in Fig. 12. After all, we identified H migration
structure that presents the most variant velocity profiles in
Fig. 12(a)–(f), might be related to the tilting of structures
induced by highly variable deformations. As shown in Fig. 12,
the variances of velocities are maximized up to 100–600 mm
in the monsoon season (late June–early September). It implies
that the stability of the structure is a consequence of nonlinear
vertical migrations during monsoon seasons. The velocity of
pattern of the cooling system in Fig. 12(a) is highly obvious,
showing consistently strong subsidence as a consequence
of the pumping from shallow water aquifer. We noted that

it created extensive instabilities in the vicinity as well as
the cooling system location. The structures in Shahana and
industrial areas also possess consistent subsidence but not
significant velocity variations, perhaps due to the less loading
imposed by low relief structures [Fig. 12(e) and (f)].

We proposed that not all strong V directional migrations
evolved into immediate hazardous areas as it takes consid-
erable time that equally strong regional subsidence cause
inherent structural risk of individual structures, which can be
revealed as the forms of horizontal tilting. The mechanism
inducing horizontal tilting is highlighted when we compare
NSBAS deformation patterns to PS ones demonstrated in
Fig. 12. The deformations in NSBAS observations often



KIM et al.: InSAR TIME SERIES ANALYSIS TO EVALUATE SUBSIDENCE RISK 4505715

rebounded with heavy precipitations during monsoon that
can be explained by a few experiments and observations
[27], [80], [81], but the rebounds in structures by PS are

not strong, perhaps due to the loading of building structures.
It explained that the low variability and higher deformations
of PS are compared with NSBAS observations (Fig. 12).
The unresolved structural stresses may develop into horizontal
tilting. The deformation patterns in the Palace of Assembly
as well as Gandhi Bhavan, neither show risky deformation
patterns, as demonstrated in Fig. 12(h) and (i) nor horizontal
tilting. However, our subsidence analysis shows a considerable
deformation to LOS 50 mm in the very recent epoch in the
monumental buildings of the Palace of Assembly [Fig. 12(i)].
Moreover, the velocity variations of the two places are not
negligible due to the seasonal monsoon recoveries and regional
elastic rebound [67]; thus may develop into structural instabil-
ity. Therefore, we suggest continuous monitoring of structures,
especially the valuable architectures in Chandigarh city that
will help to take an appropriate measure to protect these
valuable structures, which have an archeological value.

VI. CONCLUSION

Our study is based on detailed analysis of InSAR time
series, and their spatiotemporal interpretation around the
Chandigarh city area that show ground subsidence up to
120 mm/year. The intercomparison to geological, hydrological,
and climatic information by the correlation analysis show
pronounced subsidence induced by groundwater depletion,
which is also supported by the GRACE data but is not well
identified in detail with its limited resolution. In general,
in Punjab, especially in the surrounding areas of Chandigarh,
groundwater has been tapped for irrigation and industrial
purposes since more than three decades. Irrespective of poor
monsoon, ground water is being withdrawn, and the water
level is declining that is causing subsidence which is detected
clearly from time series analysis of SAR images. We have
drawn two major conclusions based on the detailed satellite
and ground analysis.

1) Well-known overexploitation of HGS by space geodesy
such as GRACE and GRACE-follow-up missions has
highly inhomogeneous local structures and mechanisms
as shown in the Chandigarh case.

2) The distribution of sediments is involved in the local-
ized patterns of groundwater depletion and consequent
on-going ground subsidence.

The pattern of localized ground subsidence centered along
an arc shape in the southeastern Chandigarh city area was
further investigated by the application of PS and statistical
survey. We observed structural instabilities caused by hor-
izontal tilting. It appeared that major architectures as the
legendary modern architectures are not very influenced by
ground subsidence. However, the continued decline of water
level and associated subsidence is a real concern as observed
by the instabilities along high vertical subsidence. Technically,
this study demonstrates an effective utilization of two com-
plementary time series InSAR techniques based on PS and
DS data syncretization. Zooming-up the potential hazard areas
by regional observation of GRACE, regional observation of
NSBAS, and structural observations of PS, the assessments of

risky points were achieved even with public domain medium
resolution space geodetic data. The detected structural insta-
bility on the cooling system based on the further PS analyses
and NSBAS background survey highlighted the potential to
extend the approaches identifying localized structural risk with
medium resolution InSAR processor. We further suggest that
the entities involved could plan to use NASA-Indian Space
Research Organisation (ISRO) joint mission (NISAR) data
along with in situ data for monitoring of subsidence in the
Punjab area.
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